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Abstract Line systems passing through the origin of the d dimensional Eu-
clidean space admitting exactly two distinct angles are called biangular. It is
shown that the maximum cardinality of biangular lines is at least 2(d−1)(d−2),
and this result is sharp for d ∈ {4, 5, 6}. Connections to binary codes, few-
distance sets, and association schemes are explored, along with their multian-
gular generalization.

Keywords Biangular lines · Few-distance sets · t-designs

1 Introduction

This paper is concerned with optimal arrangements of unit vectors in Eu-
clidean space. Let d,m, s ≥ 1 be integers, let Rd denote the d-dimensional
Euclidean space with standard inner product 〈., .〉, and let X ⊂ Rd be a set of
unit vectors with the associated set of inner products A(X ) := {〈x, x′〉 : x 6=
x′;x, x′ ∈ X}. The following two concepts are central to this paper: X forms
a spherical s-distance set [5], [31], [34], [36] if |A(X )| ≤ s; and X spans a sys-
tem of m-angular lines (passing through the origin in the direction of x ∈ X ),
if −1 6∈ A(X ) and |{γ2 : γ ∈ A(X )}| ≤ m. With this terminology a system
of m-angular lines can be considered as the switching class of certain spher-
ical 2m-distance set without antipodal vectors. If the parameters s and m
are not specified, then we talk about few-distance sets [9], and multiangular
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lines, respectively. The fundamental question of interest concerns the maxi-
mum cardinality and structure of the largest sets X and their corresponding
A(X ).

Equiangular lines (i.e., the case m = 1) are classical combinatorial ob-
jects [16], [29], [30], receiving considerable recent attention, see e.g., [3], [20].
Biangular lines correspond to the case m = 2, which have also been the sub-
ject of several recent studies [7], [8], [21], [25], [37] where in particular engi-
neers investigated them focusing on tight frames [19], [40]. Our motivation for
studying these objects is fueled by their intrinsic connection to kissing arrange-
ments [14], [15], [33]. In particular, we hope that the techniques and results
described in this paper will eventually contribute to a deeper understanding of
low-dimensional sphere packings. The goal of this paper, which heavily builds
on the theory set forth earlier in [39], is to describe a systematic approach to
the study of multiangular lines, focusing in particular on the biangular case.

The outline of this paper is as follows: in Section 2 we give various con-
structions of biangular lines, showing that their maximum number is at least
2(d−1)(d−2) in Rd for every d ≥ 3. In Section 3 we set up a general computa-
tional framework for exhaustively generating all (sufficiently large) biangular
line systems, and in Section 4 we leverage on these ideas to classify the largest
sets in Rd for every d ≤ 6. In Section 5 we present our results on multian-
gular lines. In Section 6 we conclude our manuscript with a selection of open
problems. To improve the readability, a technical part on graph representation
was moved to Appendix A, along with a few rather large matrices displayed
in Appendix B.

For a convenient reference, we display here in Table 1 the best known
lower bounds on the maximum number of biangular lines in Rd (where entries
marked by ∗ are exact). Each of these numbers are new, except for the well-
known case in dimension 23.

Table 1 Lower bounds on the maximum number of biangular lines in Rd

d 2 3 4 5 6 7 8 9 10 11
# 5∗ 10∗ 12∗ 24∗ 40∗ 72 126 240 256 276

d 12 13 14 15 16 17-20 21 22 23-35 36-
# 296 336 392 456 576 816 896 1408 2300 2(d− 1)(d− 2)

2 Constructions of biangular lines

The goal of this section is to give various explicit constructions of large bian-
gular line systems in low dimensional spaces.

Let X ⊂ Rd be a set of unit vectors, spanning biangular lines and let O be
an orthogonal matrix representing an isometry of Rd. Since for every x ∈ X
the sets X ′ := (X \{x})∪{−x} and X ′′ := {Ox : x ∈ X} span the same system
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of biangular lines as X , we may replace any x ∈ X with its negative or apply
O whenever it is necessary. Throughout this section we represent biangular
line systems with a (conveniently chosen) corresponding set of unit vectors,
and uniqueness is understood up to these operations.

First we give an elementary proof to the following trivial warm-up result.

Lemma 1 The 5 lines passing through the antipodal vertices of the convex
regular 10-gon is the unique maximum biangular line system in R2.

Proof. Let n ≥ 1, let α, β ∈ R such that 0 ≤ α < β < 1, and assume that X :=
{xi : i ∈ {1, . . . , n}} spans a maximum biangular line system in R2 with corre-
sponding set of inner productsA(X ) ⊆ {±α,±β}. We may assume without loss
of generality that x1 = [1, 0]. Since for i ∈ {2, . . . , n} we have 〈x1, xi〉 ∈ A(X ),

it immediately follows that xi ∈ {[α,
√

1− α2], [α,−
√

1− α2], [β,
√

1− β2],

[β,−
√

1− β2]}, after replacing xi by −xi if it is necessary. Therefore n ≤ 5,
and the claimed configuration is indeed a largest possible example.

To see uniqueness, let us use the notation x2 = [α,
√

1− α2], x3 = [α,

−
√

1− α2], x4 = [β,
√

1− β2], and x5 = [β,−
√

1− β2]. Since 〈x2, x3〉 =
2α2−1, 〈x4, x5〉 = 2β2−1, and 〈x2, x4〉+ 〈x2, x5〉 = 2αβ, the following system
of polynomial equations in the variables α and β must hold:

((2α2 − 1)2 − α2)((2α2 − 1)2 − β2) = 0

((2β2 − 1)2 − α2)((2β2 − 1)2 − β2) = 0

αβ((αβ)2 − α2)((αβ)2 − β2)((2αβ)2 − (α+ β)2)((2αβ)2 − (α− β)2) = 0.

This admits the unique feasible solution α = (−1 +
√

5)/4 and β = (1 +√
5)/4.

Recall that a binary code of length d with minimum distance ∆ is a set
B ⊆ Fd2 such that dist(b, b′) ≥ ∆ for every distinct b, b′ ∈ B where dist(., .)
denotes the Hamming distance [18]. Applying the following function

Σ : F2 7→ R, Σ(0) = 1/
√
d, Σ(1) = −1/

√
d

entrywise on the codewords (i.e., on the elements of B) yields a spherical
embedding.

Lemma 2 Let d ≥ 2, and let ∆1, ∆2 ∈ {1, . . . , d− 1}. Let B be a binary code
of length d, such that dist(b, b′) ∈ {∆1, ∆2, d−∆1, d−∆2} for every distinct
b, b′ ∈ B. Then X := {Σ(b) : b ∈ B} spans a system of biangular lines with
A(X ) ⊆ {±(1− 2∆1/d),±(1− 2∆2/d)}.

Proof. For every b, b′ ∈ B, we have 〈Σ(b), Σ(b′)〉 = 1−2 dist(b, b′)/d > −1.

For terminology and basic facts on lattices we refer the reader to the text-
book [15]. It is well-known (see [15, p. 117]) that the shortest vectors of the
Dd lattices give rise to biangular line systems.
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Lemma 3 Let d ≥ 2, and let X ⊂ Rd be the subset of all permutations of the
unit vectors [±1,±1, 0, . . . , 0]/

√
2 whose first nonzero coordinate is positive.

Then X spans |X | = d(d− 1) biangular lines with A(X ) ⊆ {0,±1/2}.

Proof. For distinct x, x′ ∈ X the inner product 〈x, x′〉 depends on the number
of positions where the nonzero coordinates of x and x′ overlap. If there is no
overlap, or there are exactly two overlaps, then 〈x, x′〉 = 0. Otherwise, if there
is a single overlap, then 〈x, x′〉 = ±1/2.

Remark 1 We remark that for d ∈ {6, 7, 8} the set of (nonantipodal) shortest
vectors of the exceptional lattices Ed give rise to biangular line systems in Rd
with inner product set {0,±1/2} formed by 36, 63, and 120 lines, respectively
[15, p. 120].

Let h > 0, h < 1. Starting from a spherical 2-distance set X ⊂ Rd, one may
obtain a family of biangular line systems in Rd+1, where the vectors x ∈ X are
rescaled by a factor of

√
1− h2 and translated along the (d+ 1)th coordinate

to height h. In a similar spirit, the 6 diagonals of the icosahedron can be
continuously twisted in R3, yielding a family of biangular lines [21].

Proposition 1 (Infinite families) Let X ⊂ Rd be a spherical 2-distance set
with A(X ) ⊆ {α, β}, with α, β ≥ −1 and α, β < 1. Let h > 0, h < 1. Then

Y(h) := {[h,
√

1− h2x] : x ∈ X}

spans a system of biangular lines in Rd+1 with A(Y(h)) ⊆ {h2+(1−h2)α, h2+
(1− h2)β}.

Proof. For every y, y′ ∈ Y(h) we have 〈y, y′〉 = h2 + (1 − h2) 〈x, x′〉 for some
x, x′ ∈ X . Furthermore, −1 6∈ A(Y(h)) by our assumptions on h.

Since the midpoints of the edges of the regular simplex in Rd forms a
spherical 2-distance set of size d(d + 1)/2, biangular lines of this cardinality
are abundant in Rd+1. Translation to a well-chosen height yields the following
variant.

Proposition 2 (Lifting) Let X ⊂ Rd be a spherical 4-distance set with
A(X ) ⊆ {α, β, γ, α + β − γ}, with α, β, γ ≥ −1 and α, β, γ < 1, and as-
sume that α+β < 0. Then Y := {[

√
−α− β,

√
2x]/
√

2− α− β : x ∈ X} spans
a system of biangular lines in Rd+1 with A(Y) ⊆ {± α−β

2−α−β ,±
2γ−α−β
2−α−β }.

Proof. For every y, y′ ∈ Y we have 〈y, y′〉 = (−(α+β)+2 〈x, x′〉)/(2−α−β) for
some x, x′ ∈ X . Furthermore, −1 6∈ A(Y) by our assumptions on α, β, γ.

Remark 2 Given a spherical 3-distance set X with A(X ) ⊆ {α, β, γ}, then it
might happen that α+ β < 0, α+ γ < 0, and β 6= γ. When this occurs, lifting
via Proposition 2 could result in nonisometric biangular line systems.
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The main utility of Proposition 2 is that antipodal vectors (spanning the
very same lines) can be split into two nonantipodal vectors one dimension
higher. It immediately follows that any equiangular line system leads to twice
as many biangular lines in one dimension higher.

Theorem 1 For every d ≥ 3, there exists a set X ⊂ Rd spanning |X | =
2(d− 1)(d− 2) biangular lines with A(X ) ⊆ {±1/5,±3/5}.

Proof. Take all 2(d− 1)(d− 2) vectors in Rd−1 forming a spherical 4-distance
set X with A(X ) ⊆ {−1,−1/2, 0, 1/2} in Lemma 3 and then use Proposition 2
to get the claimed biangular line systems.

A further application of Proposition 2 is the following.

Corollary 1 For d ∈ {4, . . . , 16} there exists a set X ⊂ Rd spanning |X | =
(
d
3

)
biangular lines. There exists a set X ⊂ R17 spanning |X | =

(
18
3

)
biangular

lines.

Proof. Consider the ‘canonical’ spherical 3-distance set X := { All permuta-

tions of
√

d−3
3d [1, 1, 1,− 3

d−3 , . . . ,−
3
d−3 ] ∈ Rd} of cardinality

(
d
3

)
with A(X ) ⊆

{− 3
d−3 , d−9

3(d−3) ,
2d−9
3(d−3)}. Since for every x ∈ X , 〈x, [1, 1, . . . , 1]〉 = 0, X is

embedded into Rd−1. Consequently if d = 18, then X spans a biangular line
system in R17. If d ≤ 16, then since d−9

3(d−3) −
3
d−3 < 0, Proposition 2 yields the

claimed configurations in Rd.

Finally, a rather surprising consequence of Proposition 2 is the following:
the biangular line systems mentioned in Remark 1 are not the best possible in
their respective dimension.

Corollary 2 There exists a set X ⊂ Rd spanning biangular lines with A(X ) ⊆
{±1/5,±3/5} for

(d, |X |) ∈ {(3, 4), (4, 12), (5, 24), (6, 40), (7, 72), (8, 126), (9, 240)}.

Proof. The cases d ∈ {3, 4, 5, 6} follow from Theorem 1. To see the remaining
cases, combine Proposition 2 with the exceptional configurations mentioned
in Remark 1.

Later (see Section 4) we will show that Theorem 1 gives rise to a largest
possible line system for d ∈ {4, 5, 6}, and we tend to believe that Corollary 2
gives the best configurations for d ∈ {7, 8, 9} as well.

Next we prove a preliminary technical result. Following the terminology of
[29], we denote by N1/3(d) the maximum number of equiangular lines in Rd
where the set of inner products is a subset of {±1/3}. Recall that N1/3(0) = 0.

Proposition 3 For m ≥ 1 and d ≥ m, there exists a set X ⊂ Rd spanning
|X | = 2m ·N1/3(d−m) biangular lines with A(X ) ⊆ {±1/5,±3/5}.
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Proof. Let E denote the set of canonical basis vectors of Rm, and consider a
maximum set Y ⊂ Rd−m spanning N1/3(d−m) equiangular lines with A(Y) ⊆
{±1/3}. We claim that the following set X ⊂ Rd spans a biangular line system:

X := {[
√

6y, 2e]/
√

10: y ∈ Y, e ∈ E} ∪ {[
√

6y,−2e]/
√

10: y ∈ Y, e ∈ E}.

Indeed, as for x, x′ ∈ X , we have 〈x, x′〉 = 3 〈y, y′〉 /5 ± 2 〈e, e′〉 /5 for some
(not necessarily distinct) e, e′ ∈ E and y, y′ ∈ Y. Since 〈e, e′〉 ∈ {0, 1} and
〈y, y′〉 ∈ {±1/3, 1} the claim follows.

We note the following.

Corollary 3 There exists a set X ⊂ R14 spanning |X | = 392 biangular lines
with A(X ) ⊆ {±1/5,±3/5}.

Proof. Follows from Proposition 3 by setting m = 7 and d = 7, and by recalling
from [29] that N1/3(7) = 28.

It turns out that one may combine certain line systems described in Propo-
sition 3 with the 256 lines spanned by the ‘even half’ of the 10 dimensional
hypercube. This yields improved results for d ∈ {10, 11, 12, 13, 15, 16}, and
gives the same number of biangular lines for d = 17 as Corollary 1.

Theorem 2 For d ≥ 10, there exists a set X ⊂ Rd spanning |X | = 256 +
20N1/3(d− 10) biangular lines with A(X ) ⊆ {±1/5,±3/5}.

Proof. Let B ⊂ F10
2 be the binary code of length 10 formed by codewords of

even weight, such that the first coordinate of every b ∈ B is 0. By Lemma 2
the set Z := {Σ(b) : b ∈ B} ⊂ R10 spans a system of 256 biangular lines with
A(Z) ⊆ {±1/5,±3/5}. Next, we consider a maximum set Y ⊂ Rd−10 spanning
N1/3(d − 10) equiangular lines with A(Y) ⊆ {±1/3}. Let E denote the set of

canonical basis vectors of R10, and let o ∈ Rd−10 denote the zero vector. We
claim that the following set X ⊂ Rd spans a biangular line system:

X := {[
√

6y, 2e]/
√

10: y ∈ Y, e ∈ E}

∪ {[
√

6y,−2e]/
√

10: y ∈ Y, e ∈ E} ∪ {[o, z] : z ∈ Z}.

Indeed, since for x, x′ ∈ X , we have

〈x, x′〉 ∈ {3 〈y, y′〉 /5± 2 〈e, e′〉 /5,±2 〈e, z〉 /
√

10, 〈z, z′〉}

for some (not necessarily distinct) e, e′ ∈ E , y, y′ ∈ Y, and z, z′ ∈ Z. Since
〈e, e′〉 ∈ {0, 1}, 〈e, z〉 ∈ {±1/

√
10}, 〈y, y′〉 ∈ {±1/3, 1}, and 〈z, z′〉 ∈ {±1/5,

±3/5, 1} the claim follows.

Corollary 4 There exists a set X ⊂ Rd spanning biangular lines with A(X ) ⊆
{±1/5,±3/5} for

(d, |X |) ∈ {(10, 256), (11, 276), (12, 296), (13, 336), (15, 456), (16, 576), (17, 816)}.
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Proof. Combine Theorem 2 with [29, Theorem 4.5].

Finally, we note that various cross-sections of the Leech lattice Λ24 (see
[15, p. 133] for how to construct its shortest vectors from the extended binary
Golay code [12] in explicit form) gives rise to biangular line systems with inner
product set {0,±1/3}.
Theorem 3 There exists a set X ⊂ Rd spanning biangular lines with A(X ) ⊆
{0,±1/3} for (d, |X |) ∈ {(21, 896), (22, 1408), (23, 2300)}.

Proof. Let L ⊂ R24, |L| = 196560, be the set of shortest vectors of Λ24,
where the vectors are normalized so that 〈`, `〉 = 1 for every ` ∈ L. With this
convention, 〈`, `′〉 ∈ {0,±1/4,±1/2,±1} for every `, `′ ∈ L. Now let ` ∈ L
be fixed. It is well-known (see [15, p. 264]) that the following subset Y =
{y : 〈`, y〉 = 1/2; y ∈ L} contains 4600 vectors, independently of the choice `.
Note that for y ∈ Y we have ` − y ∈ Y and therefore the set Z := {(2y −
`)/
√

3: y ∈ Y} is antipodal, and 〈`, z〉 = 0 for every z ∈ Z. Finally, let X ⊂ Z
with |X | = 2300 so that Z = {x : x ∈ X} ∪ {−x : x ∈ X}. Now X spans the
claimed biangular line system in R23, since 〈y, y′〉 6∈ {−1/4,−1} and therefore
for x, x′ ∈ X we have 〈x, x′〉 = (4 〈y, y′〉 − 1)/3 ∈ {0,±1/3, 1}. Let x, x′ ∈ X
so that 〈x, x′〉 = 0. Then the cross-sections U := {u : 〈u, x〉 = 0;u ∈ X},
V := {v : 〈v, x〉 = 〈v, x′〉 = 0; v ∈ X} span the claimed biangular line systems
in dimension 22 and 21, respectively.

Another way to get biangular lines with set of inner products {0,±1/3} is
the following.

Lemma 4 Let w ≡ 3 (mod 4) and d ≥ 2w+1 be positive integers. Let B ⊂ Fd2
be a binary constant weight code of length d, weight w and minimum distance
2w− 2, and assume that there exists a Hadamard matrix of order w+ 1. Then
there exists a set X ⊂ Rd with |X | = (w + 1)|B| spanning a biangular line
system with A(X ) ⊆ {0,±1/w}.

Proof. Recall that a Hadamard matrix H of order w+ 1 is a (w+ 1)× (w+ 1)
orthogonal matrix with entries ±1/

√
w + 1. Let H ′ be the matrix obtained

fromH after removing its first column, and renormalizing its rows. LetH ⊂ Rw
be the set of rows of H ′. Clearly, 〈h, h′〉 ∈ {±1/w, 1} for h, h′ ∈ H. Now X
can be obtained by replacing each codeword b ∈ B with a set of w + 1 real
vectors where the support of b (i.e., coordinates with binary 1) are replaced
by the entries of h ∈ H, and coordinates with binary 0 are replaced by 0 ∈ R.
Since d ≥ 2w + 1, there are no two codewords at Hamming distance d, and
therefore the claim follows.

Corollary 5 For d ≥ 7 there exists a set X ⊂ Rd spanning |X | = 4 d(d− 1)
×(d− 2)/6e biangular lines with A(X ) ⊆ {0,±1/3}. Furthermore, there exists
a set Y ⊂ Rd+1 spanning |X | biangular lines with A(Y) ⊆ {±1/7,±3/7}.

Proof. Indeed, this is a specialization of Lemma 4 for w = 3 and using constant
weight codes coming from the averaging argument in [13, Theorem 14]. The
second part of the claim is an immediate consequence of Proposition 2.
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While Corollary 5 is weaker than Theorem 1, it can be used in two ways.
First, one may embed the 2300 biangular lines from Theorem 3 into R23+d, and
extend this configuration with an additional 4 d(d− 1)(d− 2)/6e vectors (for
d ≥ 7). Secondly, it may happen that these configurations can be further ex-
tended to a spherical 4-distance set with inner products {−2/3,−1/3, 0, 1/3},
and then an application of Proposition 2 would immediately yield biangu-
lar lines with inner products {±1/7,±3/7} in R24+d. One consequence of the
following result is that the two largest sets mentioned in Theorem 3 are inex-
tendible.

Theorem 4 (The relative bound, [16]) Let d ≥ 3, and assume that X ⊂
Rd spans a biangular line system with A(X ) ⊆ {±α,±β}, 0 ≤ α, β < 1.
Assume that α2 +β2 ≤ 6/(d+ 4) and 3− (d+ 2)(α2 +β2) + d(d+ 2)α2β2 > 0.

Let nα := |{[x, x′] : 〈x, x′〉2 = α2;x, x′ ∈ X}|. Then

|X | ≤ d(d+ 2)(1− α2)(1− β2)

3− (d+ 2)(α2 + β2) + d(d+ 2)α2β2
. (1)

Equality holds if and only if{
( 6
d+4 − α

2 − β2)((α2 − β2)nα + |X |(|X | − 1)β2 + |X | − |X |
2

d ) = 0

( 6
d+4 − α

2 − β2)(α2 − β2)nα = |X |(d2+3|X |−4)
(d+2)(d+4) − |X |(|X | − 1)β2( 6

d+4 − β
2).

Proof. This result is well-known [10], [16]. Equality holds if and only if ( 6
d+4 −

α2 − β2)
∑
x,x′∈X C

((d−2)/2)
2 (〈x, x′〉) =

∑
x,x′∈X C

((d−2)/2)
4 (〈x, x′〉) = 0, where

C
(j)
i (z) denotes the Gegenbauer polynomials (see [17]).

Remark 3 If X forms a spherical 4-design [4], then equality holds in (1).

Remark 4 If there is equality in (1), then the quantity nα as defined in The-
orem 4 is a nonnegative integer. The failure of this condition could be used
to show the nonexistence of various hypothetical configurations. In particu-
lar, in R8 there does not exist 50 biangular lines with set of inner products
{±1/4,±1/2}.

In Table 2 we display data on the known biangular line systems meeting the
relative bound, and later in Corollary 8 we prove that this list is (essentially)
complete for d ≤ 6. The canonical examples are mutually unbiased bases
(MUBs) [26], spanning 24i−1 + 22i biangular lines in dimension d = 4i with
inner products {0,±2−i}, i ≥ 1. We believe that the following example is new.

Example 1 (36 biangular lines in R7 with set of inner products {±1/7,±3/7})
Let U be the 7 × 7 circulant matrix with first row [0, 1, 0, 0, 0, 0, 0]. Let Y :=
{[−7, 1, 1, 1, 1, 1, 1], [−1, 3, 3,−3, 3,−3,−3]}, and let Z := {[1,−1,−3, 3, 3,−3,
−3], [1, 3,−1,−3,−3,−3, 3], [−1, 3,−3, 1,−3, 3,−3]}. Then, the following set

X = {[−7, 1, 1, 1, 1, 1, 1, 1]/
√

56} ∪ {[1, yU i]/
√

56: i ∈ {0, 1, . . . , 6}; y ∈ Y}

∪ {[3, zU i]/
√

56: i ∈ {0, 1, . . . , 6}; z ∈ Z}
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spans 36 biangular lines in R7 with A(X ) ⊆ {±1/7,±3/7}. Indeed, all vectors
are orthogonal to [1, . . . , 1] ∈ R8. The parameters of this line system meet the
relative bound.

Despite our best efforts, we were unable to find any references to the fol-
lowing example.

Example 2 (256 biangular lines in R16 with set of inner products {0,±1/3})
Consider a biplane [28] of order 4, that is a 16 × 16 square {0, 1}-matrix H
with constant row and column sum 6, such that HHT = 4I16 + 2J16. We may
simply take H := (J4 − I4)⊗ I4 + I4 ⊗ (J4 − I4), and let H ⊂ R16 be the set
of rows of H. Let B ⊂ F6

2 be a binary code of length 6 formed by codewords
of even weight, such that the first coordinate of every b ∈ B is 0. By Lemma 2
the set Z := {Σ(b) : b ∈ B} ⊂ R6 spans a system of 16 biangular lines with
A(Z) ⊆ {±1/3}. Replacing each codeword b ∈ B with a set of 16 real vectors
where the support of b (i.e., coordinates with binary 1) are replaced by the
entries of h ∈ H, and coordinates with binary 0 are replaced by 0 ∈ R spans
the claimed 256 biangular lines in R16. The parameters of this line system
meet the relative bound.

Table 2 Biangular line systems meeting the relative bound

d n {α, β} Remark

3 6 {±1/
√

5} Icosahedron

10 {±1/3,±
√

5/3} Dodecahedron
4 12 {0,±1/2} D4 lattice (MUBs)
6 27 {±1/4,±1/2} Schläfli graph

27 {±1/4,±1/2} Example 7
36 {0,±1/2} E6 lattice

7 28 {±1/3} Equiangular lines
36 {±1/7,±3/7} Example 1
63 {0,±1/2} E7 lattice

8 120 {0,±1/2} E8 lattice
16 144 {0,±1/4} MUBs

256 {0,±1/3} Example 2
22 275 {±1/6,±1/4} McLaughlin graph

1408 {0,±1/3} From Λ24
23 276 {±1/5} Equiangular lines

2300 {0,±1/3} From Λ24
4i 24i−1 + 22i {0,±2−i} MUBs, i ≥ 3

Finally, we note the following (almost immediate) consequence of [35, The-
orem 5.2 and 5.3].

Theorem 5 (See [35]) Let d ≥ 5, and let X ⊂ Rd span a maximum biangular
line system with A(X ) ⊆ {±α,±β}, 0 ≤ α < β < 1. Then z := (1−α2)/(β2−
α2) is an integer. Furthermore

z ≤
⌊
1/2 +

√
(d2 + d+ 2)(d2 + d− 1)/(4d2 + 4d− 8)

⌋
.

Proof. The statement is a reformulation of [35, Theorem 5.2 and 5.3] and it
holds whenever |X | ≥ d(d+1). This in turn holds by Theorem 1 for maximum
biangular line systems whenever d ≥ 7. For d ∈ {5, 6} the set of inner products
of (the unique) maximum biangular line systems is {±1/5,±3/5} (see Theo-
rem 10 and 11), and therefore in these cases z = 3 is indeed an integer below
the claimed bound.



10 Mikhail Ganzhinov, Ferenc Szöllősi

3 Computational framework

In this section, following ideas developed in [39], we set up a framework for
systematically generating biangular lines. We will leverage on this newly es-
tablished theory in Section 4 where we demonstrate how to use this approach
in practice. In particular, we will determine the size of the largest biangular
line systems in dimension d ≤ 6 by using supercomputational resources, and
classify the maximum cases.

We remark that this framework carries over to the multiangular setting
after minor technical changes (see Section 5 and Appendix A).

3.1 A high level overview

Let d, n ≥ 1, and let X = {x1, . . . , xn} ⊂ Rd be a set of unit vectors, spanning
a system of n biangular lines. Starting from this section, we will represent X by
its Gram matrix G := [〈xi, xj〉]ni,j=1. Conveniently, the matrix G is invariant
up to change of basis, and has the following combinatorial properties: G is of
n× n; G = GT ; Gii = 1 for every i ∈ {1, . . . , n}, and Gi,j ∈ A(X ) for distinct
i, j ∈ {1, . . . , n}. Furthermore, it has the following algebraic properties: G is
positive-semidefinite; and rankG ≤ d. Conversely, starting from any matrix G
having these properties, one may reconstruct an n×rankG matrix F (uniquely,
up to change of basis) via the Cholesky decomposition so that FFT = G holds
[24].

Our aim is to find a way for generating all (sufficiently large) n× n Gram
matrices of biangular line systems in a fixed dimension d. It follows from
Ramsey theory that n is bounded in terms of d, and we recall here the following
explicit bound.

Theorem 6 (Absolute bound, [16]) Let X ⊂ Rd span a biangular line
system. Then |X | ≤

(
d+3
4

)
.

We say that the permutation σ of the set Γ = {α, β,−α,−β} is a relabeling
if σ(γ) = −σ(−γ) for every γ ∈ Γ . The following concept is central to this
paper.

Definition 1 Let C(α, β) be an n×n symmetric matrix with constant diago-
nal 1 over the polynomial ring Q[α, β] whose off-diagonal entries are {0,±α,±β}.
Two such matrices, C1 and C2 are called equivalent, if C1(α, β) = PC2(σ(α),
σ(β))PT for some signed permutation matrix P and relabeling σ. A represen-
tative of this matrix equivalence class is called a candidate Gram matrix.

Candidate Gram matrices capture the combinatorial structure of Gram
matrices. Since our focus is on the biangular case, we will assume in the fol-
lowing that

αβ(α2 − β2)(α2 − 1)(β2 − 1) 6= 0. (2)

Furthermore, at most two out of the three symbols 0, ±α, ±β can appear
as a matrix entry in C(α, β). Clearly, if G is a Gram matrix of a biangular
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line system, then there exist a candidate Gram matrix C(α, β), such that G =
C(α∗, β∗) for some α∗, β∗ ∈ R, subject to (2). In particular, rankC(α∗, β∗) ≤ d
should hold.

Example 3 (The candidate Gram matrices of order 3){[
1 0 0
0 1 0
0 0 1

]
,

[
1 0 0
0 1 α
0 α 1

]
,

[
1 0 α
0 1 α
α α 1

]
,

[
1 α α
α 1 α
α α 1

]
,

[ 1 α α
α 1 β
α β 1

]}
Note that at most two symbols appear (whose values are unspecified) within
the off-diagonal positions, signifying distinct inner products.

The main advantage of using candidate Gram matrices is that in this way
we are transforming the problem of ‘infinitely many n× n Gram matrices’ to
the conceptually simpler ‘finite list of n×n candidate Gram matrices’ (where n
itself is bounded by Theorem 6). Then, one should decide whether a candidate
Gram matrix actually represents a Gram matrix via a spectral analysis, as
illustrated below.

Example 4 (The Petersen graph, cf. Proposition 1) Consider the following ex-
ample of a candidate Gram matrix of order 10:

C(α, β) =



1 α α α α α α β β β
α 1 α α α β β α α β
α α 1 α β α β α β α
α α α 1 β β α β α α
α α β β 1 α α α α β
α β α β α 1 α α β α
α β β α α α 1 β α α
β α α β α α β 1 α α
β α β α α β α α 1 α
β β α α β α α α α 1

 .

Here C(0, 1)− I10 is the adjacency matrix of the Petersen graph. Using stan-
dard spectral graph theory, one may find that for every α∗, β∗ ∈ R we have
Λ(C(α∗, β∗)) = {[1 + 6α∗ + 3β∗]1, [1 + α∗ − 2β∗]4, [1 − 2α∗ + β∗]5}. There-
fore rankC(α∗, 2α∗ − 1) ≤ 5. Furthermore, for α∗ ≥ 1/6, α∗ < 1 the matrix
C(α∗, 2α∗−1) is positive semidefinite. The matrix C(1/6,−2/3) on the bound-
ary describes the Petersen code [2], which corresponds to the midpoints of the
regular simplex in R4.

However, computing the spectrum of a candidate Gram matrix without any
apparent structure is a delicate task, and instead we will rely on the following
key technical result.

Proposition 4 (Strong Gröbner test, cf. Corollary 6) Let d ≥ 2 be fixed,
and let C(α, β) be a candidate Gram matrix of order n ≥ d+ 1. Let M denote
the set of all (d+ 1)× (d+ 1) submatrices of C. Let ω be an auxiliary variable.
If the following system of polynomial equations{

detM(α, β) = 0, for all M ∈M
ωαβ(α2 − β2)(α2 − 1)(β2 − 1) + 1 = 0

(3)

has no solutions in C3, then rankC(α∗, β∗) ≤ d cannot hold for any α∗, β∗ ∈ R
subject to (2).
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Proof. Indeed, if rankC(α∗, β∗) ≤ d for some α∗, β∗ ∈ C subject to (2), then
necessarily all (d+1)×(d+1) minors of C(α∗, β∗) are vanishing. In particular,
there exists an ω∗ ∈ C, so that (α∗, β∗, ω∗) ∈ C3 is a solution of the system of
equations (3).

We remark that one can decide whether a system of polynomial equations
with rational coefficients has any complex solutions by computing a Gröbner
basis [6].

Based on these concepts, we now may classify biangular line systems in the
following way. First, we fix d ≥ 2, and n =

(
d+3
4

)
. Secondly, we generate (by

computers, say) all n×n candidate Gram matrices. Thirdly, for each candidate
Gram matrix C(α, β) generated, we attempt to determine, via solving the
system of equations (3) the (not necessarily finite) set of all real matrices
{C(α∗i , β

∗
i ) : rankC(α∗i , β

∗
i ) ≤ d; i ∈ I}. Finally, we keep only those which are

positive semidefinite. When no such matrices are found, then we decrease n
by one and repeat the same procedure.

There are several weak points of this naive method restricting heavily its
utility. First of all, the bound on n, stipulated by Theorem 6 is rather crude,
and there is no way to generate all candidate Gram matrices of that size.
Secondly, when the solution set of (3) is infinite, then it is a very delicate task
to parametrize the matrices C(α∗i , β

∗
i ), i ∈ I, and to describe which of these

are positive semidefinite.

We overcome these difficulties by sophisticated matrix generation tech-
niques, and using Proposition 4 for discarding a large fraction of small candi-
date Gram matrices. We discuss these efforts in the next subsection.

3.2 The framework in detail

In this subsection we describe in more detail how to generate candidate Gram
matrices in an equivalence-free exhaustive manner. The main technical tool
is canonization, see [27, Section 4.2.2], [38]. The vectorization of a candidate
Gram matrix C of order n is the vector vec(C) := [C2,1, C3,1, C3,2, . . . , Cn,1, . . . ,
Cn,n−1]. We say that a candidate Gram matrix C(α, β) is in canonical form,
if it holds that

vec(C(α, β)) := min{vec(PC(σ(α), σ(β))PT ) : P is a signed

permutation matrix, σ is a relabeling}, (4)

where comparison of vectors is done lexicographically (one may assume, e.g.,
that the entries are ordered as 0 ≺ α ≺ −α ≺ β ≺ −β). One particularly
attractive feature of the above canonical form is that the leading principal
submatrices of canonical matrices are themselves canonical. Therefore canoni-
cal matrices can be generated inductively, using smaller canonical matrices as
‘seeds’. This method is usually called ‘orderly generation’.
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Lemma 5 The number of n× n canonical candidate Gram matrices with en-
tries {0,±α,±β} (in which all three symbols do not appear simultaneously) is
given in Table 3 for n ∈ {1, . . . , 8}.

Table 3 The number of candidate Gram matrices up to equivalence

n 1 2 3 4 5 6 7 8
# 1 2 5 25 194 7958 1818859 1773789830

Proof. Case n = 1 is
[

1
]
, case n = 2 are [ 1 0

0 1 ], and [ 1 αα 1 ]. Case n = 3 is shown
in Example 3. The remaining cases follow by computation.

As seen from Table 3 the number of n×n candidate Gram matrices grows
very rapidly. However, when d ≥ 2 is fixed and n = d+2, then we may filter out
a very large fraction of candidate Gram matrices with the aid of Proposition 4.
Indeed, for a given candidate Gram matrix we can check whether (3) has
any complex solutions by computing a degree reverse lexicographic reduced
Gröbner basis [6], and keep only those candidate Gram matrices in a set Cd(n)
for which some solutions are found. We performed this step with the aid of
the C++ library ‘CoCoA’ [1].

We proceed by augmenting each candidate Gram matrix C ∈ Cd(n) with
a new row (and column) whose prefix [Cn+1,1, Cn+1,2, . . . , Cn+1,n−1] is lexi-
cographically larger than the respective prefix of the last row of C (cf. (4)),
keeping only those canonical matrices which in addition survive the next com-
putationally cheap test.

Lemma 6 (Combinatorial test) Let d ≥ 2 be fixed, and let Cd(n) be a set
containing all pairwise inequivalent candidate Gram matrices of order n for
which the system of equations (3) has a solution. Let C be a candidate Gram
matrix of order n + 1. Then if C corresponds to a Gram matrix in Rd, then
necessarily all its n+1 principal submatrices of order n belong to the set Cd(n),
up to equivalence.

Proof. Indeed, if C corresponds to some Gram matrix, then there exist real
numbers α∗, β∗ (subject to (2)) such that rankC(α∗, β∗) ≤ d. Since the rank of
submatrices cannot increase, this must be true for every principal submatrices
of C(α∗, β∗). But then these submatrices must be in the set Cd(n), up to
equivalence.

Since the n×n principal submatrices of a candidate Gram matrix of order
n+ 1 must be compatible, we test them further with the following.

Corollary 6 (Weak Gröbner test, cf. Proposition 4) Let d ≥ 2 be fixed,
and let C(α, β) be a candidate Gram matrix of order n ≥ d+ 1. Let M denote
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the set of all (d+1)× (d+1) principal submatrices of C. Let ω be an auxiliary
variable. If the following system of polynomial equations{

detM(α, β) = 0, for all M ∈M
ωαβ(α2 − β2)(α2 − 1)(β2 − 1) + 1 = 0

has no solutions in C3, then rankC(α∗, β∗) ≤ d cannot hold for any α∗, β∗ ∈ R
subject to (2).

Proof. This is a variant of Proposition 4.

Finally, we store all surviving matrices in a set Cd(n+ 1), and repeat this
procedure as long as new matrices are discovered (but until n achieves the
Absolute bound in Theorem 6). Once the largest candidate Gram matrices
are found, we use Proposition 4 to determine explicitly the matrices with
rank at most d, and then by computing their characteristic polynomial (or
eigenvalues, if it is possible) we determine the positive semidefinite matrices.
We remark that the set of inner products of the maximum Gram matrices is
a by-product of this procedure.

We summarize our approach in the following ‘roadmap’ which we will fre-
quently use as a convenient reference.

Roadmap 7. The following is our approach for generating and classifying
biangular lines in Rd.

– Fix the dimension d ≥ 2.
– Generate all {0,±α,±β} canonical candidate Gram matrices (with at most

two symbols) of size d+ 1, and store them in a set Cd(d+ 1).
– Augment every C ∈ Cd(d + 1) with a new row and column in every possi-

ble way, and then test the canonical matrices by Proposition 4. Store the
surviving matrices of size d+ 2 in a set Cd(d+ 2).

– For every i ∈ {d + 2, . . . ,
(
d+3
4

)
} augment every C ∈ Cd(i) with a new row

and column in every possible way, and then test the canonical matrices by
Lemma 6 and Corollary 6. Store the surviving matrices of size i+ 1 in a set
Cd(i+ 1), and repeat this step.

– For the largest candidate Gram matrices use Proposition 4 and in particular
the solutions of the system of equations (3) to determine the real matrices
of rank at most d.

– Select from these the positive semidefinite matrices.

Remark 5 We observed that once the size n of candidate Gram matrices is
large enough, say n ≥ d+ 5, then essentially all matrices survive Corollary 6.
In these cases we solely rely on Lemma 6 for pruning. We believe that the
reason for this phenomenon is related to the fact that the congruence order of
Rd is d+ 3, see [31, Theorem 7.2].

Remark 6 Let d ≥ 3, n ≥ d + 1, α∗, β∗ ∈ R fixed, and let C(α∗, β∗) be an
n × n Gram matrix with rankC(α∗, β∗) ≤ d − 2. Then for every v ∈ Rn,
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rank
[
C(α∗,β∗) vT

v 1

]
≤ d by subadditivity. In particular, the tests described in

Proposition 4 and Corollary 6 have no effect.

Remark 7 There are two major techniques for matrix canonization: the one
relies on formula (4) which nicely fits into the framework of ‘orderly genera-
tion’. The other possibility is to transform the problem of matrix canonization
to graph canonization for which there are readily available efficient imple-
mentations, such as the ‘nauty’ software [32]. In Appendix A we describe a
graph representation of candidate Gram matrices, which can be used in the
framework of ‘canonical augmentation’. These two techniques are of similar
efficiency, and we have used both of them to cross-check our results. We refer
the reader to [11] and the references therein.

4 Classification of maximum biangular lines

We implemented the framework developed in Section 3 in C++ and used a
computer cluster with 500 CPU cores for several weeks to obtain the following
new classification results in Rd for d ≤ 6.

For completeness, we begin our discussion with the case d = 2 by giving
an independent, computational proof to Lemma 1.

Lemma 7 (Equivalent restatement of Lemma 1) The maximum car-
dinality of a biangular line system in R2 is 5. The unique configuration has
candidate Gram matrix

C(α, β) =

 1 α α β β
α 1 β α β
α β 1 β α
β α β 1 α
β β α α 1

 (5)

and Gram matrix C((
√

5− 1)/4, (−
√

5− 1)/4), describing the main diagonals
of the convex regular 10-gon.

Table 4 {0,±α,±β} candidate Gram matrices in R2

n 2 3 4 5 6
|C2(n)| 2 3 2 1 0

Proof. The proof follows Roadmap 7 with d = 2. In Table 4 we display the
number of surviving candidate Gram matrices, that is the numbers |C2(n)|
for n ∈ {2, . . . , 6}. Since |C2(6)| = 0, it follows that |C2(n)| = 0 for every
n ≥ 6. The unique maximum candidate Gram matrix of size 5 is shown in
(5) from which the Gram matrices can be recovered by solving the system
of equations (3). It follows that 4α2 + 2α − 1 = 0, and β = −α − 1/2. This
yields two permutation equivalent, positive semidefinite solutions: C((

√
5 −

1)/4, (−
√

5 − 1)/4) and C((−
√

5 − 1)/4, (
√

5 − 1)/4), both corresponding to
the main diagonals of the convex regular 10-gon.
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Remark 8 The four lines, passing through the antipodal vertices of the convex
regular octagon form the second largest, inextendible configuration of biangu-
lar lines in R2 with set of inner products {0,±1/

√
2}.

Theorem 8 The maximum cardinality of a biangular line system in R3 is 10.
The unique configuration has candidate Gram matrix

C(α, β) =



1 α α α α α α β β β
α 1 α −α −α β −β α −α β
α α 1 β −β −α −α −α α β
α −α β 1 −α −β α −α β α
α −α −β −α 1 α β β α −α
α β −α −β α 1 −α β −α α
α −β −α α β −α 1 α β −α
β α −α −α β β α 1 α α
β −α α β α −α β α 1 α
β β β α −α α −α α α 1

 (6)

and Gram matrix C(1/3,
√

5/3), corresponding to the main diagonals of the
platonic dodecahedron.

Table 5 {0,±α,±β} candidate Gram matrices in R3

n 2 3 4 5 6 7 8 9 10 11
|C3(n)| 2 5 22 23 12 5 2 1 1 0

Proof. The proof follows Roadmap 7 with d = 3. In Table 5 we display the
number of surviving candidate Gram matrices, that is the numbers |C3(n)| for
n ∈ {2, . . . , 11}. Since |C3(11)| = 0, it follows that |C3(n)| = 0 for every n ≥ 11.
The unique maximum candidate Gram matrix of size 10 is shown in (6). The
equations (3) imply that α = 1/3, and β2 = 5/9. This yields two permutation
equivalent, positive semidefinite solutions: C(1/3,

√
5/3) and C(1/3,−

√
5/3),

both corresponding to the main diagonals of the platonic dodecahedron.

Remark 9 The second largest (inextendible) examples in R3 can be obtained
by lifting the convex regular 7-gon by Proposition 2 to two carefully chosen
heights.

Theorem 9 The maximum cardinality of a biangular line system in R4 is 12.
There are four pairwise nonisometric maximum configurations: the shortest
vectors of the D4 lattice; the shortest vectors of the D3 lattice after lifting; and
two spherical 3-distance sets with common candidate Gram matrix

C(α, β) =
[
B(α,β)+I6 B(β,α)−βI6
B(β,α)−βI6 B(α,β)+I6

]
, where B(α, β) =


0 α α α α α
α 0 α β β α
α α 0 α β β
α β α 0 α β
α β β α 0 α
α α β β α 0

 , (7)

yielding nonisometric Gram matrices C((3−2
√

5)/11, (4+
√

5)/11) and C((3+
2
√

5)/11, (4−
√

5)/11).
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Table 6 {0,±α,±β} candidate Gram matrices in R4

n 2 3 4 5 6 7 8 9 10 11 12 13
|C4(n)| 2 5 25 191 701 184 69 27 14 3 3 0

Proof. The proof follows Roadmap 7 with d = 4. In Table 6 we display the
number of surviving candidate Gram matrices, that is the numbers |C4(n)|
for n ∈ {2, . . . , 13}. Since |C4(13)| = 0, it follows that |C4(n)| = 0 for every
n ≥ 13. The candidate Gram matrices corresponding to the D4 and the lifted
D3 lattice vectors are not shown here, as they can be easily recovered from
Lemma 3 and Proposition 2, and one may check by solving (3) that these
are the only solutions. Interestingly, the third candidate Gram matrix C(α, β)
shown in (7) yields two nonisometric solutions, as the equations (3) imply that
11α2 − 6α− 1 = 0, and β = α/2− 1/2.

We note that since the candidate Gram matrix (7) describes a spherical
3-distance set, it has already been generated earlier in [39].

Remark 10 The Gram matrices obtained from (7) are contained in the Bose–
Mesner algebra of a 3-class association scheme [22].

Theorem 10 The maximum cardinality of a biangular line system in R5 is
24. The unique configuration can be obtained by lifting the shortest vectors of
the D4 lattice.

Table 7 {0,±α,±β} candidate Gram matrices in R5

n |C5(n)| n |C5(n)| n |C5(n)| n |C5(n)| n |C5(n)|

6 7954 10 48448 14 38826 18 984 22 4
7 47418 11 54750 15 22887 19 201 23 1
8 27905 12 56548 16 10533 20 45 24 1
9 37381 13 52246 17 3701 21 10 25 0

Proof. The proof follows Roadmap 7 with d = 5. In Table 7 we display the
number of surviving candidate Gram matrices, that is the numbers |C5(n)| for
n ∈ {6, . . . , 25}. Since |C5(25)| = 0, it follows that |C5(n)| = 0 for every n ≥ 25.
The candidate Gram matrix corresponding to the lifted D4 lattice vectors is
not shown here, as it can be easily recovered from Lemma 3 and Proposition 2,
and one may check by solving (3) that it is the only maximum solution.

Remark 11 We remark that the Bose–Mesner algebra (see [22]) of a particular
example of 4-class association schemes on 24 vertices contains the maximum
Gram matrix G of biangular lines in R5, up to equivalence. Furthermore, since
G2 = 24/5G, G is a sporadic example of biangular tight frames [21].

The main computational result of this paper is the following.
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Theorem 11 The maximum cardinality of a biangular line system in R6 is
40. The unique configuration can be obtained by lifting the shortest vectors of
the D5 lattice.

Table 8 {0,±α,±β} candidate Gram matrices in R6

n |C6(n)| n |C6(n)| n |C6(n)| n |C6(n)| n |C6(n)|

14 8000713 21 34995847 28 1535902 35 363
8 6883459 15 11810513 22 30226589 29 646252 36 85
9 3170550 16 17409677 23 23679948 30 243144 37 18
10 4107292 17 24048177 24 16808810 31 81562 38 5
11 5260036 18 30449143 25 10794327 32 24461 39 1
12 5781148 19 35103515 26 6260018 33 6554 40 1
13 6239734 20 36779026 27 3270750 34 1610 41 0

Proof. The proof follows Roadmap 7 with d = 6. In Table 8 we display the
number of surviving candidate Gram matrices, that is the numbers |C6(n)| for
n ∈ {8, . . . , 41}. Since |C6(41)| = 0, it follows that |C6(n)| = 0 for every n ≥ 41.
The candidate Gram matrix corresponding to the lifted D5 lattice vectors is
not shown here, as it can be easily recovered from Lemma 3 and Proposition 2,
and one may check by solving (3) that it is the only maximum solution.

In dimension 5 and 6 the largest biangular line systems with irrational
angles consist of 20 and 24 lines respectively, each having the very same inner
product set {±(3−2

√
5)/11,±(4+

√
5)/11} as one of the largest configurations

in R4 (cf. Theorem 9). Examples of these are shown in Appendix B.

Remark 12 In R6 two 27 × 27 candidate Gram matrices were found corre-
sponding to Gram matrices with angle set {±1/4,±1/2}. It turns out, that
one of these is the largest spherical 2-distance set [31], [34], and the other one
belongs to the Bose–Mesner algebra of a 4-class association scheme [22]. See
Appendix B.

We conclude this section with the following by-products of our classifica-
tion.

Corollary 7 The largest infinite family of biangular lines in Rd for d ∈
{3, 4, 5, 6} is formed by 6, 6, 10, and 16 lines, respectively.

Proof. For d = 3 we have the twisted icosahedron [21]. For d ≥ 4, we can
use Proposition 1 and well-known spherical 2-distance sets (see [31], [34], Ex-
ample 4 and Example 7) in Rd−1 to establish the claimed lower bounds. To
see that these are indeed the largest, one should inspect the candidate Gram
matrices we generated. It is easy to see that if C(α, β) is a parametric fam-
ily of biangular line systems, then so is every subsytem of it. Therefore it is
enough to augment those (rather few) candiate Gram matrices for which the
dimension of the ideal, generated by (3) is positive (see [6]).
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Corollary 8 The biangular line systems meeting the relative bound in dimen-
sion d ∈ {3, 4, 5, 6} for α2 + β2 < 6/(d+ 4) are exactly those listed in Table 2.

Proof. Let X ⊂ Rd span a biangular line system meeting the relative bound

(1). Since α2 + β2 < 6/(d + 4), we have
∑
x,x′∈X C

((d−2)/2)
2 (〈x, x′〉) = 0 and∑

x,x′∈X C
((d−2)/2)
4 (〈x, x′〉) = 0. In particular, the antipodal double Y :=

{x : x ∈ X} ∪ {−x : x ∈ X} is a spherical 5-design [4], [10], and hence |X | =
|Y|/2 ≥ d(d + 1)/2. For d = 3 the only tight spherical 5-design is the icosa-
hedron [4], [17, Example 5.16]. For d ≥ 4 it follows from Corollary 7 that the
number of Gram matrices of size |X | is finite, therefore one may plug in the
(finitely many) inner products α∗ and β∗ into (1) to test equality. This yields
Table 2 for d ≤ 6.

Remark 13 If α2 + β2 = 6/(d+ 4) and there is equality in the relative bound

(1), then necessarily d2+3|X |−4
(d+2)(d+4) = (|X | − 1)β2( 6

d+4 − β
2). For fixed d and |X |

this in turn determines the possible inner products in A(X ). Then one may go
through all candidate Gram matrices and check which of these inner products
are compatible with the solutions of (3). Since we tend to believe that for
d ≤ 6 there are no biangular lines of this type, we have not gone through the
details of this lengthy and seemingly very tedious task.

5 Results on multiangular lines

The theory developed in Section 3 can be generalized to multiangular lines
in a straightforward manner. The main challenge in our study is solving (the
multiangular analogue of) the system of equations (3). Indeed, the efficiency
of computing a Gröbner basis very much depends on the number of variables
[6], and 4-angular line systems are the largest ones our methods can currently
handle. In this section we briefly report on our computational results on mul-
tiangular lines.

5.1 Multiangular lines in R3

It is well-known that in R3 the main diagonals of the platonic icosahedron
forms the largest equiangular line system, and we showed in Theorem 8 that
the main diagonals of the platonic dodecahedron forms the largest biangular
line system. It is natural to ask what are the multiangular analogues of these
objects.

It is well-known that on the plane the maximum cardinality of m-angular
lines is 2m + 1, and an example is coming from the main diagonals of the
convex regular (4m+ 2)-gon [34].

Theorem 12 The maximum cardinality of a triangular line system in R3

is 12. There are exactly two such configurations coming from the following
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candidate Gram matrix :

C(α, β, γ) =



1 α α α α β β β β γ γ γ
α 1 β γ γ α β β γ α α β
α β 1 γ −α γ −β −γ α β −β α
α γ γ 1 β β α γ β α β α
α γ −α β 1 −β γ α −γ β α −β
β α γ β −β 1 −γ −β α γ −α α
β β −β α γ −γ 1 α −β γ α −α
β β −γ γ α −β α 1 −α α γ −β
β γ α β −γ α −β −α 1 α −β γ
γ α β α β γ γ α α 1 β β
γ α −β β α −α α γ −β β 1 −γ
γ β α α −β α −α −β γ β −γ 1


, (8)

namely C((−7+4
√

2)/17, (5+2
√

2)/17, (−3−8
√

2)/17) is the truncated cube,
and C((−7−4

√
2)/17, (5−2

√
2)/17, (−3+8

√
2)/17) is the small rhombicuboc-

tahedron.

Table 9 {0,±α,±β,±γ} candidate Gram matrices in R3

n 2 3 4 5 6 7 8 9 10 11 12 13
|C3(n)| 2 7 62 610 271 104 46 19 6 1 1 0

Proof. The proof follows analogously to Roadmap 7 with d = 3. In Table 9
we display the number of surviving candidate Gram matrices with symbols
{0,±α,±β, ±γ} (where at most three out of these four symbols appear), that
is the numbers |C3(n)| for n ∈ {2, . . . , 13}. Since |C3(13)| = 0, it follows that
|C3(n)| = 0 for every n ≥ 13. In addition, there is a unique maximum candidate
Gram matrix of size 12, as shown in (8). Analogous equations to (3) imply the
claimed solutions.

Theorem 13 The maximum cardinality of a 4-angular line system in R3 is
15. There is a unique configuration coming from the following candidate Gram
matrix :

C(α, β, γ) =



1 0 0 α β γ α β γ α β γ α β γ
0 1 0 β γ α β γ α −β −γ −α −β −γ −α
0 0 1 γ α β −γ −α −β γ α β −γ −α −β
α β γ 1 0 0 γ −α −β α −β γ −β −γ α
β γ α 0 1 0 −α β γ −β γ −α −γ −α β
γ α β 0 0 1 −β γ α γ −α β α β −γ
α β −γ γ −α −β 1 0 0 −β −γ α α −β γ
β γ −α −α β γ 0 1 0 −γ −α β −β γ −α
γ α −β −β γ α 0 0 1 α β −γ γ −α β
α −β γ α −β γ −β −γ α 1 0 0 γ −α −β
β −γ α −β γ −α −γ −α β 0 1 0 −α β γ
γ −α β γ −α β α β −γ 0 0 1 −β γ α
α −β −γ −β −γ α α −β γ γ −α −β 1 0 0
β −γ −α −γ −α β −β γ −α −α β γ 0 1 0
γ −α −β α β −γ γ −α β −β γ α 0 0 1


, (9)

namely C((1 +
√

5)/4, (1−
√

5)/4, 1/2) is the icosidodecahedron.
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Table 10 {0,±α,±β,±γ,±δ} candidate Gram matrices in R3

n |C3(n)| n |C3(n)| n |C3(n)| n |C3(n)| n |C3(n)|

2 2 5 7014 8 632 11 32 14 1
3 7 6 7744 9 276 12 14 15 1
4 97 7 1655 10 104 13 3 16 0

Proof. The proof follows analogously to Roadmap 7 with d = 3, with the
following noted difference: first we generated all 5×5 candidate Gram matrices,
and used Proposition 4 for filtering the 6×6 (and larger) matrices. In Table 10
we display the number of surviving candidate Gram matrices with symbols
{0,±α,±β,±γ,±δ}, (where at most four out of these five symbols appear),
that is, the numbers |C3(n)| for n ∈ {2, . . . , 16}. Since |C3(16)| = 0, it follows
that |C3(n)| = 0 for every n ≥ 16. In addition, there is a unique maximum
candidate Gram matrix of size 15, as shown in (9). Analogous equations to (3)
imply that 4α2−2α−1 = 0, β = 1/2−α, γ = 1/2. This yields two equivalent,
positive semidefinite solutions, both corresponding to the main diagonals of
the icosidodecahedron.

Remark 14 It turns out, that the icosidodecahedron is the largest 5-angular
configuration in R3 containing orthogonal lines. The search is completely anal-
ogous to what is described in Theorem 13 and its proof.

We refer the reader to [23] for further interesting arrangements in R3.

5.2 Higher dimensional examples

In this section we report on our computational results on triangular line sys-
tems, where one of the three possible inner products is 0. On the plane, the
unique maximum configuration is formed by the main diagonals of the con-
vex regular 12-gon, and in dimension 3 it is once again the main diagonals of
the dodecahedron. Both of these results can be concluded from inspecting the
matrices what we generated for the proof of Theorem 12 (see Table 9).

Theorem 14 The maximum cardinality of a triangular line system containing
orthogonal lines in R4, is 24. There is a unique configuration spanned by

X = {[1,±1,±1,±1]/2} ∪ {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}

∪ {x : x is a permutation of [±1,±1, 0, 0]/
√

2; 〈x, [4, 3, 2, 1]〉 > 0}

which describes the main diagonals of the 24-cell, and its dual.

Proof. The proof follows analogously to Roadmap 7 with d = 4. In Table 11
we display the number of surviving candidate Gram matrices with symbols
{0,±α,±β}, that is, the numbers |C4(n)| for n ∈ {2, . . . , 25}. Since |C4(25)| =
0, it follows that |C4(n)| = 0 for every n ≥ 25. The unique largest candidate
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Table 11 {0,±α,±β} candidate Gram matrices in R4

n |C4(n)| n |C4(n)| n |C4(n)| n |C4(n)| n |C4(n)|

1 1 6 8353 11 2694 16 892 21 10
2 2 7 2746 12 2919 17 447 22 4
3 6 8 1725 13 2638 18 214 23 1
4 51 9 1776 14 2147 19 80 24 1
5 1152 10 2314 15 1453 20 34 25 0

Gram matrix corresponding to this case can be easily recovered from X , and
then solving (3) yields two equivalent solutions with set of inner products
{0,±1/2,±1/

√
2}.

Remark 15 In R4, the second largest inextendible configuration has cardi-
nality 16, spanned by all permutations of [±1,±1,±1, 0]/

√
3 where the first

nonzero entry is positive. The set of inner products of this configuration is
{0,±1/3,±2/3}.

Theorem 15 The maximum cardinality of a triangular line system containing
orthogonal lines in R5 is 40. This unique configuration is spanned by the set
X of all permutations of [±1,±1,±1, 0, 0]/

√
3 where the first nonzero entry is

positive.

Table 12 {0,±α,±β} candidate Gram matrices in R5

n |C5(n)| n |C5(n)| n |C5(n)| n |C5(n)| n |C5(n)|

7 1045395 14 12214161 21 68512201 28 2932142 35 471
8 370512 15 21063583 22 59177264 29 1217479 36 94
9 441556 16 32845898 23 46323247 30 449091 37 18
10 724198 17 46331977 24 32824635 31 146385 38 4
11 1422041 18 59180410 25 21019703 32 41984 39 1
12 3076847 19 68513149 26 12137301 33 10565 40 1
13 6412829 20 71935169 27 6301866 34 2357 41 0

Proof. The proof follows analogously to Roadmap 7 with d = 5. In Ta-
ble 12 we display the number of surviving candidate Gram matrices with
symbols {0,±α,±β}, that is, the numbers |C5(n)| for n ∈ {7, . . . , 41}. Since
|C5(41)| = 0, it follows that |C5(n)| = 0 for every n ≥ 41. The unique largest
candidate Gram matrix corresponding to this case can be easily recovered
from X , and then solving (3) yields a unique solution with set of inner prod-
ucts {0,±1/3,±2/3}.

6 Open problems

We conclude this paper with the following set of problems.
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Problem 1 (Superquadratic lines, see [3]) Let c, ε > 0 be fixed. Find a
construction of a series of biangular lines Xd ⊂ Rd, such that |Xd| ≥ c · d2+ε
holds for infinitely many d ≥ 1.

In particular, investigate if Proposition 2 can be applied to a suitable series
of spherical 3-distance sets.

Problem 2 (See Proposition 2) Find a series of spherical 3-distance sets
Xd ⊂ Rd with A(Xd) ⊆ {αd, βd, γd} such that αd + βd < 0 and |Xd| is su-
perquadratic (in the sense of Problem 1).

Problem 3 (See [21]) Find a series of biangular tight frames Xd ⊂ Rd such
that |Xd| > d2 for infinitely many d ≥ 1.

It is known that the twisted icosahedron [21] forms an infinite family of 6
biangular lines in R3, which is one line larger compared to what Proposition 1
guarantees.

Problem 4 (Cf. Corollary 7) Determine if there exists an infinite family
of biangular lines X (h) ⊂ Rd such that |X (h)| is larger than the one described
in Proposition 1 for some d ≥ 7.

Problem 5 (See [29], cf. Example 7) Determine if there exist an infinite
family of 28 biangular lines X (h) ⊂ R7 such that X (0) spans equiangular lines.

It would be also very interesting to see whether binary codes with four
distinct distances lead to improved constructions in Rd for some d ≤ 23 or
possibly beyond.

Problem 6 (See Lemma 2) For d ≥ 2 determine the maximum cardinality
of binary codes of length d admitting at most four distinct Hamming distances
{∆1, ∆2, d−∆1, d−∆2}, ∆1, ∆2 ∈ {1, . . . , d− 1}.

Problem 7 (Cf. Theorem 4, Remark 13) Determine if there exists a set
X ⊂ Rd spanning biangular lines with A(X ) ⊆ {±α,±β}, such that α2 +β2 =
6/(d+ 4), and there is equality in (1) for some d ≥ 3.

Problem 8 (See [2]) Complement Table 1 by using the semidefinite pro-
gramming technique to establish (sharp) upper bounds for the maximum car-
dinality of biangular lines X ⊂ Rd with A(X ) ⊆ {±1/5,±3/5} for d ≤ 23.
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28. P. Kaski, P.R.J. Österg̊ard: There are exactly five biplanes with k = 11, J. Combin.
Des., 16, 117–127 (2008)

29. P.W.H. Lemmens, J.J. Seidel: Equiangular lines, J. Algebra, 27, 494–512 (1973)
30. J.H. van Lint, J.J. Seidel: Equilateral point sets in elliptic geometry, Indag. Math.

28, 335–348 (1966)

http://cocoa.dima.unige.it/cocoalib


Biangular lines revisited 25
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A Graph representation of candidate Gram matrices

Let m ≥ 1, and n ≥ 2 be integers, and consider an n × n symmetric ma-
trix C(α1, . . . , αm) with constant diagonal entries 1 over the polynomial ring
Q[α1, . . . , αm] with off-diagonal entries {0,±α1, . . . , ±αm}. Analogously as set
forth earlier in Definition 1, two such matrices C1 and C2 are called equivalent,
if

C1(α1, . . . , αm) = PC2(σ(α1), . . . , σ(αm))PT

for some signed permutation matrix P and relabeling σ. A representative of
this matrix equivalence class is called a candidate Gram matrix.

The goal of this section is to construct for every matrix C(α1, . . . , αm) of
order n a (colored) graph X(C(α1, . . . , αm)) capturing its underlying symme-
tries and in particular its equivalence class. With this representation, equiva-
lence of matrices C1 and C2 (over the same symbol set) simply boils down to
the isomorphism of the corresponding colored graphs X(C1) and X(C2). This
latter task can be readily decided by the ‘nauty’ software [32] in practice.

Our graph X(C) has 2n2 + n+ 2m vertices, and its vertex set V (X(C)) is
partitioned by the following four distinct (nonempty) color classes:

V (X(C)) := U ∪ V ∪W ∪ Z.

Here U := {ui : i ∈ {1, . . . , n}} conceptually represents the n lines (in other
words, the n rows/columns of the matrix C). The set V := {vik : i ∈ {1, . . . , n};
k ∈ {1, 2}} represents the set of antipodal unit vectors (say ±x) spanning the
lines. The set W := {wijk : i < j ∈ {1, . . . , n}; k ∈ {1, . . . , 4}} represents the
four possible inner products 〈±x,±x′〉 (where ±x and ±x′ are the spanning
unit vectors of distinct lines), and finally Z = {zik : i ∈ {1, . . . ,m}; k ∈ {1, 2}}
represents the 2m off-diagonal entries (where for every i ∈ {1, . . . ,m}, the

https://doi.org/10.1080/10586458.2019.1641767
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Fig. 1 Graph representation of a candidate Gram matrix

vertices zi1 and zi2 correspond to the same symbol αi and its negative, in
some order).

The edge set, E(X(C)) is the following:

E(X(C)) := E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5.

Here E1 := {{ui, vik} : i ∈ {1, . . . , n}; k ∈ {1, 2}} and E2 := {{zi1, zi2} : i ∈
{1, . . . ,m}} describe the edges connecting the elements of U and V, and the
edges within Z, respectively. Furthermore,

E3 := {{vi1, wij1}, {vi2, wij1}, {wij1, wij2}, {wij2, wij3}, {wij3, wij4},
{vj1, wij4}, {vj2, wij4} : i < j ∈ {1, . . . , n};Gij = 0}

and

E4 := {{vik, wijk}, {vjk, wijk}, {vik, wij(k+2)}, {vj(3−k), wij(k+2)} :

i < j ∈ {1, . . . , n}; k ∈ {1, 2};Gij 6= 0}

describe the graph structure between (vertices representing) orthogonal and
non-orthogonal lines, respectively. Finally,

E5 := {{wijk, z`1}, {wij(k+2), z`2} : i < j ∈ {1, . . . , n}; k ∈ {1, 2};Gij = α`}
∪ {{wijk, z`2}, {wij(k+2), z`1} : i < j ∈ {1, . . . , n}; k ∈ {1, 2};Gij = −α`}

describes the edges connecting the vertices between W and Z, thus providing
a correspondence between lines with certain inner products, and the symbols
representing these inner products.

The following is a technical statement clarifying the usefulness of such a
representation.
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Proposition 5 The matrices C1 and C2 (over the same symbol set) are equiv-
alent, if and only if X(C1) and X(C2) are isomorphic as graphs. Furthermore,
the automorphism groups of C1 and X(C1) are isomorphic as groups.

We omit the proof, and refer the reader to [32]. Instead, we show how to

represent
[
1 0 α
0 1 α
α α 1

]
over the symbol set {±α,±β} on Figure 1.

B Miscellaneous matrices

We note the largest biangular line systems in R5 and R6 containing a pair of
lines with irrational inner product between them. It turns out that all of these
examples have inner product set {±α∗,±β∗}, where α∗ := (3−2

√
5)/11, β∗ :=

(4 +
√

5)/11 are the very same values as stated in Theorem 9. Furthermore,
the two examples shown below are extensions of one of the 12 dimensional
maximum cases. Indeed, their upper left 12 × 12 submatrix agrees with the
matrix shown in (7).

Example 5 The largest cardinality of a biangular line system in R5 with an
irrational inner product is 20. There are 12 candidate Gram matrices, each
corresponding to a single line system. The following candidate Gram matrix
(with γ := −α, and δ := −β)

C(α, β, γ, δ) =



1 α α α α α δ β β β β β α α α α β β β β
α 1 α β β α β δ β α α β α α β β α α γ δ
α α 1 α β β β β δ β α α α α α δ α δ δ γ
α β α 1 α β β α β δ β α α β α β δ γ α δ
α β β α 1 α β α α β δ β α δ β α γ δ α α
α α β β α 1 β β α α β δ α β δ α δ α δ α
δ β β β β β 1 α α α α α α γ γ γ δ δ δ δ
β δ β α α β α 1 α β β α α γ δ δ γ γ α β
β β δ β α α α α 1 α β β α γ γ β γ β β α
β α β δ β α α β α 1 α β α δ γ δ β α γ β
β α α β δ β α β β α 1 α α β δ γ α β γ γ
β β α α β δ α α β β α 1 α δ β γ β γ β γ
α α α α α α α α α α α α 1 δ δ β δ δ β β
α α α β δ β γ γ γ δ β δ δ 1 α α α β δ δ
α β α α β δ γ δ γ γ δ β δ α 1 α β γ α δ
α β δ β α α γ δ β δ γ γ β α α 1 δ α β α
β α α δ γ δ δ γ γ β α β δ α β δ 1 β γ γ
β α δ γ δ α δ γ β α β γ δ β γ α β 1 γ α
β γ δ α α δ δ α β γ γ β β δ α β γ γ 1 β
β δ γ δ α α δ β α β γ γ β δ δ α γ α β 1



yields a Gram matrix C(α∗, β∗,−α∗,−β∗).

Example 6 The largest biangular line system in R6 with irrational inner prod-
ucts is a unique configuration of 24 lines, corresponding to the candidate Gram
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matrix (where γ := −α, and δ := −β):

C(α, β, γ, δ) =



1 α α α α α δ β β β β β α α α α α α α α α α α α
α 1 α β β α β δ β α α β α α α α α α β β β β δ δ
α α 1 α β β β β δ β α α α α α α β β α α δ δ β β
α β α 1 α β β α β δ β α α α β β δ δ α α β β α α
α β β α 1 α β α α β δ β α α δ δ β β β β α α α α
α α β β α 1 β β α α β δ α α β β α α δ δ α α β β
δ β β β β β 1 α α α α α α α γ γ γ γ γ γ γ γ γ γ
β δ β α α β α 1 α β β α α α γ γ γ γ δ δ δ δ β β
β β δ β α α α α 1 α β β α α γ γ δ δ γ γ β β δ δ
β α β δ β α α β α 1 α β α α δ δ β β γ γ δ δ γ γ
β α α β δ β α β β α 1 α α α β β δ δ δ δ γ γ γ γ
β β α α β δ α α β β α 1 α α δ δ γ γ β β γ γ δ δ
α α α α α α α α α α α α 1 α α β α β α β α β α β
α α α α α α α α α α α α α 1 β α β α β α β α β α
α α α β δ β γ γ γ δ β δ α β 1 β α δ α δ β γ β γ
α α α β δ β γ γ γ δ β δ β α β 1 δ α δ α γ β γ β
α α β δ β α γ γ δ β δ γ α β α δ 1 β β γ α δ β γ
α α β δ β α γ γ δ β δ γ β α δ α β 1 γ β δ α γ β
α β α α β δ γ δ γ γ δ β α β α δ β γ 1 β β γ α δ
α β α α β δ γ δ γ γ δ β β α δ α γ β β 1 γ β δ α
α β δ β α α γ δ β δ γ γ α β β γ α δ β γ 1 β α δ
α β δ β α α γ δ β δ γ γ β α γ β δ α γ β β 1 δ α
α δ β α α β γ β δ γ γ δ α β β γ β γ α δ α δ 1 β
α δ β α α β γ β δ γ γ δ β α γ β γ β δ α δ α β 1



.

The matrix C(α∗, β∗,−α∗,−β∗) is positive semidefinite of rank 6.

Example 7 (The Schläfli graph) In R6, there is a well-known spherical 2-
distance set of cardinality 27 with set of inner products {−1/2, 1/4}, related
to the adjacency matrix of the Schläfli graph [31], [34]. Let

C(α, β, γ, δ) =



1 α α α α β β β β γ γ γ γ γ γ δ δ δ δ δ δ δ δ δ δ δ δ
α 1 α β β α α β β γ γ γ δ δ δ γ γ γ δ δ δ δ δ δ δ δ δ
α α 1 β β β β α α γ γ γ δ δ δ δ δ δ γ γ γ δ δ δ δ δ δ
α β β 1 α α β α β δ δ δ γ γ γ δ δ δ δ δ δ γ γ γ δ δ δ
α β β α 1 β α β α δ δ δ γ γ γ δ δ δ δ δ δ δ δ δ γ γ γ
β α β α β 1 α α β δ δ δ δ δ δ γ γ γ δ δ δ γ γ γ δ δ δ
β α β β α α 1 β α δ δ δ δ δ δ γ γ γ δ δ δ δ δ δ γ γ γ
β β α α β α β 1 α δ δ δ δ δ δ δ δ δ γ γ γ γ γ γ δ δ δ
β β α β α β α α 1 δ δ δ δ δ δ δ δ δ γ γ γ δ δ δ γ γ γ
γ γ γ δ δ δ δ δ δ 1 α α γ δ δ γ δ δ γ δ δ α β β α β β
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γ δ δ γ γ δ δ δ δ δ δ γ α α 1 β β α β β α δ δ γ δ δ γ
δ γ δ δ δ γ γ δ δ γ δ δ α β β 1 α α α β β γ δ δ γ δ δ
δ γ δ δ δ γ γ δ δ δ γ δ β α β α 1 α β α β δ γ δ δ γ δ
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δ δ δ γ δ γ δ γ δ β α β δ γ δ δ γ δ δ γ δ α 1 α β α β
δ δ δ γ δ γ δ γ δ β β α δ δ γ δ δ γ δ δ γ α α 1 β β α
δ δ δ δ γ δ γ δ γ α β β γ δ δ γ δ δ γ δ δ α β β 1 α α
δ δ δ δ γ δ γ δ γ β α β δ γ δ δ γ δ δ γ δ β α β α 1 α
δ δ δ δ γ δ γ δ γ β β α δ δ γ δ δ γ δ δ γ β β α α α 1



.

Then C(1, 0, 0, 1) − I27 is the graph adjacency matrix of the Schläfli graph,
and C(1/4,−1/2,−1/2, 1/4) is a spherical two-distance set spanning biangular
lines. Application of Proposition 1 yields an infinite family of 27 biangular lines
in R7. It turns out that C(1/4, −1/2, 1/2,−1/4) is an additional, nonisometric
example in R6, coming from a 4-class association scheme [22]. The antipodal
double of this set is a new example of spherical 5-designs [4].
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