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A motivating example

The 20 vertices of the platonic dodechadron form a 5-distance set in
S2. The 10 main diagonals (going through antipodal vertices) form a
system of 10 biangular lines in R3.

In this talk we explore analogous configurations in higher dimensions.
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What this talk is about

Recent results on vectors in the 12-dimensional Euclidean space.

Theorem[P.R.J. Östergård and F. Sz., 2018]

The largest set of equiangular lines with common angle 1/5 in R12 is
20. There are exactly 32 pairwise nonisometric configurations.

The following are new results in R3.

Theorem[F. Sz., 2019+]
The 20 vertices of the platonic dodecahedron is the unique maximum
5-distance set in S2.

Theorem[M. Ganzhinov and F. Sz., 2019+]
The 10 main diagonals of the dodecahedron is the unique maximum
set of biangular lines in R3.

In this talk I develop a computational approach for proving statements
of this kind, and report on our experimental results.
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The basics

As always, d ≥ 1, s ≥ 1 are integers, µ is the Euclidean distance.

Euclidean few-distance sets
A finite set of points X ⊂ Rd is an s-distance set, if the set of distances

{µ(xi , xj) : xi 6= xj ∈ X}

is of cardinality at most s.

Multiangular lines

A finite set of (pairwise non-antipodal) points X ⊂ Sd−1 form a set of
m-angular lines, if the set of common angles

{
∣∣〈xi , xj

〉∣∣ : xi 6= xj ∈ X}

is of cardinality at most m.

Multiangular lines are switching classes of certain few-distance sets.
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Spherical s-distance sets

For conceptual simplicity I discuss s-distance sets on Sd−1, but
everything carries over to Rd and to the multi-angular setting after
proper modifications. Also, instead of distances, I will talk about inner
products, as

µ(u, v) =

√∑
i

u2
i +

∑
i

v2
i − 2 〈u, v〉 =

√
2− 2 〈u, v〉,

〈u, v〉 = 1− µ(u, v)2/2.

So from now on, we are interested in unit vectors v1, . . . , vn in Rd .

Examples:
The d + 1 vertices of the regular simplex in Rd is a 1-distance set
The midpoints of the edges of the regular simplex in Rd , and a set
of unit vectors spanning equiangular lines are 2-distance sets
The codewords of a (d ,0, s) binary constant weight code
(embedded into Rd in the obvious way) is an s-distance set
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Gram matrices

The coordinates of the vectors vi depend on the choice of basis. To
avoid this inconvenience, we pass on to the Gram matrix:

G(v1, . . . , vn) := [
〈
vi , vj

〉
]ni,j=1

The elements of G are now basis independent, since〈
vi , vj

〉
=
〈
Ovi ,Ovj

〉
for any orthogonal matrix O (i.e., an isometry of the Euclidean space).

So from now on, we consider Gram matrices of spherical few-distance
sets, which determine these sets up to isometry.

The vectors vi can be uniquely recovered (up to isometry) from G via
the Cholesky decomposition.
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Properties of the Gram matrices

The Gram matrix G of unit vectors forming an s-distance set has
various combinatorial and algebraic properties.

Combinatorial:
has constant diagonal 1
is symmetric (i.e., G = GT )
it has at most s distinct off-diagonal entries

Algebraic:
it has rank at most d
it is positive semidefinite

Note that G is a matrix with real entries.

The main conceptual difficulty in understanding these Gram matrices
is the lack of control on their elements. In particular, for (typical) n
fixed, the set of n × n Gram matrices is not a finite set. For d fixed and
n large this set is empty by Ramsey theory (Bannai–Bannai–Stanton).
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Candidate Gram matrices

The Goal of the talk is to set up a framework to describe all large set of
few-distance sets in a systematic way.

It would be sufficient to describe the Gram matrices...

...but it is too difficult, so we introduce a weaker concept, capturing the
combinatorial properties of Gram matrices.

Definition[Candidate Gram matrices]
A matrix C(a,b, . . . , s), over the symbol set {1,a,b, c, . . . , s} with

constant diagonal 1
C = CT

the off-diagonal entries belong to the set {a,b, . . . , s}
is called a candidate Gram matrix.

Note that every Gram matrix gives rise to a candidate Gram matrix.
For n, s fixed the set of n × n candidate Gram matrices is finite.
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Symmetries of Gram matrices

We attempt to describe the candidate Gram matrices...

...but there are too many of those, and instead we introduce an
equivalence relation first.

The order of the n vectors forming a few-distance set is irrelevant.

Definition
Two Gram matrices G1 and G2 (of the same size) are equivalent, if
G1 = PG2PT for some permutation matrix P.

Definition
Two candidate Gram matrices C1 and C2 (of the same size, over the
same symbol set) are equivalent, if
C1(a,b, . . . , s) = PC2(σ(a), σ(b), . . . , σ(s))PT for some permutation
matrix P and for some permutation σ interchanging the symbols
among themselves.
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Candidate Gram matrices, up to equivalence

We attempt to describe the candidate Gram matrices up to
equivalence, by realizing that this is essentially boils down to
isomorph-free exhaustive generation of graphs...

Lemma
An equivalence class of n × n candidate Gram matrices over the
symbol set {1, . . . , s} is in one-to-one correspondence with the graph
isomorphism classes of the at-most-s-edge-colored complete graphs
on n vertices (where permutation of the colors is allowed).

This is obvious, as the candidate Gram matrix may be thought as the
graph-adjacency matrix where same symbols specify edges of the
same color. Every equivalence class of Gram matrices correspond to a
unique equivalence class of candidate Gram matrices (with the
number of symbols in C matching the number of distinct entries of G).

...but of course, this is too difficult to do for n > 13, and at this point it is
still unclear how this would lead to a classification of Gram matrices.
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Using the algebraic properties

So far we have focused on the combinatorial properties of Gram
matrices.

The way step forward is to leverage on rank G ≤ d (and we ignore
positive semidefiniteness for a while).

We endow our candidate Gram matrices with algebraic properties by
embedding them into the matrix ringMn(Q[x1, . . . , xs]) (in the obvious
way) where x1, . . . , xs are pairwise commuting indeterminates.

Note that every [representative of a] Gram matrix [equivalence class] is
the evaluation of some [representative of a] candidate Gram matrix
[equivalence class] at a real s-tuple (x̂1, . . . , x̂s) ∈ Rs.

Lemma
Let G be the Gram matrix of some spherical s-distance set in Rd , with
candidate Gram matrix C. Then we have G = C(x̂1, . . . , x̂s) and in
particular rank C(x̂1, . . . , x̂s) ≤ d , for some (x̂1, . . . , x̂s) ∈ Rs.
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The determinantal variety

The goal is now to understand candidate Gram matrices of certain
rank. The rank of a matrix is conveniently characterized by its
vanishing minors.

Lemma
Let M ∈M(C). Then rank M ≤ d if and only if all (d + 1)× (d + 1)
minors of M are vanishing.

Proposition
Let C(x1, . . . , xs) ∈Mn(Q[x1, . . . , xs]) be a candidate Gram matrix.
Then there exists a (x̂1, . . . , x̂s) ∈ Rs so that rank C(x̂1, . . . , x̂s) ≤ d if
and only if it is a real solution of the system of polynomial equations

{det M(x1, . . . , xs) = 0 : M is a (d + 1)× (d + 1) submatrix of C}.

But this is a vacuous condition, since rank C(1,1, . . . ,1) = 1 always.
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The quotient ideal

The goal is to understand candidate Gram matrices of certain rank,
and deal with the inconvenience that rank C(1,1, . . . ,1) = 1.

It turns out, that we should specify the algebraic conditions x̂i 6= x̂j ,
x̂i 6= 1 for i 6= j . These conditions capture the triviality that the
off-diagonal entries of a Gram matrix are never equal to 1, and the
number of distinct off-diagonal entries in G matches exactly the
number of underlying symbols in C.

Proposition
Let C(x1, . . . , xs) ∈Mn(Q[x1, . . . , xs]) be a candidate Gram matrix.
Then there exists a (x̂1, . . . , x̂s) ∈ Rs with x̂i 6= x̂j , x̂i 6= 1 for i 6= j so that
rank C(x̂1, . . . , x̂s) ≤ d if and only if there exists a û ∈ R so that
(û, x̂1, . . . , x̂s) ∈ Rs+1 solves the system of polynomial equations{

det M(x1, . . . , xs) = 0 : M is a (d + 1)× (d + 1) submatrix of C
u
∏

i 6=j(xi − xj)
∏

k (xk − 1) = 1,where u is an auxiliary variable.
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The main technical tool

The goal is to exhaustively generate all candidate Gram matrices with
small rank. We can eliminate unsuitable candidate Gram matrices.

Main Theorem
Let d ≥ 2 be fixed, and let C(x1, . . . , xs) ∈Mn(Q)[x1, . . . , xs] be a
candidate Gram matrix. If the system of polynomial equations{

det M(x1, . . . , xs) = 0 : M is a (d + 1)× (d + 1) submatrix of C
u
∏

i 6=j(xi − xj)
∏

k (xk − 1) = 1,where u is an auxiliary variable

has no solution in Cs+1, then C does not correspond to any Gram
matrix representing a spherical s-distance set in Rd . In particular, [the
matrix equivalence class of] C cannot be a submatrix of any candidate
Gram matrix corresponding to an actual Gram matrix.

At this point we are only interested in the existence of a complex
solution, and not in what these solution(s) are, or whether they are real.
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A Roadmap for classifying spherical few-distance sets

Fix s and d .
Generate all isomorphism classes of the at-most-s-edge-colorings
of the complete graph on n = d + 1 vertices (candidate Gram
matrices).
Use Main Theorem (by computing a Gröbner basis) to test which
candidate Gram matrix [equivalence class representative] C has
small rank, and store the survivors in a list Ld+1.
For every C ∈ Ld+1, enlarge C up to equivalence in every possible
way with one more row and column, and then use Main Theorem
to test the enlarged matrix. Store the survivors in a list Ld+2.
Repeat, until new matrices are being discovered.

Once the process ends (it does, by B–B–S), we have a finite list of
large candidate Gram matrices so that each can be evaluated to a
matrix with rank at most d . The positive semidefinite matrices are the
Gram matrices of maximum spherical s-distance sets in Rd .

Note: the distances come out as a by-product of the classification.
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A case study
Theorem[F.Sz., 2019+]
The dodecahedron is the maximum spherical 5-distance set in R3.

Proof: by Roadmap.
Fix s = 5 and d = 3.
Generate all 370438 isomorphism classes of the
at-most-5-edge-colorings of the complete graph on n = 6 vertices
(candidate Gram matrices).
Use Main Theorem to test which candidate Gram matrix
[equivalence class representative] C has small rank, and store the
survivors in a 19566-element list L6 (≈ 5% of the cases survive).
Enlarge, Test, Store, and Repeat, until L21, which is empty.

n 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# 19566 18073 3358 1281 1047 827 638 383 211 89 38 11 4 1 1 0

The single largest candidate Gram matrix corresponds to the
dodecahedron. The second largest example is formed by two 7-cycles.
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A miracle happens here

Why does Main Theorem work?

It is somewhat surprising, that the only candidate Gram matrix
surviving the tests is the candidate Gram matrix corresponding to
the dodecahedron.
In principle, there could have been other candidate Gram matrices
which while have the correct rank, are not positive semidefinite.

Earlier Lisoněk classified the two-distance sets in R7, and he remarked
the following:

Theorem[Menger, 1950s]

The congruence order of Rd is d + 3.

This means, that a given n × n candidate Gram matrix corresponds to
a Gram matrix in Rd if and only if each of its principal (d + 3)× (d + 3)
submatrices evaluated at the same point correspond to some Gram
matrix. This suggests that there should be no junk beyond n = d + 3.
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Summary

A combination of isomorph-free exhaustive generation of graphs and
Gröbner basis computation yielded new classification results for
few-distance sets.

The framework presented here can be adjusted so that to classify
nonspherical few-distance sets as well. In particular, we have:

Theorem[P.R.J. Östergård, F. Szöllősi, 2019+]

The unique maximum (nonspherical) 3-distance set in R4 is a
16-element subset of the integer grid, namely:

0 0 0 0 0 0 0 0 1 −1 −1 −1 −1 1 1 1
0 0 0 0 2 2 2 2 1 −1 1 1 1 −1 1 1
0 0 2 2 0 0 2 2 1 1 −1 1 1 1 −1 1
0 2 0 2 0 2 0 2 1 1 1 −1 1 1 1 −1

 ,
with set of distances {1,

√
2,
√

3}.
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The team at Aalto University
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Biangular lines

“Switching classes” of certain spherical 4-distance sets.

Definition
A set of n lines, represented by the real unit vectors v1, . . . , vn, is
called biangular, if {

〈
vi , vj

〉
: i 6= j ∈ {1, . . . ,n}} = {±α,±β} with

0 ≤ α, β < 1.

It is clear, that on the plane one may have at most 5 biangular lines:
take any line, passing through the origin
at most two additional lines are at angle ±α
at most two additional lines are at angle ±β
there is no room for more lines
this is realizable by the pentagon

Or, by algebra, the coordinates of vi :[
1 α α β β

0
√

1− α2 −
√

1− α2
√

1− β2 −
√

1− β2

]
The aim of this talk is to explore what happens in higher dimension.

Ferenc Szöllősi New constructions of biangular lines Shanghai, July 2, 2019 20 / 34



The kissing number problem

There are several reasons for studying biangular lines:
The equiangular case is now ‘solved’
The Equiangular Tight Frame community is moving towards
Biangular Tight Frames, and possibly beyond
The vectors of several low-dimensional kissing arrangements form
biangular lines

The kissing number problem

What is the maximum number of unit vectors τ(d) in Rd so that〈
vi , vj

〉
≤ 1/2 for all i 6= j ∈ {1, . . . , τ(d)}?

One may place solid spheres of radius 1/2 at the location vi , each
touching a central unit sphere of radius 1/2.

The dream: improving on τ(d) by the methods presented today.
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Constructions: From spherical 2-distance sets

Canonical examples:
Any set of equiangular lines with angle set {±α}
In Rd this gives roughly 2/100 · d2 lines
The midpoints of the regular simplex with angle set
{(d − 3)/(2d − 2),−4/(2d − 2)}
In Rd this gives

(d+1
2

)
= d(d + 1)/2 ≈ 1/2 · d2 lines for d ≥ 4

Several other, sporadic examples

Upper bounds, from linear programming.

Theorem[Delsarte–Goethals–Seidel]
The maximum cardinality of a set of biangular lines is at most(d+3

4

)
≈ 1/24 · d4.

There is a considerable gap between the lower and upper bounds.
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Constructions: from lattices

Example:
The shortest vectors of the Dd lattices in Rd are of the form:

{σ([±1,±1,0, . . . ,0]/
√

2) : σ ∈ Sn}

This gives rise to a set of 2
(d

2

)
= d(d − 1) ≈ 1 · d2 biangular lines in Rd

with angle set {0,±1/2}.

From the exceptional lattices E6, E7, E8, one has a system of
36 biangular lines in R6

63 biangular lines in R7

120 biangular lines in R8

The last two examples show that it is possible to have more than d2

biangular lines in Rd .
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Constructions: from binary codes

Consider a (d , δ,w) binary constant-weight code C of length d , weight
w , and minimum distance δ. One can embed such a code on the
sphere by the following map (which acts entrywise on the codewords):

Sx : F2 7→ R, Sx (1) = x , Sx (0) =
√

(1− wx2)/(d − w),

where x is to be specified later.
It is easy to see, that if c1, c2 ∈ C with Hamming distance ∆(c1, c2),
then

〈Sx (c1),Sx (c2)〉 = 1−∆(c1, c2)(x − Sx (0))2/2

therefore if the Sx -image of C is biangular, then C necessarily have at
most four distinct distances between codewords.

There are several studies of constant-distance codes in the literature.

Problem
What are the constant weight codes with having at most four distinct
distances?
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Constructions: from binary codes (ctd.)
Actually, the distances between the codewords should satisfy some
additional condition so that to have a spherical 4-distance set which is
a biangular line system. In particular, the spherical embedding should
be Sa, with

a =
−2(d − w) +

√
4w2 − 4dw + d∆

d
√

∆
,

as only this guarantees that 〈Sa(c1),Sa(c2)〉 = 0 for codewords at
Hamming distance ∆(c1, c2) > 0.
Theorem[M. Ganzhinov, F. Sz., 2019+]
Let d ≥ 7, and let C be a (d ,2w − 6,w) code with
w ∈ {

⌈√
3d/2

⌉
, . . . , bd/2c}. Then with ∆ := 4w −6, the Sa-image of C

is a set of biangular lines with angle set {±1/(2w − 3),±3/(2w − 3)}.

(9,2,4) 126 lines in R9 with angle set {±1/5,±3/5}
(10,2,4) 210 lines in R10 with angle set {±1/5,±3/5}
(15,4,5) 242 lines in R15 with angle set {±1/7,±3/7}
(16,4,5) 322 lines in R16 with angle set {±1/7,±3/7}
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Constructions: from codes (ctd.)

When C has fewer than four distances, then some flexibility arise, and
in particular for d ≤ 17 from (d ,0,3) codes, (that is, from all weight 3
vectors) we can get

(d
3

)
biangular lines.

Example:
286 lines in R13

364 lines in R14

455 lines in R15

560 lines in R16

816 lines in R17

This last example is biangular tight frame with more than 172 lines.
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Classification of maximum biangular lines

By Roadmap, mentioned earlier, with some modifications.

Biangular lines are special spherical 4-distance sets. Their Gram
matrix have four distinct off-diagonal entries. So we set up a
framework to search for candidate Gram matrices over the symbol set
{1,0,±x1,±x2} of the form: C(x1, x2) := C(x1, x2,−x1,−x2), and we
exclude the cases x1 6= ±x2, x1 6= ±1, x2 6= ±1, x1 6= 0, x2 6= 0.

In particular, from the determinantal variety we eliminate cases by
intersecting it with the polynomial

ux1x2(x2
1 − x2

2 )(x2
1 − 1)(x2

2 − 1)− 1.

Equivalence of candidate Gram matrices is also modified slightly: two
candidate Gram matrices, C1 and C2 are equivalent, iff

C1(x1, x2) = PDC2(σ(x1), σ(x2))DPT

for some permutation matrix P, monomial diagonal matrix D, and a
relabeling permutation σ.
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Results on biangular lines in R2 and R3

Theorem
The 5 lines passing through the antipodal vertices of the convex
regular 10-gon is the unique maximum biangular set in R2.

Proof:
n 2 3 4 5 6
# 2 3 2 1 0

Theorem
The 10 lines passing through the vertices of the platonic
dodecahedron is the unique maximum biangular set in R3.

Proof:
n 2 3 4 5 6 7 8 9 10 11
# 2 5 22 23 12 5 2 1 1 0

Ferenc Szöllősi New constructions of biangular lines Shanghai, July 2, 2019 28 / 34



Results on biangular lines in R4

Theorem
The maximum number of biangular lines is 12 in dimension 4. There
are exactly four distinct configurations up to isometry.

Proof:

n 2 3 4 5 6 7 8 9 10 11 12 13
# 2 5 25 191 701 184 69 27 14 3 3 0

The largest sets are
Shortest vectors of the D4 lattice with angle set {0,±1/2}
Doubling the shortest vectors of D3 with angle set {±1/5,±3/5}
Two 3-distance sets with angle set {±x1, x2}, where

x1 =
−4±

√
5

11
, x2 =

−3∓ 2
√

5
11
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Results on biangular lines in R5

I had a direct construction of 20 biangular lines with angle set
{±1/5,±3/5} and got surprised to find the following.

Theorem
The maximum number of biangular lines is 24 in dimension 5. There is
a unique configuration realizing this up to isometry.

Proof:

n 2 3 4 . . . 11 12 13 . . . 22 23 24 25
# 2 5 25 . . . 54750 56548 52246 . . . 4 1 1 0

The candidate Gram matrix (if chosen well) carries the structure of a
4-class association scheme, and was found earlier by Hanaki.
More precisely: the Bose–Mesner algebra of this association scheme
contains [a representative of] this Gram matrix.
It turns out, that this configuration can be obtained by doubling the
shortest vectors of the D4 lattice.
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Doubling

Several important lessons learned from computation.

Theorem[M. Ganzhinov, F. Sz., 2019+]
Let B be a system of n biangular lines in Rd−1 with angle set
{0,±1/2}. Then there exists a system of 2n biangular lines in Rd with
angle set {±1/5,±3/5}.

Proof: Consider the set {[1,±2vi ]/
√

5 : vi ∈ B}. We have:

〈
[1,±2vi ], [1,±2vj ]

〉
= 1± 4

〈
vi , vj

〉
=


5,−3 for i = j
1 for

〈
vi , vj

〉
= 0

3,−1 for
〈
vi , vj

〉
= ±1/2

Corollary

The number of biangular lines in Rd is at least 2(d − 1)(d − 2) ≈ 2 · d2.

Proof: Double the (d − 1)(d − 2) shortest vectors of the Dd−1 lattice.
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Results on biangular lines in R6

The E6 root system gives 36 biangular lines, doubling D5 gives 40.

Theorem
The maximum number of biangular lines is 40 in dimension 6. There is
a unique configuration realizing this up to isometry.

Proof: This case is roughly 1000-times more difficult than the case R5.

n 2 3 4 . . . 19 20 21 . . . 38 39 40 41
# 2 5 25 . . . ≈ 35M ≈ 36M ≈ 35M . . . 5 1 1 0

In dimension d = 7 we have 63 lines from E7, and 2 · 36 = 72 from E6.
This case might be doable, but we don’t expect anything more
interesting to be found.
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Summary

We have the following lower and upper bounds on the number N of
biangular lines in Rd .

4
(

d − 1
2

)
≤ N ≤

(
d + 3

4

)
, d ≥ 2.

Exact values and constructions from exceptional lattices:

d 2 3 4 5 6 7 8 9 10 11 12
N 5 10 12 24 40 72- 126- 240- 256- 256- 256-

Constructions from 3-distance sets:

d 13 14 15 16 17 18 19 20 21 22 23
N 286- 364- 455- 560- 816- 816- 816- 816- 896- 1408- 2300-

Despite our efforts, the intriguing question of the existence of more
than d2 biangular lines in Rd remains open.
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The next part is tomorrow in building G, lecture room 507 at 10:00AM.
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