# Math G2 Midterm 2 

1 December 2022

Solutions

1. Determine whether the following series converges or diverges! (4 points)

$$
2022+\frac{2022^{2}}{2!}+\frac{2022^{3}}{3!}+\frac{2022^{4}}{4!}+\ldots
$$

Solution: The series is

$$
\sum_{n=1}^{\infty} \frac{2022^{n}}{n!} . \quad(1 \text { point })
$$

Let us use the ratio criterion (1 point):

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{2022^{n+1}}{(n+1)!}}{\frac{2022^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{2022^{n+1}}{2022^{n}} \frac{n!}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{2022}{n+1}=0, \quad \quad \quad(1 \text { point })
$$

which is smaller than one so it converges (1 point).
(It can be also solved by the root criterion, and then we should use that $\sqrt[n]{n!} \rightarrow \infty$ as $n \rightarrow \infty$.)
2. Determine the Taylor series of the function $f(x)=\frac{1}{\sqrt[3]{(x+1)^{2}}}$. What is the coefficient of the third term? (4 points)

## Solution:

$$
f(x)=\frac{1}{\sqrt[3]{(x+1)^{2}}}=(x+1)^{-2 / 3}=\sum_{k=0}^{\infty}\binom{-2 / 3}{k} x^{k} . \quad(3 \text { points })
$$

The coefficient of the third term is either

$$
\binom{-2 / 3}{2}=\frac{(-2 / 3)(-2 / 3-1)}{2}=\frac{\frac{2}{3} \frac{5}{3}}{2}=\frac{5}{15}
$$

or

$$
\binom{-2 / 3}{3}=\frac{(-2 / 3)(-2 / 3-1)(-2 / 3-2)}{3}=\frac{\frac{25}{3} \frac{8}{3}}{3}=\frac{80}{81} . \quad(1 \text { point })
$$

3. Let us consider function $f:[0, \pi] \rightarrow \mathbb{R}$ which is defined as $f(x)=1$. Define the extension of this function $f$ in a way that its extension is defined for every $x \in \mathbb{R}$ and the Fourier series of the extension is a sine Fourier series. Calculate the coefficients of this series! (4 points)
Solution: Since we want a sine Fourier series, we would like to have an odd function. Then, the extension on $[-\pi, \pi]$ is

$$
f(x)=\left\{\begin{aligned}
1 & \text { if } x \in[0, \pi] \\
-1 & \text { if } x \in[-\pi, 0)
\end{aligned}\right.
$$

and also $f(x)=f(x+2 \pi)$. (1 point)
The coefficients are $a_{0}=0, a_{k}=0$ (1 point) and

$$
\begin{gathered}
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x=\frac{1}{\pi} \int_{-\pi}^{0}(-1) \cdot \sin (k x) d x+\frac{1}{\pi} \int_{0}^{\pi} 1 \cdot \sin (k x) d x= \\
=-\frac{1}{\pi}\left[\frac{-\cos (k x)}{k}\right]_{-\pi}^{0}+\frac{1}{\pi}\left[\frac{-\cos (k x)}{k}\right]_{0}^{\pi}=
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{\pi k}(-(-\cos (0)+\cos (-k \pi))+(-\cos (k \pi)+\cos (0)))= \\
=\frac{2}{\pi k}(\cos (0)-\cos (k \pi))=\left\{\begin{array}{cc}
0 & \text { if } \mathrm{k} \text { is even } \\
\frac{4}{\pi k} & \text { if } \mathrm{k} \text { is odd } \quad(2 \text { points })
\end{array}\right.
\end{gathered}
$$

4. Calculate the following limit! (4 points)

$$
\lim _{(x, y) \rightarrow(2,0)} \frac{\sqrt{x^{2}-4 x+5+y^{2}}-1}{x^{2}-4 x+4+y^{2}}
$$

## Solution:

$$
\lim _{(x, y) \rightarrow(2,0)} \frac{\sqrt{x^{2}-4 x+5+y^{2}}-1}{x^{2}-4 x+4+y^{2}}=\lim _{(x, y) \rightarrow(2,0)} \frac{\sqrt{(x-2)^{2}+1+y^{2}}-1}{(x-2)^{2}+y^{2}}=
$$

Let us use the coordinates $x=r \cos (\varphi)+2$ and $y=r \sin (\varphi)$ (1 point).

$$
\begin{gathered}
=\lim _{r \rightarrow 0} \frac{\sqrt{r^{2} \cos ^{2}(\varphi)+1+r^{2} \sin ^{2}(\varphi)}-1}{r^{2} \cos ^{2}(\varphi)+r^{2} \sin ^{2}(\varphi)}= \\
=\lim _{r \rightarrow 0} \frac{\sqrt{r^{2}+1}-1}{r^{2}}=\lim _{r \rightarrow 0} \frac{\frac{1}{2}\left(r^{2}+1\right)^{-1 / 2} 2 r}{2 r}=\frac{1}{2} . \quad(3 \text { points })
\end{gathered}
$$

(It can be solved in other ways too, like rewriting the numerator in a product form.)
5. Calculate the local extrema of the following function! (4 points)

$$
f(x, y)=x^{3}+y^{3}-9 x y+27
$$

## Solution:

$$
\begin{aligned}
& \frac{\partial f(x, y)}{\partial x}=3 x^{2}-9 y=0 \\
& \frac{\partial f(x, y)}{\partial y}=3 y^{2}-9 x=0 .
\end{aligned}
$$

(0.5 point) From the first equation $y=\frac{1}{3} x^{2}$, and then from the second one:

$$
\begin{aligned}
3 \frac{1}{9} x^{4}-9 x & =0 \\
x\left(\frac{1}{3} x^{3}-9\right) & =0
\end{aligned}
$$

So the two solutions are $x_{1}=0$ and $x_{2}=3$ ( 0.25 point), meaning that $y_{1}=0$ and $y_{2}=3$ (0.25 point).

The Hessian is

$$
\left.\left(\begin{array}{cc}
6 x & -9 \\
-9 & 6 y
\end{array}\right) \quad \text { (1 point }\right)
$$

At $\left(x_{1}, y_{1}\right)=(0,0)$ it is $\left(\begin{array}{cc}0 & -9 \\ -9 & 0\end{array}\right)$ with determinant $-81<0$, so it has no extrema (the eigenvalues are $\pm 9$ ) (1 point).
At $\left(x_{2}, y_{2}\right)=(3,3)$ it is $\left(\begin{array}{cc}18 & -9 \\ -9 & 18\end{array}\right)$ with determinant 243 and $18>0$, so it has a minimum there (the eigenvalues are 9 and 27) (1 point)

