
Math G2 Practices 10

Multivariable functions II.: directional derivative, tangent plane, local extrema

1 Directional derivative

The directional derivative of function f in the direction of vector v can be calculated as

∂vf = grad(f) · v

|v|
,

where · is a scalar product and |v| is the length of a vector v.

1. Calculate the directional derivative of f(x, y, z) = e−(x2+y2) − z in the direction of vector
v = (3, 2,−5)T at point P (1, 0, 1).

Solution: The gradient is

grad(f) =



∂f(x, y, z)

∂x

∂f(x, y, z)

∂y

∂f(x, y, z)

∂z

 =

e−(x2+y2)(−2x)

e−(x2+y2)(−2y)
−1



Also,
v

|v|
=

(3, 2, 5)√
32 + 22 + 52

=
1√
38

(3, 2, 5).

The derivative is only needed at point (1, 0, 1), and here

grad(f) =

e−1(−2)
0
−1

 .

Then, the directional derivative is

∂vf = grad(f) · v

|v|
=

e−1(−2)
0
−1

 · 1√
38

(3, 2, 5) =

=
1√
38

(
−2e−1 · 3 + 0 · 2 + (−1) · (−5)

)
≈ 0.453

2 Tangent plane

The equation of a tangent plane at point (x0, y0) of the surface given by the function f(x, y) is
given as

z − f(x0, y0) =
∂f

∂x
(x0, y0) · (x− x0) +

∂f

∂y
(x0, y0) · (y − y0).

2. Give the equation of the tangent plane of the surface xy2 + z3 = 12 at point P (1, 2, 2).

Solution: The function we have to observe is given by the equation

f(x, y) = z(x, y) = 3
√

12− xy2.

We can either di�erentiate this function, or consider the initial equation of the surface,
namely

xy2 + (z(x, y))3 = 12,
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and by considering it as an implicit function we can calculate the partial derivatives: by
di�erentiating it with respect to variable x:

y2 + 3z2
∂z(x, y)

∂x
= 0,

∂z(x, y)

∂x
= − y2

3z2
= − 4

3 · 4
= −1

3
.

Similarly, the partial derivative with respect to y:

2yz + 3z2
∂z(x, y)

∂y
= 0,

∂z(x, y)

∂y
= −2xy

3z2
= −1

3
.

Then, the equation of the tangent is

z − 2 = −1

3
(x− 1)− 1

3
(y − 2).

3. Calculate the equation of the tangent plane at point
1√
13

(8, 4, 1) of the ellipsoid given by

the equation
x2

8
+

y2

4
+ z2 = 1.

Solution: The partial derivatives are

2x

8
+ 2z

∂z(x, y)

∂x
= 0 ⇒ ∂z(x, y)

∂x
= −1

8

x0

z0
= −1,

2y

4
+ 2z

∂z(x, y)

∂x
= 0 ⇒ ∂z(x, y)

∂y
= −1

4

y0
z0

= −1.

Then, the equation of the plane is given by

z − 1√
13

= −(x− 8√
13

)− (y − 4√
13

),

z = −x− y +
√
13.
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3 Local extrema

Local extrema can be �nd at those points where the partial derivatives are zero. Moreover, let us
consider the Hessian (or Jacobian) of f(x1, x2, . . . , xn) given by

D2f =



∂2f

∂x2
1

∂2f

∂x1∂x2

. . .
∂2f

∂x1∂xn

∂2f

∂x1∂x2

∂2f

∂x2
2

. . .
∂2f

∂x2∂xn

...
...

. . .
...

∂2f

∂x1∂xn

∂2f

∂x2∂xn

. . .
∂2f

∂x2
n


Then, if at point p all the partial derivatives are zero, and

� the principal minors (the determinants of those square sub-matrices which have their upper
left corner at the upper left corner of the original matrix) of the Hessian are all positive,
then function f has a local minimum at point p.

� the principal minors of the Hessian have the sign pattern −+−+−+ . . . , then function f
has a local minimum at point p.

� the principal minors of the Hessian are all non-zero, and the sign pattern is neither of the
previous two, then there is no extrema at this point.

� one of the principal minors is zero, then we do not know what happens there (can be
minimum, maximum or neiter).

The special case of two-variable functions can be formulated as follows: if at point p all the
partial derivatives are zero, and

� the determinant of the Hessian is positive, and

�
∂2f

∂x2
1

> 0, then function f has a local minimum at point p.

�
∂2f

∂x2
1

< 0, then function f has a local minimum at point p.

� the determinant of the Hessian is negative, then it has no extrema there.

� the determinant is zero, then we do not know what happens there (can be minimum, maxi-
mum or neiter).

Another condition is the following: if at point p all the partial derivatives are zero, and

� the eigenvalues of the Hessian are all positive, then function f has a local minimum at point
p.

� the eigenvalues of the Hessian are all negative, then function f has a local minimum at point
p.

� the eigenvalues of the Hessian have di�erent signs and none of them is zero, then function f
has no extremum at point p.

� one of the eigenvalues of the Hessian is zero, then we do not know what happens there (can
be minimum, maximum or neiter).

4. Calculate the local minima and maxima of the function f(x, y) = x3 + y3 − 3xy.

Solution: The partial derivatives are

∂f(x, y)

∂x
= 3x2 − 3y,

∂f(x, y)

∂y
= 3y2 − 3x,
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so the system we have to solve is

3x2 − 3y = 0,

3y2 − 3x = 0.

The solutions of this equation are (x1, y1) = (0, 0) and (x2, y2) = (1, 1).

The Hessian is (
6x −3
−3 6y

)
.

At (x1, y1) = (0, 0), it is

(
0 −3
−3 0

)
, with determinant −9, so it has no extrema here. (Also,

the eigenvalues are ±3, so it has no local extrema here.) At (x1, y1) = (1, 1), it is

(
6 −3
−3 6

)
,

with determinant 27 and
∂2f

∂x2
1

= 6 > 0 so it has a local minimum here. (Also, the eigenvalues

are 3 and 9, so it has local minimum here.)

5. Calculate the local minima and maxima of the function f(x, y) = ln(x) + ln(y)− x− y.

Solution: The partial derivatives are

∂f(x, y)

∂x
=

1

x
− 1,

∂f(x, y)

∂y
=

1

y
− 1,

so the system we have to solve is

1

x
− 1 = 0,

1

y
− 1 = 0.

The solution of this equation is (x, y) = (1, 1).

The Hessian is −1

x2
0

0
−1

y2

 .

At (x, y) = (1, 1), it is

(
−1 0
0 −1

)
, with determinant 1 and

∂2f

∂x2
1

= −1 < 0 so it has a local

maximum here. (Also, the eigenvalues are −1 and −1, so it has local maximum here.)

6. Calculate the local extrema of the following function!

f(x, y) = 2x3 + y3 + 3x2 − 3y − 12x− 4.

Solution: Here
f ′
x = 6x2 + 6x− 12,

which has two roots: x1 = 1 and x2 = −2. Moreover,

f ′
y = 3y2 − 3,

which also has two roots: y1 = 1 and y2 = −1. Then, the possible extrema of this function
are: (1, 1), (1,−1), (−2, 1) and (−2,−1). Let us compute the Hessian of this function:

H(x, y) =

(
f ′′
xx f ′′

xy

f ′′
yx f ′′

yy

)
=

(
12x+ 6 0

0 6y

)
.

For (1, 1), the Hessian has the form:

H(1, 1) =

(
18 0
0 6

)
,
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which has a determinant of 108, which is positive, and also fxx
′′ = 18 > 0, so the function

has a minimum there.

For (1,−1), the Hessian has the form:

H(1, 1) =

(
18 0
0 −6

)
,

which has a determinant of −108, which is negative, so the function has a saddle point there.

For (−2, 1), the Hessian has the form:

H(1, 1) =

(
−18 0
0 6

)
,

which has a determinant of −108, which is negative, so the function has a saddle point there.

For (−2,−1), the Hessian has the form:

H(1, 1) =

(
−18 0
0 −6

)
,

which has a determinant of 108, which is positive, and also fxx
′′ = −18 < 0, so the function

has a maximum there.

7. Calculate the local minima and maxima of the function
f(x, y, z) = x3 + xy + y2 + 2z2 + 4z + 1− x.

Solution: The partial derivatives are

∂f(x, y, z)

∂x
= 3x2 + y − 1,

∂f(x, y, z)

∂y
= x+ 2y,

∂f(x, y, z)

∂z
= 4z + 4,

so the system we have to solve is

3x2 + y − 1 = 0,

x+ 2y = 0,

4z + 4 = 0.

The solutions of this equation are (x1, y1, z1) =

(
2

3
,−1

3
,−1

)
and (x2, y2, z2) =

(
−1

2
,
1

4
,−1

)
.

The Hessian is 6x 1 0
1 2 0
0 0 4

 .

At (x1, y1, z1) =

(
2

3
,−1

3
,−1

)
, it is 4 1 0

1 2 0
0 0 4

 ,

with determinant 28 > 0, second principal minor 7 > 0 and
∂2f

∂x2
1

= 4 > 0 so it has a local

minimum here. (Also, the eigenvalues are 4,
√
2 + 3 and −

√
2 + 3, so it has local minimum

here.) At (x2, y2, z2) =

(
−1

2
,
1

4
,−1

)
, it is−3 1 0

1 2 0
0 0 4

 ,

with determinant −3 < 0, second principal minor −7 < 0 and
∂2f

∂x2
1

= −3 < 0 so it has no

local extremum here. (Also, the eigenvalues are 4,
−
√
29− 1

2
and

√
29− 1

2
, so it has no

local extremum here.)
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8. Consider the following matrix: 
−6 1 −3 −1
1 −4 −4 4
−3 −4 −8 4
−1 4 4 −4


Suppose this a Hessian of a 4-variable function calculated at some point p. Is this point an
extrema?

Solution: If someone starts to calculate the determinants, the �rst minor is −6 < 0, so it
might be a maximum. Then, the second is

det

(
−6 1
1 −4

)
= 23 > 0,

so the sign pattern is still �ne. The third one is

det

−6 1 −3
1 −4 −4
−3 −4 −8

 = (−6)

∣∣∣∣−4 −4
−4 −8

∣∣∣∣+ (−1)

∣∣∣∣ 1 −4
−3 −8

∣∣∣∣+ (−3)

∣∣∣∣ 1 −4
−3 −4

∣∣∣∣ = −28 < 0,

so it still might be a minimum.

For the last one, let us realize that the second and last rows are dependent: if we add the
second row to the last one, we get the matrix

−6 1 −3 −1
1 −4 −4 4
−3 −4 −8 4
0 0 0 0

 ,

which has the same determinant as the original one, but since it has a zero row, this value
is zero. This means that at this point there is no guarantee for an extremum.

4 Application of local extrema

7. Give the volume of the largest right rectangular prism that we can get inside the elliptic
paraboloid given by the equation

z = 2x2 + y2

in a way that the top side of the prism is in the plane z = 5.

Solution: Let us assume that the bottom side of the prism is at height w, and let us assume
that one of its vertices is at point (u, v, w). Then, the lengths of the sides of the prism are
5− w, 2u and 2v, meaning that its volume is 4uv(5− w).

However, we know that the point (u, v, w) is on the paraboloid, meaning that the equation

w = 2u2 + v2

also holds, so the volume is
Vol = 4uv(5− 2u2 − v2).

So we are searching for the maximum of the function

f(u, v) = 4uv(5− 2u2 − v2).

The partial derivatives are

∂f

∂u
= 4v(5− 2u2 − v2) + 4uv(−4u),

∂f

∂v
= 4u(5− 2u2 − v2) + 4uv(−2v),

so the system we have to solve is

4v(5− 2u2 − v2) + 4uv(−4u) = 0,

4u(5− 2u2 − v2) + 4uv(−2v) = 0.
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If we divide the �rst equation by 4v and the second by 4u, we get a more simple form:

5− 2u2 − v2 = 4u2,

5− 2u2 − v2 = 2v2.

By subtracting the �rst equation from the second one, we get

2v2 − 4u2 = 0,

from which u =
v√
2
. From the �rst equation, by substitution we get

5− 2
v2

2
− v2 = 4

v2

2
,

meaning that 5 = 4v2 and v =

√
5

2
. Similarly, u =

√
5

2
√
2
.

The Hessian has the form(
−16uv − 32uv 20− 8u2 − 12v2 − 16u2

20− 24u2 − 4v2 − 8v2 −8uv − 16uv

)
,

which can also be written as(
−48uv 20− 24u2 − 12v2

20− 24u2 − 12v2 −24uv

)
.

At the point (u, v) =

( √
5

2
√
2
,

√
5

2

)
, it has the form

 −48
5

4
√
2

20− 24
5

8
− 12

5

4

20− 24
5

8
− 12

5

4
−24

5

4
√
2

 =


−60√

2
−10

−10
−30√

2


Here the determinant is

900− 100 > 0

and the upper left element is negative, so we have a maximum at this point.

The maximal volume is

Vol = f

( √
5

2
√
2
,

√
5

2

)
= 4

√
5

2
√
2

√
5

2

5− 2

( √
5

2
√
2

)2

−

(√
5

2

)2
 =

25

2
√
2

8. Determine the distance of the curves y = x2 and y = 1− (x+ 2)2.

Solution: At a given point x1, the �rst curve is at (x1, y1) = (x1, x
2
1) and the second at

a given point x2 is (x2, y2) = (x2, 1 − (x2 + 2)2). The distance between two curves is the
smallest possible distance between some points which are on the given curves.

Since the distance has a minimum where the square of the distance has a minimum, we will
observe the minimum of the square instead.

The square of the distance is

f(x1, x2) = (x1 − x2)
2 + (y1 − y2)

2 = (x1 − x2)
2 + (x2

1 − 1 + (x2 + 2)2)2

We are searching for the minimum of this function.

The partial derivatives are:

∂f

∂x1

= 2(x1 − x2) + 2(x2
1 − 1 + (x2 + 2)2)(2x1)

∂f

∂x2

= −2(x1 − x2) + 2(x2
1 − 1 + (x2 + 2)2)(2(x2 + 2))
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The system we have to solve is

2(x1 − x2) + 2(x2
1 − 1 + (x2 + 2)2)(2x1) = 0,

−2(x1 − x2) + 2(x2
1 − 1 + (x2 + 2)2)(2(x2 + 2)) = 0.

Let us modify the equations by moving the long bracket to the left-hand side in both cases:

4x1(x
2
1 − 1 + (x2 + 2)2) = −2(x1 − x2),

(4x2 + 8)(x2
1 − 1 + (x2 + 2)2) = 2(x1 − x2).

Then,
−2x1 + 2x2

4x1

=
2x1 − 2x2

4x2 + 8
,

4x1

4x2 + 8
=

−2x1 + 2x2

2x1 − 2x2

= −1,

meaning that x1 = −x2 − 2 and x2 = −x1 − 2. Let us substitute this formula to the second
equation:

(4(−x1 − 2) + 8)(x2
1 − 1 + ((−x1 − 2) + 2)2) = 2(x1 − (−x1 − 2)),

(−4x1)(x
2
1 − 1 + x2

1) = 2(2x1 + 2),

(−4x1)(2x
2
1 − 1) = 4x1 + 4,

−8x3
1 + 4x1 = 4x1 + 4,

meaning that x3
1 = −1

2
, so x1 = − 1

3
√
2
and x2 =

1
3
√
2
− 2.

The second derivatives are:

∂2f

∂x2
1

= 2 + 4(x2
1 − 1 + (x2 + 2)2) + 4x1(2x1) = 12x2

1 + 4x2
2 + 8x2 + 14,

∂2f

∂x1∂x2

= −2 + 8x1(x2 + 2) = 8x1x2 + 14

∂2f

∂x2
2

= 2 + 4(x2
1 − 1 + (x2 + 2)2) + 4(x2 + 2)(2(x2 + 2)) = 4x2

1 − 2 + 12(x2 + 2)2

So the Hessian is (
12x2

1 + 4x2
2 + 8x2 + 14 8x1x2 + 14

8x1x2 + 14 4x2
1 − 2 + 12(x2 + 2)2

)

The determinant at point (x1, x2) =

(
− 1

3
√
2
,
1
3
√
2
− 2

)
is 48 3

√
2( 3
√
2− 1) > 0 and the upper

left element is 14 + 8 3
√
2− 2 · 22/3 ≈ 17.73 > 0, so it is indeed a minimum.

The distance is √
f

(
− 1

3
√
2
,
1
3
√
2
− 2

)
=

=

√√√√(− 1
3
√
2
−
(

1
3
√
2
− 2

))2

+

((
− 1

3
√
2

)2

− 1 +

(
1
3
√
2

)2
)2

≈ 0.656.
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