Math G2 Midterm 1

2022

1. Calculate the following determinants! ($3+2$ points $)$
a) $\left|\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3\end{array}\right|$,
b) $\operatorname{det}\left\{\left[\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \cdot\left(\begin{array}{ll}-4 & 2 \\ -3 & 1\end{array}\right)\right]^{3}\right\}$.

Solution: (a)

$$
\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
3 & 4 & 1 & 2 \\
4 & 1 & 2 & 3
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -7 \\
0 & -2 & -8 & -10 \\
0 & -7 & -10 & -13
\end{array}\right| \xlongequal{ }\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -7 \\
0 & 0 & -4 & 4 \\
0 & 0 & 4 & 36
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -7 \\
0 & 0 & -4 & 4 \\
0 & 0 & 0 & 40
\end{array}\right| .
$$

Then, the determinant is $1 \cdot(-1) \cdot(-4) \cdot 40=160$.
(b) Since $\operatorname{det}\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=-2$ and $\operatorname{det}\left(\begin{array}{cc}-4 & 2 \\ -3 & 1\end{array}\right)=2$, then the value is $((-2) \cdot 2)^{3}=-64$.
2. Does the following matrix have an inverse? If yes, calculate it by using one of the methods we learned. (5 points)

$$
A=\left(\begin{array}{ccc}
2 & 0 & 7 \\
-1 & 4 & 5 \\
3 & 1 & 2
\end{array}\right)
$$

Solution: This matrix has an inverse, since its determinant (by using the first row) is

$$
\operatorname{det}(A)=2 \cdot\left|\begin{array}{ll}
4 & 5 \\
1 & 2
\end{array}\right|+7 \cdot\left|\begin{array}{cc}
-1 & 4 \\
3 & 1
\end{array}\right|=2 \cdot 3+7 \cdot(-13)=-85 \neq 0
$$

Then, we proceed further by using the method of the adjoint: the matrix of the minors is

$$
\left(\begin{array}{lll}
\left|\begin{array}{ll}
4 & 5 \\
1 & 2
\end{array}\right| & \left|\begin{array}{cc}
-1 & 5 \\
3 & 2
\end{array}\right| & \left|\begin{array}{cc}
-1 & 4 \\
3 & 1
\end{array}\right| \\
\left|\begin{array}{ll}
0 & 7 \\
1 & 2
\end{array}\right| & \left|\begin{array}{cc}
2 & 7 \\
3 & 2
\end{array}\right| & \left|\begin{array}{cc}
2 & 0 \\
3 & 1
\end{array}\right| \\
\left|\begin{array}{ll}
0 & 7 \\
4 & 5
\end{array}\right| & \left|\begin{array}{cc}
2 & 7 \\
-1 & 5
\end{array}\right| & \left|\begin{array}{cc}
2 & 0 \\
-1 & 4
\end{array}\right|
\end{array}\right)=\left(\begin{array}{ccc}
3 & -17 & -13 \\
-7 & -17 & 2 \\
-28 & 17 & 8
\end{array}\right)
$$

Then, we switch the signs:

$$
\left(\begin{array}{ccc}
3 & 17 & -13 \\
7 & -17 & -2 \\
-28 & -17 & 8
\end{array}\right)
$$

and then take the transpose:

$$
\left(\begin{array}{ccc}
3 & 7 & -28 \\
17 & -17 & -17 \\
-13 & -2 & 8
\end{array}\right)
$$

Then, the inverse is

$$
A^{-1}=\frac{1}{-85}\left(\begin{array}{ccc}
3 & 7 & -28 \\
17 & -17 & -17 \\
-13 & -2 & 8
\end{array}\right)
$$

3. Solve the following SLAE! How many solutions does it have depending on the value of λ ? (5 points)

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
x_{1}+x_{2}+\lambda x_{3} & =\lambda^{2} \\
x_{1}+\lambda x_{2}+x_{3} & =\lambda
\end{aligned}\right.
$$

Solution: The extended matrix is in the form

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
1 & 1 & \lambda & \lambda^{2} \\
1 & \lambda & 1 & \lambda
\end{array}\right)
$$

The steps of the Gaussian elimination are

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 0 & \lambda-1 & \lambda^{2}-1 \\
0 & \lambda-1 & 0 & \lambda-1
\end{array}\right)
$$

If $\lambda \neq 1$, then the system has the form

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
(\lambda-1) x_{3} & =\lambda^{2}-1 \\
(\lambda-1) x_{2} & =\lambda-1
\end{aligned}\right.
$$

From this we get $x_{2}=1, x_{3}=\lambda+1$ and $x_{1}=1-x_{2}-x_{3}=-\lambda-1$.
If $\lambda=1$, then the only equation we have is

$$
x_{1}+x_{2}+x_{3}=1
$$

and we have two free variables, meaning that if $x_{1}=p_{1}$ and $x_{2}=p_{2}$, then the solution is

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
1-p_{1}-p_{2}
\end{array}\right)
$$

4. Calculate the eigenvalues and eigenvectors of the following matrix! (5 points)

$$
A=\left(\begin{array}{ll}
6 & 2 \\
2 & 6
\end{array}\right)
$$

Solution: The characteristic equation is

$$
\begin{gathered}
(6-\lambda)(6-\lambda)-4=0 \\
(6-\lambda)^{2}=4 \\
6-\lambda= \pm 2
\end{gathered}
$$

The eigenvalues are $\lambda_{1}=8$ and $\lambda_{2}=4$.
The eigenvector of $\lambda_{1}=8$ is the solution of

$$
\left(\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

The equation we have to solve is

$$
-2 v_{1}+2 v_{2}=0
$$

which has a solution $\binom{p}{p}$, which can be chosen to be $\binom{1}{1}$.

The eigenvector of $\lambda_{2}=4$ is the solution of

$$
\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

The equation we have to solve is

$$
2 v_{1}+2 v_{2}=0
$$

which has a solution $\binom{p}{-p}$, which can be chosen to be $\binom{1}{-1}$.

