
Math G2 Practices 5 & 6

Numerical series

1 Partial sums

1. Determine the convergence of the following series by using the de�nition of convergence!

∞∑
n=1

1

n(n+ 1)

Solution: By de�nition, a series is convergent if and only if the sequence of the partial sums
SN =

∑N
n=1 an is convergent, i.e.

∞∑
n=1

an = lim
N→∞

SN = lim
N→∞

(
N∑

n=1

an

)

is convergent.

In this case

SN =
N∑

n=1

1

n(n+ 1)
.

Let us use the identity
1

n(n+ 1)
=

1

n
− 1

n+ 1
(it can be proved easily by transforming the

two fractions into one with a common denominator), and then

SN =
N∑

n=1

1

n(n+ 1)
=

N∑
n=1

(
1

n
− 1

n+ 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+. . .

(
1

N
− 1

N + 1

)
This is a telescopic sum (a lot of term cancel out each other), meaning that in the end we
have

SN = 1− 1

N + 1
.

Then, by de�nition,

∞∑
n=1

an = lim
N→∞

SN = lim
N→∞

(
1− 1

N + 1

)
= 1,

so this is a convergent series and

∞∑
n=1

1

n(n+ 1)
= 1

Remark: Another way to prove this claim is to consider the remainder term of the series,
i.e.

∞∑
n=N+1

an.

Then, this tends to zero, since

∞∑
n=N+1

an =
∞∑
n=1

an −
N∑

n=1

an = 1−
(
1− 1

N + 1

)
→ 0.

so the sum of N -many elements gets closer and closer to the �nal limit.
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2 Geometric series

Geometric series are in the form
∞∑
n=0

qn.

A geometric series is convergent, if |q| < 1, and then

∞∑
n=0

qn =
1

1− q
.

2. Calculate the following series, where x ∈ R is a parameter:

∞∑
n=0

(
x+ 1

2x

)n

.

Solution: this is a geometric series with q =
x+ 1

2x
, so it is only convergent if

|q| =
∣∣∣∣x+ 1

2x

∣∣∣∣ < 1,

meaning that
|x+ 1| < 2|x|.

The easiest way to solve this is to plot these two functions. Then, we have to calculate the
two intersections:

x+ 1 = −2x −→ x = −1

3
,

x+ 1 = 2x −→ x = 1.

Then, it is clear that the series is convergent if x < −1

3
or if x > 1. Also, the sum is

∞∑
n=0

(
x+ 1

2x

)n

=
1

1− x+ 1

2x

=
2x

x− 1
.

3 Alternating series

Alternating series are in the form
∞∑
n=0

(−1)nan

where an > 0.
Theorem (Leibniz criterion): If for an alternating series we have an → 0 and an monoton-

ically decreases, then it is called Leibniz series and it is convergent.

3. Determine the convergence of the following series!

0.1− 0.01 + 0.001− 0.0001 + . . .

Solution: First let us write this series into a compact form, namely

∞∑
n=0

(−1)n10−n10−1.

Here an = 10−n10−1, which tends to zero as n → ∞ and it is also monotonically decreasing,
meaning that it is a Leibniz series and it is convergent.

Remark: The limit can be calculated with a software: it is going to be 0.09090909....

4. Determine the convergence of the following series!

−0.11 + 0.101− 0.1001 + 0.10001− 1.100001 + . . .

Solution: First let us write this series into a compact form, namely

∞∑
n=0

(−1)n+1
(
0.1 + 10−(n+2)

)
.

Here an = 0.1 + 10−(n+2), which tends to 0.1 as n → ∞, so it is not convergent.
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4 Positive series

Positive series are series which have only positive terms in them. There are di�erent methods to
determine the convergence of such methods.

� Ratio criterion: Let us consider limn→∞
an+1

an
. Then, if this value is smaller than one, then

the series is convergent, and if it is bigger than one, then it is divergent.

This method is usually used when we have a factorial in the exercise.

5. Determine the convergence of the following series!

∞∑
n=0

3n

n!
.

Solution: Here an =
3n

n!
, so

lim
n→∞

an+1

an
= lim

n→∞

3n+1

(n+ 1)!
3n

n!

= lim
n→∞

3n+1

3n
n!

(n+ 1)!
=

= lim
n→∞

3 · 3n

3n
n!

(n+ 1) · n!
= lim

n→∞
3 · 1

n+ 1
= 0 < 1,

so since the limit is smaller than one, it converges.

Remark: The limit of this series is approximately 20.086 (it is actually e3).

� Root criterion: Let us consider limn→∞ n
√
an. Then, if this value is smaller than one, then

the series is convergent, and if it is bigger than one, then it is divergent.

This method is usually used when we have an nth power in the exercise.

6. Determine the convergence of the following series!

∞∑
n=1

3n

nn
.

Solution: Here an =
3n

nn
, so

lim
n→∞

n
√
an = lim

n→∞
n

√
3n

nn
= lim

n→∞

3

n
= 0 < 1,

so since the limit is smaller than one, it converges.

Remark: The limit of this series is approximately 6.6629.

� Integral criterion: Let us de�ne a positive and monotonically decreasing function f(x)
from an in a way that we replace n by x. Then, if

∫∞
x0

f(x)dx is smaller than in�nity (where x0

is the starting index of the series), then the original series converges. Similarly, if
∫∞
x0

f(x)dx
is in�nite, then the initial series diverges.

This method is usually used when no other method can be used (usually these exercises
involve some logarithms).

7. Determine the convergence of the following series!

∞∑
n=2

1

n(ln(n))2
.

Solution: Here the function will have the form

f(x) =
1

x(ln(x))2
.
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This is a positive function for x > 2, and it is also monotonically decreasing, since
1

x
decreases and ln(x) increases, so (ln(x))2 is also increasing and then

1

(ln(x))2
is

decreasing.

Therefore, we can use the previous theorem: for this, we need to calculate the following
integral: ∫ ∞

2

1

x(ln(x))2
dx = lim

c→∞

∫ c

2

1

x(ln(x))2
dx = lim

c→∞

∫ c

2

1

x
(ln(x))−2dx =

Now we use the integral formula (where α ̸= 0)∫
f ′(x)(f(x))α =

(f(x))α+1

α + 1
.

In our case f(x) = ln(x) (since then f ′(x) =
1

x
), α = −2, so by continuing the previous

integral we get

lim
c→∞

[
(ln(x))−1

−1

]c
2

= lim
c→∞

[
−1

ln(c)
+

1

ln(2)

]
=

1

ln(2)
< ∞,

meaning that the initial series also converges.

Remark: The limit of this series is approximately 2.1097.

� Majorant/minorant criterion

Majorant criterion: If there is a convergent series
∞∑
n=1

bn s.t. an ≤ bn, then
∞∑
n=1

an is also

a convergent one.

Minorant criterion: If there is a divergent series
∞∑
n=1

cn = ∞ s.t. an ≥ cn, then
∞∑
n=1

an = ∞

is also a divergent one.

In these cases the �rst step is to somehow get a feeling whether the series is convergent or
not, and then bound the series either from above by a convergent series, or from below by a
divergent one. For this, the series we are going to use are:

� The series
∞∑
n=1

1

n
diverges.

� The series
∞∑
n=1

1

nc
converges if c > 1, e.g. if c = 2 then

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ . . .

converges (actually, the limit is
π2

6
).

8. Determine the convergence of the following series!

∞∑
n=0

1

n2 + 50

Solution: Since the series behaves like
∞∑
n=0

1

n2
for large values of n, we should use the

majorant criterion, i.e. have an upper bound for our series.

Since n2 + 50 > n2, then
1

n2 + 50
<

1

n2
, meaning that the series

∞∑
n=1

1

n2
is a majorant,

which means that the original series is also convergent. (The limit is ≈ 0.2321.)

9. Determine the convergence of the following series!

∞∑
n=0

sin2(n)

n(n+ 1)
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Solution: Since the series behaves like
∞∑
n=0

1

n(n+ 1)
=

∞∑
n=0

1

n2 + n)
for large values of

n, which bevahes like
∞∑
n=1

1

n2
and it is convergent, we should use the majorant criterion,

i.e. have an upper bound for our series.

Since
sin2(n)

n2 + n
<

1

n2 + n
, meaning that the series

∞∑
n=1

1

n2 + n
is a majorant, but it is

convergent by Exercise 1, which means that the original series is also convergent. (The
limit is ≈ 0.6281.)

10. Determine the convergence of the following series!

∞∑
n=0

1√
n

Solution: Since the series behaves like
∞∑
n=0

1

n
for large values of n, which is divergent,

we should use the minorant criterion, i.e. have a lower bound for our series.

Since
1√
n
>

1

n
, meaning that the series

∞∑
n=1

1

n
is a minorant, but it is divergent, which

means that the original series is also divergent.

11. Determine the convergence of the following series!

∞∑
n=0

8

5n + 1

Solution: Since the series behaves like
∞∑
n=0

1

5n
for large values of n, which is convergent

(since it is a geometric series), we should use the majorant criterion, i.e. have an upper
bound for our series.

Since
8

5n + 1
<

8

5n
, meaning that the series

∞∑
n=1

8

5n
is a majorant, but it is convergent

(since it is 8 ·
∞∑
n=1

1

5n
), which means that the original series is also convergent. (The

limit is ≈ 5.721.)

5 Various exercises

12. Determine the convergence of the following series!

1

3
+

2!

32
+

3!

33
+

4!

34
+ . . .

Solution: This series can be written in the compact form

∞∑
n=1

n!

3n
.

Since it has a factorial, we suspect that the ration criterion should be used. Here an =
n!

3n
,

so the limit is

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)!

3n+1

n!

3n

= lim
n→∞

(n+ 1)!

3n+1

3n

n!
= lim

n→∞

(n+ 1)!

n!

3n

3n+1
= lim

n→∞
(n+ 1)

1

3
= ∞,

where we used that (n + 1)! = (n + 1)n! and 3n+1 = 3 · 3n. Then, since the limit is bigger
than 1, the original series is divergent.
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12. Determine the convergence of the following series!

∞∑
n=3

(
n
1

)(
n
3

) .
Solution: First let us write this series in a more simple form:

∞∑
n=3

(
n
1

)(
n
3

) =
∞∑
n=3

n!
(n−1)!·1!

n!
(n−3)!·3!

=
∞∑
n=3

n!

(n− 1)! · 1!
(n− 3)! · 3!

n!
=

∞∑
n=3

6

(n− 1)(n− 2)
,

where we used the fact that 3! = 1 · 2 · 3 = 6 and (n− 1)! = (n− 1)(n− 2)(n− 3)!.

The series does not have a factorial, an nth power or a logarithm - because of this, we should

use one of the majorant or minorant criteria. Since the series behaves like
∑∞

n=1

1

n2
for large

values of n, we suspect that it is a convergent one, so we should search for a lower bound.

The majorant is
6

(n− 1)(n− 2)
<

6

(n− 1)2
<

6

n2
,

for which the series
∑∞

n=1

6

n2
is convergent, so the original series is also convergent. (The

limit is 6.)

12. Determine the convergence of the following series!

∞∑
n=3

1

n ln(n)
.

Solution: Since the series has a logarithm, we might suspect to use the integral criterion.
For this, let us de�ne the function

f(x) =
1

x ln(x)
.

This is a positive function, and it is monotone decreasing, since both
1

x
and

1

ln(x)
are

decreasing functions.

Then, let us calculate the integral:∫ ∞

3

1

x ln(x)
dx = lim

c→∞

∫ c

3

1

x ln(x)
dx = lim

c→∞

∫ c

3

1
x

ln(x)
dx =

Then, we can use the integral formula with f(x) = ln(x)∫
f ′(x)

f(x)
dx = ln(|f(x)|) + c,

which means that
= lim

c→∞
[ln(|ln(x)|)]c3 =

Since here x > 1, the absolute value can be omitted:

lim
c→∞

[ln(ln(x))]c3 = lim
c→∞

[ln(ln(c))− ln(ln(3))]

Since lim
c→∞

ln(c) = ∞, then lim
c→∞

ln(ln(c)) = ∞, so the limit is in�nite. Then, by the theorem

the original series is also in�nite, so it diverges.

15. Determine the convergence of the following series!

∞∑
n=3

(
n

n2 + 1

)n2

.

Solution: Since we have an nth power, we should use the root criterion. Here an =
(

n
n2+1

)n2

,
meaning that

lim
n→∞

n
√
an = lim

n→∞

n

√(
n

n2 + 1

)n2

= lim
n→∞

(
n

n2 + 1

)n

= lim
n→∞

(
1

n2+1
n

)n

= lim
n→∞

1(
n+ 1

n

)n
6



The problem here is we do not really know the limit of this sequence. However, if we would

have 1 +
1

n
inside the brackets, then we would know the limit. This would be true if in the

original series we would have
n

n+ 1
instead of

n

n2 + 1
.

It is clear that
n

n2 + 1
<

n

n+ 1
,

and then (
n

n2 + 1

)n2

<

(
n

n+ 1

)n2

,

meaning that this is a majorant. If we apply the root condition to this majorant, we get

lim
n→∞

n
√

bn = lim
n→∞

n

√(
n

n+ 1

)n2

= lim
n→∞

(
n

n+ 1

)n

= lim
n→∞

(
1

n+1
n

)n

= lim
n→∞

1(
1 + 1

n

)n =
1

e
< 1.

Since this is smaller than one, the majorant converges, so the original series is a convergent
one too.

16. Determine the convergence of the following series!

∞∑
n=3

(
n

n− 1

)n
1

2n
.

Solution: Since we have an nth power, we might use the root criterion. Here an =(
n

n−1

)n 1

2n
, so the limit is

lim
n→∞

n
√
an = lim

n→∞
n

√(
n

n− 1

)n
1

2n
= lim

n→∞

n

n− 1

1

2
= lim

n→∞

n

2n− 2
= lim

n→∞

1

2− 2
n

=
1

2
< 1,

so the original series converges.

17. Determine the convergence of the following series!

∞∑
n=3

(
n

n− 1

)n2

1

2n
.

Solution: Since we have an nth power, we might use the root criterion. Here an =(
n2

n−1

)n 1

2n
, so the limit is

lim
n→∞

n
√
an = lim

n→∞

n

√(
n

n− 1

)n2

1

2n
= lim

n→∞

(
n

n− 1

)n
1

2
= lim

n→∞

(
n− 1 + 1

n− 1

)n
1

2
=

= lim
n→∞

(
1 +

1

n− 1

)n
1

2
= lim

n→∞

(
1 +

1

n− 1

)n−1(
1 +

1

n− 1

)
1

2
= e · 1 · 1

2
> 1

so the original series diverges.

18. Determine the convergence of the following series!

∞∑
n=3

(arctan(n))n

(n+ 1)2n−1
.

Solution: Since we have an nth power, we might use the root criterion. Here an =
(arctan(n))n

(n+ 1)2n−1
, so the limit is

lim
n→∞

n
√
an = lim

n→∞
n

√
(arctan(n))n

(n+ 1)2n−1
= lim

n→∞

arctan(n)

n
√
n+ 1 n

√
2n

2

= lim
n→∞

n
√
2 arctan(n)
n
√
n+ 1 · 2

=
π
2

2
=

π

4
< 1,

where we used the fact that n
√
2 → 1, n

√
n+ 1 → 1 (the latter one can be seen by the squeeze

theorem) and limn→∞ arctan(n) =
π

2
. Since the limit is smaller than one, the original series

converges (the limit is ≈ 0.9649).
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6 Absolute and conditional convergence

We say that a series
∑∞

n=1 an is absolutely convergent, if the series
∑∞

n=1 |an| is also convergent.

Proposition: If a series is absolutely convergent, then it is convergent.

If a series is convergent but not absolutely convergent, then it is called conditionally con-
vergent.

19. For which values of k is the following series absolutely convergent or conditionally convergent?

∞∑
n=1

(−1)nnk.

Solution: For the absolute convergence, the series we have to observe is
∞∑
n=1

nk.

� If k ≥ 0, then the sequence nk does not converge to zero, so it cannot be convergent
(a necessary condition for convergence is that the sequence of the terms should tend to
zero).

� If −1 < k < 0, then it is divergent. For this, let us use the integral criterion, i.e.
consider the function f(x) = xk where −1 < k < 0. Then,∫ ∞

1

xkdx = lim
c→∞

∫ c

1

xkdx = lim
c→∞

[
xk+1

k + 1

]c
1

= lim
c→∞

[
ck+1

k + 1
− 1

k + 1

]
= ∞,

since here 0 < k + 1 < 1. Then, the original series is divergent.

� If k = −1, then it is also divergent. For this, let us use the integral criterion, i.e.

consider the function f(x) =
1

x
. Then,∫ ∞

1

1

x
dx = lim

c→∞

∫ c

1

1

x
dx = lim

c→∞
[ln(x)]c1 = lim

c→∞
[ln(c)− ln(1)] = ∞.

Then, the original series is divergent.

� If −1 > k, then it is convergent. For this, let us use the integral criterion, i.e. consider
the function f(x) = xk where −1 > k. Then,∫ ∞

1

xkdx = lim
c→∞

∫ c

1

xkdx = lim
c→∞

[
xk+1

k + 1

]c
1

= lim
c→∞

[
ck+1

k + 1
− 1

k + 1

]
=

= lim
c→∞

[
ck+1

k + 1

]
− 1

k + 1
= − 1

k + 1
< ∞,

since here k + 1 < 0. Then, the original series is convergent.

To sum it up, the series is absolutely convergent if k < −1 and consequently it is convergent
for k < −1.

What can we say about conditional convergence? For this, we have to observe the conver-
gence of the original series for k > −1.

The original series is an alternating series, consequently we have to use the Leibniz criterion.
It can be seen that if k < 0, then the sequence nk is monotonically decreasing, and it also
tends to zero - because of this, by the Leibniz criterion the original series is conditionally
convergent if −1 < k < 0.

In conclusion, we can say that it is absolutely convergent when k < −1, it is conditionally
convergent if −1 ≤ k ≤ 0 and it is divergent if k > 0.
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7 Error estimation

In practice we cannot calculate the sum of in�nitely many elements. Because of this, the thing
we can calculate is

∑N
n=1 an, i.e. the sum of the �rst N -many elements. We would like to have an

estimate for the error we have in this case, i.e. for the value

eN =

∣∣∣∣∣
∞∑
n=1

an −
N∑

n=1

an

∣∣∣∣∣ .
� If we have a Leibniz series, then eN < |aN+1|.

� If we have a positive series, then we should either approximate the remaining terms by a
geometric series, or by some integral (see the next Exercises).

20. Give an approximation for the error if we approximate the following series by S4!
∞∑
n=1

(−1)n+1

n2

Solution: This is a Leibniz series (since an =
1

n2
is a monotone decreasing sequence and it

tends to zero), so (since N = 4) the error is

e4 < |a5| =
1

52
,

so the error is at most 0.04 in this case.

Remark: The real error is ≈ 0.02386.

21. Give an approximation for the error if we approximate the following series by S3!
∞∑
n=1

1

(2n)!

Solution: This is a positive series, so we should bound the remaining terms, i.e.
∞∑
n=4

1

(2n)!

by a geometric series.∣∣∣∣∣
∞∑
n=4

1

(2n)!

∣∣∣∣∣ =
∞∑
n=4

1

(2n)!
=

1

8!
+

1

10!
+

1

12!
+ · · · = 1

8!

(
1 +

1

9 · 10
+

1

9 · 10 · 11 · 12
+ . . .

)
≤

≤ 1

8!

(
1 +

1

9 · 9
+

1

9 · 9 · 9 · 9
+ . . .

)
=

1

8!

(
∞∑
n=0

(
1

92

)n
)

=
1

8!

1

1− 1
92

≈ 2.51 · 10−5,

where �rst we changed every number in the denominators to nines, and then we used the
formula for the sum of a geometric series. Therefore, the error is at most 2.51 · 10−5.

Remark: The real error is ≈ 2.5079 · 10−5

22. Give an approximation for the error if we approximate the following series by S4!
∞∑
n=1

1

n4

Solution: The problem here is that since the denominator gets bigger and bigger as k goes
to in�nity, we cannot give an upper bound like in the previous case by using a geometric
series. Instead of this, we will bound the remaining terms by some integrals:∫ ∞

4

1

(1 + x)4
dx ≤

∞∑
n=5

1

n4
≤
∫ ∞

4

1

x4
dx

These integrals can be calculated:∫ ∞

4

1

(1 + x)4
dx = lim

c→∞

∫ c

4

1

(1 + x)4
dx = lim

c→∞

[
−1

3

1

(1 + x)3

]c
4

=
1

3
· 1

53
≈ 0.00267,∫ ∞

4

1

x4
dx = lim

c→∞

∫ c

4

1

x4
dx = lim

c→∞

[
−1

3

1

x3

]c
4

=
1

3
· 1

43
≈ 0.0052083

So an upper bound for the error is 0.0052083.

Remark: The real error is 0.003571
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23. How many elements should we add up of this series such that our error is smaller than
ε = 10−2?

∞∑
n=1

(−1)n+1

n!

Solution: The question can be rephrased as: what is the �rst value of N for which we have
eN < 10−2?

This is a Leibniz series (since
1

n!
tends to zero and it is decreasing), so if we add up N -many

elements then the error is

eN = |aN+1| =
1

(N + 1)!

The �rst value for which this is smaller than
1

100
is n = 4, so we should add up the �rst four

elements and then the error is smaller than 0.01.

Remark: The real error here is 0.00712.

24. How many elements should we add up of this series such that our error is smaller than
ε = 10−2?

∞∑
n=1

1

n2

Solution: This is a positive series, but since the denominator gets larger and larger as n
increases, we cannot bound it from above by a geometric series. Instead of this, we can use
the integral technique discussed in Exercise 22.:

∞∑
N+1

1

n2
≤
∫ ∞

N

1

x2
dx = lim

c→∞

[
−1

x

]c
N

=
1

N

This should be smaller than
1

100
: in this case N = 101 is a proper choice.

Remark: The real error here is 0.00985.
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