Math G2 Practice 7

Function series, Power series, Taylor series

1 Function series

A series of a functions is defines as the infinite sum
D fel@) = folw) + file) + fala) + ...
k=0

The interval of convergence is the interval of those points for which the above series is a
convergent one.

1. Determine the interval of convergence of the following series, and calculate the sum in these

points!
o0

> (n(2))".

n=0
Solution: For a fixed value of z, this is a geometric series with ¢ = In(z), so it is convergent
1
if |¢| = |In(z)| < 1, meaning that — <z <e.
e
The sum at these points can be given by the usual formula for the sum of a geometric series:

1
l—q 1—In(x)

2. Determine the interval of convergence of the following series! Where is it absolutely conver-
gent?

By the root criterion,

li —_— =
This tends to |z| if  # 1 and to 0 if = 1, meaning that it is absolutely convergent when
|z| < 1 (since the limit should be smaller than one).

Let us observe the endpoints of the interval (—1,1): for x = 1, we get an all-zero sum, so it
is absolutely convergent there. For x = —1, the series is

i 2(=1)"

n=0

which is not absolutely convergent but it is convergent. Consequently, the series is absolutely
convergent for # € (—1,1] and it is convergent for [—1, 1].

3. Determine the interval of convergence of the following series! Where is it uniformly conver-

gent?
o
Z cos(nx)
n?+ a2
n=0




Solution: By the Theorem of Weierstrass, if we an find such a sequence that after some
time |f(x)| < a, for all values of z, and >~  a, is convergent, then the series > 7 f(z) is
uniformly and absolutely convergent.

In this case we have

| cos(nz)| 1 o1 1
n?+a2 ~nd4a? " n?

cos(nz)
n? + x2

1
Then, since Y 7, —, 1s convergent, the original series is also uniformly and absolutely con-
n

vergent.

2 Power series

Power series are special function series in the form

o
E an(x — )"

n=0

Here a,, are real numbers (they are the coefficients) and z; is a given value, usually referred to as
the center of the convergence.

The name of the latter one comes from the fact that the interval of convergence for a power
series is always in the form (zo — R, xo + R), where R is a non-negative real value, but it can also
be infinity. If R = 0, then the series is convergent only for x = ¢, and if R = oo then the series
is convergent for all values of z € R.

It is worth note mentioning that the endpoints g — R and zy + R might be inside the interval
of convergence, or they might be not, it depends on the given example, so these two points should
always be examined separately.

The value of R can be calculated by two different methods:

e Root criterion: Let us consider the limit v = limsup {/|a,|. Then, if « is a non-zero finite
n— oo

1
value, the R = —. If a = 0, then R = oo, and if a = oo, then R = 0.
a

Then, if « is a non-zero finite

+1
e Ratio criterion: Let us consider the limit a = lim @41
n—o00 ‘an‘

value, the R = l If « =0, then R = oo, and if a = 0o, then R = 0.
Q

4. Let us determine the interval of convergence of the following power series!
n2
n=1
Solution: The series can be rewritten as
>
n2
n=1

1
which means that here a,, = — and xg = 2. We can use both of the criteria in this case:
n

1 1\? 1
Root crit — i an| = li (= =1i — ) =1, 0 R=- =
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n—o0 n—oo n—o00
1.
|@n+1’ (nJ: n’ n’
o Ration criterion: o = lim = lim T = =lim —=Im —— =
1 1
lim ————— =1, meaning that R = — = 1.

Then, the interval of convergence is (2 — 1,24 1) = (1, 3).

We should observe the endpoints 1 = 1 and x5 = 3 separately.



e If x =1, then the series has the form

o0 _1Tl
> Er

n=1

which can be proved to be a Leibniz series, so it is convergent.

e If x = 1, then the series has the form

o

1
2
n=1

which is convergent.

Then, the interval of convergence is [1, 3].

. Let us determine the interval of convergence of the following power series!

;(—wﬁ.

Solution: The series can be rewritten as

which means that here a,, = and xo = 0. We are going to use the ratio criterion in

this case:

a = lim n 1] = Jim Y2t i n i 1

1
meaning that R = 1= 1.

Then, the interval of convergence is (0 — 1,0+ 1) = (—1,1).

We should observe the endpoints 1 = —1 and x5 = 1 separately.
e If v = —1, then the series has the form
Sty
n=1 \/ﬁ n=1 \/ﬁ

which is a divergent series (see Exercise 10. from the previous exercise sheet).

e If x =1, then the series has the form

= (=1)"

which is a Leibniz series so it is convergent.

Then, the interval of convergence is (—1,1].



3 Taylor series

Taylor series are special power series in the form

O fn)
Z f n(le) (l’ o ‘To)n7
n=0 ’

where f()(z,) denotes the nth derivative of function f evaluated at point z.
In the following exercises, we will not use this formula, but we are going to use the Taylor

series of some well-known functions around zo =0 (here n! =n-(n—1)-...-3-2-1).
e sin(x) = ni;(— )”% = — 2—7 + a;)_? - i—j + Z_T — ..., interval of convergence: R.
e sinh(z) :; (222% T+ 2—7 + ﬁ—? + i—j + JSC)—? + ..., interval of convergence: R.
e cos(z) = g(—l)”é:;! =1- z—T + Z—? - Z—T + 2—7 — ..., interval of convergence: R.
e cosh(x) = g é;n)' =1+ 2—? + Z—T + z—? + UZ—T + ..., interval of convergence: R.
o c” :ni;o%? _1+I+2_T+§_?+Z_T+§+§+ , interval of convergence: R.
. —il- - = i(—l)”x" =1-ao+2*—2*+2" —2°+ ... interval of convergence: |z| < 1.
3 i - = ::0 2" =1+x+2*+2°+2* +2° 4+ ..., interval of convergence: |z| < 1.

e If n is not a positive integer, then

(14 2)" = i (k) _ (O) i (T)H (2)+ (g)m (Z)xu (5)+

n=1)(n—k+1
interval of convergence: |z| < 1. Here (Z) . (n—1) o (n i ), so the numerator
has k-many elements.
o n 2 3 4 5
e In(l+2)= Z(—l)”“% =r— % + % — % + % — ..., interval of convergence: |z| < 1.

n=1

6. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(x) = sin(x) cos(z).
Solution: )
f(x) = sin(x) cos(z) = 5 sin(2z) =
where we used that sin(2x) = 2sin(z) cos(x).

1 e 2[E 2n+1 1 e 22n+1
— - _1 n_“= 2n+1.
2Z 2n—|—1) 2;:0( Ve

The interval of convergence is x € R.

Alternatively, one can also calculate the derivatives of the function sin(z)cos(x) at x = 0
and then use the definition.



7.

10.

11.

Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(z) = sin*(x).

Solution: . 5
f(z) = sin(z) = %M _

where we used the facts cos(2z) = cos?(x) — sin?(x) and sin®(z) + cos?(z) = 1.

11 I 1 22)" 1 & 221 = 22n=1
- __ = Ir) = - — = —1)" —_ -1 n+1 2n _ 1 n+1 2n
2 g =573 nz%( e 2+;( T T ;( T

1
where we used the fact that the n = 0 term of the right sum was —5 so it makes the other
1
3 vanish. The interval of convergence is x € R.

Alternatively, one can also calculate the derivatives of the function sin®(x) at = 0 and then
use the definition.

Determine the Taylor series of the following function and the corresponding interval of con-
vergence! Here a € RT.

flx) =a*
Solution: - .
z _ In(a®) _ _zln(a) _ (l’ ln(a))n _ (ln(a))” n
a = e€ =€ = Z n‘ = Z n' xXr .
n=0 n=0

The interval of convergence is x € R.

Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

fla) = (142"

Solution: Since
(1+2)> =1+ 3z +32° +2°,

we do not even have to use the previous formulas, since this can be thought of as a (finite)
Taylor series with ag = a3 = 1, a1 = as = 3 and a,, = 0 for n > 3. This of course holds for
any = € R. so the interval of convergence is R.

Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

Fa) = (14 2)7.
Solution: Since the power is not a positive integer, we can use the previous formula:
(14+2)2 = i (_3> "
n—o \ " '
The interval of convergence is |z| < 1.

Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

flz) = (1 +a2)"7
Solution: Since the power is not a positive integer, we can use the previous formula:

(14+2)" Y3 = i (_n%)x”.

n=0

The interval of convergence is |z| < 1.



12. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

Solution: We know that

then
1 . n/ 2\n __ . n_.2n
S~ D) =
and -
T
— —1)" 2n+1
1+ 22 nz_%( )
Another method: It can be seen that
T 1
e §(ln(1+x))
Since we know that .
In(1+2) = (=1 =,
n=1
then
0 2n
In(1 + 2?) = Z(—mﬂ%.
n=1

Then, if we calculate the derivative:

1 1 [ R /_
5 (In(1 +2?)) = 3 (Z(_l) + 7) —

n=1

Since the series is uniformly convergent, then the order of the differentiation and the sum
can be changed:

:_Z< on )lzég( 1) 2n et :i )it
13. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!
14
f(a:):ln< 1_i>.
Solution:

ln< T_ri) :ln<<1i—§)l/2> :%IHGJ—FZ) :%(ln(l—l—x)—ln(l—x)):

-3 (Z(—D”“%n DI “jj’") -

n=1 n=1

here we use that (—1)""(—1)" = —1:

1 [ T o= 2" 1 & A A
=5 (ZHW TR O P B
n=1 n=1 n=1
when n is even, then (—1)"*! = —1, so in this case these terms vanish, meaning that we

only have to care about the case when n is odd, i.e. n =2k + 1.

1 > 2k+1 2k+1

IRt

k=1 k=1

The interval of convergence is |z| < 1.



14. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!
f(z) = arccos(x).

Solution: The main idea of this exercise is the fact that
/ (arccos(t))'dt = arccos(z) — arccos(0) = arccos(z) — g
0

Then,

x x -1 x
arccos(x) = g +/0 (arccos(t))'dt = g —I—/O mdt = g — /0 (1—12)"Y2dt =

Now we use the Taylor series of the function (1 — ¢2)~%/2:

- [ (0 er)a-

n=0

Since the series is uniformly convergent, wwe can change the order of the integration and

the sum:
B (ered) -5 E (o (o) -

n= n=0 n
00 1 on+1 1 o0 1 2n+1
_T_ T2 ) (1) t _T T2\t
O B [ B B () [

The interval of convergence is |z| < 1.

15. Calculate the following integral by using the Taylor series of the function!

/ sin(?) gt
0 t

Solution:

? sin(t) Sl I T & I
/0 t dt:/o ?(;;(_1) (2n+1)!> dt:/O (Z(_l) (2n—|—1)!> it =

n=0

Since the series is uniformly convergent, we can change the order of the integral and the

0
> 1 t2n+1 z & (_1)n x2n+1
= —1)"
(=1) (2n +1)! {Qn—l—l} 2n+1)!12n+1

n=0

0 n=0
The interval of convergence is R.

16. Give the Taylor series of the following function around zy = 1.

f(x) =e€".
Solution: The goal here is to have a power series in the form Z a,(x — 1)". For this, we
n=0

would need to have the expression (z — 1) in our function.

The interval of convergence is R.



17.

18.

19.

Give the Taylor series of the following function around xy = 1.

f(@) = In(a).
Solution: The goal here is to have a power series in the form Z a,(x — 1)". For this, we
n=0
would need to have the expression (z — 1) in our function.
In(z) = In((z — 1) + 1) = i(—nnﬂu
n=1 n

The interval of convergence is |z — 1| < 1.

Give the Taylor series of the following function around zy = ¢ (where ¢ # —1).

1
fla) =
Solution: The goal here is to have a power series in the form Zan(:c —¢)". For this, we
n=0
would need to have the expression (z — ¢) in our function.
1 1 1 1 1 1 «— (T —c\"
— - — - Z(_1) —

14z 1+(@x—c)+c (1+4c¢)+(x c) 1+cl+ 175 1+cn:0 1+c¢

= n ‘T — C)

Z n+1
The interval of convergence is those points for which ’x —_i— ¢ < 1.

c

Application: approximation of a hard integral

Approximate the following integral by using the Taylor series of the function:

1
/ sin(z?)dz.
0

How many terms should we add up in the series that our error is smaller than 5 - 10747

1 1 [/ n(,.2\2n+1
. (=D (=%)
sin(z”)dr = — | dx =
[ st = [ (£ S0,
Since the series converges uniformly, the order of the integral and the sum can be changed:

n=

> gttt & (=1)" & . 1
Z 2n—|—1 {4n+3k_n2:0(2n+1)!(4n+3) _;(_1) (2n + 1)!(4n + 3)

=0

Solution:

This can be proved to be a Leibniz series, so it converges.
The error after the addition of N-many elements is

1 B 1
2(N+1)+DI4(N +1)+3) (2N +3)I(AN +7)

If N = 1, then the above value is ~ 7.57 - 107%, but for N = 2 it is 1.32 - 107%, so it is
smaller than the desired error. This means that we have to calculate the following sum for
the integral:

len| < lann| =

/ls' (z%)d 22:( )" : O S
mix Tr =~ — = - —
0 - (2n+)!4n+3) 3 317 511
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