
Math G2 Practice 7

Function series, Power series, Taylor series

1 Function series

A series of a functions is de�nes as the in�nite sum

∞∑
k=0

fk(x) = f0(x) + f1(x) + f2(x) + . . .

The interval of convergence is the interval of those points for which the above series is a
convergent one.

1. Determine the interval of convergence of the following series, and calculate the sum in these
points!

∞∑
n=0

(ln(x))n.

Solution: For a �xed value of x, this is a geometric series with q = ln(x), so it is convergent

if |q| = | ln(x)| < 1, meaning that
1

e
≤ x ≤ e.

The sum at these points can be given by the usual formula for the sum of a geometric series:

1

1− q
=

1

1− ln(x)
.

2. Determine the interval of convergence of the following series! Where is it absolutely conver-
gent?

∞∑
n=0

(1− x)xn

n
.

Solution: For the absolute convergence we have to observe the series

∞∑
n=0

|1− x||x|n

n
.

By the root criterion,

lim
n→∞

n

√
|1− x||x|n

n
= lim

n→∞
|x|

n
√
|1− x|
n
√
n

.

This tends to |x| if x ̸= 1 and to 0 if x = 1, meaning that it is absolutely convergent when
|x| < 1 (since the limit should be smaller than one).

Let us observe the endpoints of the interval (−1, 1): for x = 1, we get an all-zero sum, so it
is absolutely convergent there. For x = −1, the series is

∞∑
n=0

2(−1)n

n
,

which is not absolutely convergent but it is convergent. Consequently, the series is absolutely
convergent for x ∈ (−1, 1] and it is convergent for [−1, 1].

3. Determine the interval of convergence of the following series! Where is it uniformly conver-
gent?

∞∑
n=0

cos(nx)

n2 + x2
.
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Solution: By the Theorem of Weierstrass, if we an �nd such a sequence that after some
time |f(x)| ≤ an for all values of x, and

∑∞
n=0 an is convergent, then the series

∑∞
n=0 f(x) is

uniformly and absolutely convergent.

In this case we have ∣∣∣∣cos(nx)n2 + x2

∣∣∣∣ ≤ | cos(nx)|
n2 + x2

≤ 1

n2 + x2
≤ 1

n2
.

Then, since
∑∞

n=1

1

n2
is convergent, the original series is also uniformly and absolutely con-

vergent.

2 Power series

Power series are special function series in the form

∞∑
n=0

an(x− x0)
n.

Here an are real numbers (they are the coe�cients) and x0 is a given value, usually referred to as
the center of the convergence.

The name of the latter one comes from the fact that the interval of convergence for a power
series is always in the form (x0 −R, x0 +R), where R is a non-negative real value, but it can also
be in�nity. If R = 0, then the series is convergent only for x = x0, and if R = ∞ then the series
is convergent for all values of x ∈ R.

It is worth note mentioning that the endpoints x0 −R and x0 +R might be inside the interval
of convergence, or they might be not, it depends on the given example, so these two points should
always be examined separately.

The value of R can be calculated by two di�erent methods:

� Root criterion: Let us consider the limit α = lim sup
n→∞

n
√

|an|. Then, if α is a non-zero �nite

value, the R =
1

α
. If α = 0, then R = ∞, and if α = ∞, then R = 0.

� Ratio criterion: Let us consider the limit α = lim
n→∞

|an+1|
|an|

. Then, if α is a non-zero �nite

value, the R =
1

α
. If α = 0, then R = ∞, and if α = ∞, then R = 0.

4. Let us determine the interval of convergence of the following power series!

∞∑
n=1

(x− 2)n

n2

Solution: The series can be rewritten as

∞∑
n=1

1

n2
(x− 2)2,

which means that here an =
1

n2
and x0 = 2. We can use both of the criteria in this case:

� Root criterion: α = lim sup
n→∞

n
√

|an| = lim sup
n→∞

n

√
1

n2
= lim sup

n→∞

(
1
n
√
n

)2

= 1, so R =
1

1
=

1.

� Ration criterion: α = lim
n→∞

|an+1|
|an|

= lim
n→∞

1
(n+1)2

1
n2

= lim
n→∞

n2

(n+ 1)2
= lim

n→∞

n2

n2 + 2n+ 1
=

lim
n→∞

1

1 + 2
n
+ 1

n2

= 1, meaning that R =
1

1
= 1.

Then, the interval of convergence is (2− 1, 2 + 1) = (1, 3).

We should observe the endpoints x1 = 1 and x2 = 3 separately.
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� If x = 1, then the series has the form

∞∑
n=1

(−1)n

n2
,

which can be proved to be a Leibniz series, so it is convergent.

� If x = 1, then the series has the form

∞∑
n=1

1

n2
,

which is convergent.

Then, the interval of convergence is [1, 3].

5. Let us determine the interval of convergence of the following power series!

∞∑
n=1

(−1)n
xn

√
n
.

Solution: The series can be rewritten as

∞∑
n=1

(−1)n√
n

(x− 0)2,

which means that here an =
(−1)n√

n
and x0 = 0. We are going to use the ratio criterion in

this case:

α = lim
n→∞

|an+1|
|an|

= lim
n→∞

1√
n+1
1√
n

= lim
n→∞

√
n

n+ 1
= lim

n→∞

√
1

1 + 1
n

= 1,

meaning that R =
1

1
= 1.

Then, the interval of convergence is (0− 1, 0 + 1) = (−1, 1).

We should observe the endpoints x1 = −1 and x2 = 1 separately.

� If x = −1, then the series has the form

∞∑
n=1

(−1)n
(−1)n√

n
=

∞∑
n=1

1√
n
,

which is a divergent series (see Exercise 10. from the previous exercise sheet).

� If x = 1, then the series has the form

∞∑
n=1

(−1)n√
n

,

which is a Leibniz series so it is convergent.

Then, the interval of convergence is (−1, 1].
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3 Taylor series

Taylor series are special power series in the form

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n,

where f (n)(x0) denotes the nth derivative of function f evaluated at point x0.
In the following exercises, we will not use this formula, but we are going to use the Taylor

series of some well-known functions around x0 = 0 (here n! = n · (n− 1) · . . . · 3 · 2 · 1).

� sin(x) =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− . . . , interval of convergence: R.

� sinh(x) =
∞∑
n=0

x2n+1

(2n+ 1)!
= x+

x3

3!
+

x5

5!
+

x7

7!
+

x9

9!
+ . . . , interval of convergence: R.

� cos(x) =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− . . . , interval of convergence: R.

� cosh(x) =
∞∑
n=0

x2n

(2n)!
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+

x8

8!
+ . . . , interval of convergence: R.

� ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ . . . , interval of convergence: R.

�

1

1 + x
=

∞∑
n=0

(−1)nxn = 1− x+ x2 − x3 + x4 − x5 + . . . , interval of convergence: |x| < 1.

�

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + x5 + . . . , interval of convergence: |x| < 1.

� If n is not a positive integer, then

(1 + x)n =
∞∑
k=0

(
n

k

)
xk =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 +

(
n

3

)
x3 +

(
n

4

)
x4 +

(
n

5

)
x5 + . . . ,

interval of convergence: |x| < 1. Here

(
n

k

)
=

n · (n− 1) · · · · · (n− k + 1)

k!
, so the numerator

has k-many elements.

� ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
= x− x2

2
+

x3

3
− x4

4
+

x5

5
− . . . , interval of convergence: |x| < 1.

6. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(x) = sin(x) cos(x).

Solution:

f(x) = sin(x) cos(x) =
1

2
sin(2x) =

where we used that sin(2x) = 2 sin(x) cos(x).

=
1

2

∞∑
n=0

(−1)n
(2x)2n+1

(2n+ 1)!
=

1

2

∞∑
n=0

(−1)n
22n+1

(2n+ 1)!
x2n+1.

The interval of convergence is x ∈ R.
Alternatively, one can also calculate the derivatives of the function sin(x) cos(x) at x = 0
and then use the de�nition.
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7. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(x) = sin2(x).

Solution:

f(x) = sin2(x) =
1− cos(2x)

2
=

where we used the facts cos(2x) = cos2(x)− sin2(x) and sin2(x) + cos2(x) = 1.

=
1

2
− 1

2
cos(2x) =

1

2
− 1

2

∞∑
n=0

(−1)n
(2x)2n

(2n)!
=

1

2
+

∞∑
n=0

(−1)n+12
2n−1

(2n)!
x2n =

∞∑
n=1

(−1)n+12
2n−1

(2n)!
x2n,

where we used the fact that the n = 0 term of the right sum was −1

2
, so it makes the other

1

2
vanish. The interval of convergence is x ∈ R.

Alternatively, one can also calculate the derivatives of the function sin2(x) at x = 0 and then
use the de�nition.

8. Determine the Taylor series of the following function and the corresponding interval of con-
vergence! Here a ∈ R+.

f(x) = ax.

Solution:

ax = eln(a
x) = ex ln(a) =

∞∑
n=0

(x ln(a))n

n!
=

∞∑
n=0

(ln(a))n

n!
xn.

The interval of convergence is x ∈ R.

9. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(x) = (1 + x)3.

Solution: Since
(1 + x)3 = 1 + 3x+ 3x2 + x3,

we do not even have to use the previous formulas, since this can be thought of as a (�nite)
Taylor series with a0 = a3 = 1, a1 = a2 = 3 and an = 0 for n > 3. This of course holds for
any x ∈ R. so the interval of convergence is R.

10. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(x) = (1 + x)−3.

Solution: Since the power is not a positive integer, we can use the previous formula:

(1 + x)−3 =
∞∑
n=0

(
−3

n

)
xn.

The interval of convergence is |x| < 1.

11. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(x) = (1 + x)−1/3.

Solution: Since the power is not a positive integer, we can use the previous formula:

(1 + x)−1/3 =
∞∑
n=0

(
−1

3

n

)
xn.

The interval of convergence is |x| < 1.
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12. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(x) =
x

1 + x2
.

Solution: We know that
1

1 + x
=

∞∑
n=0

(−1)nxn,

then
1

1 + x2
=

∞∑
n=0

(−1)n(x2)n =
∞∑
n=0

(−1)nx2n,

and
x

1 + x2
=

∞∑
n=0

(−1)nx2n+1.

Another method: It can be seen that

x

1 + x2
=

1

2

(
ln(1 + x2)

)′
.

Since we know that

ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
,

then

ln(1 + x2) =
∞∑
n=1

(−1)n+1x
2n

n
.

Then, if we calculate the derivative:

1

2

(
ln(1 + x2)

)′
=

1

2

(
∞∑
n=1

(−1)n+1x
2n

n

)′

=

Since the series is uniformly convergent, then the order of the di�erentiation and the sum
can be changed:

=
1

2

∞∑
n=1

(
(−1)n+1x

2n

n

)′

=
1

2

∞∑
n=1

(−1)n+1(2n)
x2n−1

n
=

∞∑
n=1

(−1)n+1x2n−1.

13. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(x) = ln

(√
1 + x

1− x

)
.

Solution:

ln

(√
1 + x

1− x

)
= ln

((
1 + x

1− x

)1/2
)

=
1

2
ln

(
1 + x

1− x

)
=

1

2
(ln(1 + x)− ln(1− x)) =

=
1

2

(
∞∑
n=1

(−1)n+1x
n

n
−

∞∑
n=1

(−1)n+1 (−x)n

n

)
=

here we use that (−1)n+1(−1)n = −1:

=
1

2

(
∞∑
n=1

(−1)n+1x
n

n
+

∞∑
n=1

xn

n

)
=

1

2

∞∑
n=1

(−1)n+1x
n

n
+

xn

n
=

when n is even, then (−1)n+1 = −1, so in this case these terms vanish, meaning that we
only have to care about the case when n is odd, i.e. n = 2k + 1.

=
1

2

∞∑
k=1

2
x2k+1

n
=

∞∑
k=1

x2k+1

n
.

The interval of convergence is |x| < 1.
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14. Determine the Taylor series of the following function and the corresponding interval of con-
vergence!

f(x) = arccos(x).

Solution: The main idea of this exercise is the fact that∫ x

0

(arccos(t))′dt = arccos(x)− arccos(0) = arccos(x)− π

2
.

Then,

arccos(x) =
π

2
+

∫ x

0

(arccos(t))′dt =
π

2
+

∫ x

0

−1√
1− t2

dt =
π

2
−
∫ x

0

(1− t2)−1/2dt =

Now we use the Taylor series of the function (1− t2)−1/2:

=
π

2
−
∫ x

0

(
∞∑
n=0

(
−1

2

n

)
(−t2)n

)
dt =

Since the series is uniformly convergent, wwe can change the order of the integration and
the sum:

=
π

2
−

∞∑
n=0

(∫ x

0

(
−1

2

n

)
(−1)nt2ndt

)
=

π

2
−

∞∑
n=0

(
−1

2

n

)
(−1)n

(∫ x

0

t2ndt

)
=

=
π

2
−

∞∑
n=0

(
−1

2

n

)
(−1)n

[
t2n+1

2n+ 1

]x
0

=
π

2
+

∞∑
n=0

(
−1

2

n

)
(−1)n+1 x2n+1

2n+ 1

The interval of convergence is |x| < 1.

15. Calculate the following integral by using the Taylor series of the function!∫ x

0

sin(t)

t
dt.

Solution:∫ x

0

sin(t)

t
dt =

∫ x

0

1

t

(
∞∑
n=0

(−1)n
t2n+1

(2n+ 1)!

)
dt =

∫ x

0

(
∞∑
n=0

(−1)n
t2n

(2n+ 1)!

)
dt =

Since the series is uniformly convergent, we can change the order of the integral and the
sum:

=
∞∑
n=0

(∫ x

0

(−1)n
t2n

(2n+ 1)!
dt

)
=

∞∑
n=0

(−1)n
1

(2n+ 1)!

(∫ x

0

t2ndt

)
=

=
∞∑
n=0

(−1)n
1

(2n+ 1)!

[
t2n+1

2n+ 1

]x
0

=
∞∑
n=0

(−1)n

(2n+ 1)!

x2n+1

2n+ 1

The interval of convergence is R.

16. Give the Taylor series of the following function around x0 = 1.

f(x) = ex.

Solution: The goal here is to have a power series in the form
∞∑
n=0

an(x − 1)n. For this, we

would need to have the expression (x− 1) in our function.

ex = e(x−1)+1 = e · ex−1 = e
∞∑
n=0

(x− 1)n

n!
=

∞∑
n=0

e

n!
(x− 1)n.

The interval of convergence is R.
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17. Give the Taylor series of the following function around x0 = 1.

f(x) = ln(x).

Solution: The goal here is to have a power series in the form
∞∑
n=0

an(x − 1)n. For this, we

would need to have the expression (x− 1) in our function.

ln(x) = ln((x− 1) + 1) =
∞∑
n=1

(−1)n+1 (x− 1)n

n

The interval of convergence is |x− 1| < 1.

18. Give the Taylor series of the following function around x0 = c (where c ̸= −1).

f(x) =
1

1 + x
.

Solution: The goal here is to have a power series in the form
∞∑
n=0

an(x − c)n. For this, we

would need to have the expression (x− c) in our function.

1

1 + x
=

1

1 + (x− c) + c
=

1

(1 + c) + (x− c)
=

1

1 + c

1

1 + x−c
1+c

=
1

1 + c

∞∑
n=0

(−1)n
(
x− c

1 + c

)n

=

=
∞∑
n=0

(−1)n
(x− c)n

(1 + c)n+1

The interval of convergence is those points for which

∣∣∣∣x− c

1 + c

∣∣∣∣ < 1.

4 Application: approximation of a hard integral

19. Approximate the following integral by using the Taylor series of the function:∫ 1

0

sin(x2)dx.

How many terms should we add up in the series that our error is smaller than 5 · 10−4?

Solution: ∫ 1

0

sin(x2)dx =

∫ 1

0

(
∞∑
n=0

(−1)n(x2)2n+1

(2n+ 1)!

)
dx =

Since the series converges uniformly, the order of the integral and the sum can be changed:

=
∞∑
n=0

(∫ 1

0

(−1)n(x2)2n+1

(2n+ 1)!
dx

)
=

∞∑
n=0

(−1)n

(2n+ 1)!

(∫ 1

0

x4n+2dx

)
=

=
∞∑
n=0

(−1)n

(2n+ 1)!

[
x4n+3

4n+ 3

]1
0

=
∞∑
n=0

(−1)n

(2n+ 1)!(4n+ 3)
=

∞∑
n=0

(−1)n
1

(2n+ 1)!(4n+ 3)

This can be proved to be a Leibniz series, so it converges.

The error after the addition of N -many elements is

|eN | < |aN+1| =
1

(2(N + 1) + 1)!(4(N + 1) + 3)
=

1

(2N + 3)!(4N + 7)

If N = 1, then the above value is ≈ 7.57 · 10−4, but for N = 2 it is 1.32 · 10−5, so it is
smaller than the desired error. This means that we have to calculate the following sum for
the integral: ∫ 1

0

sin(x2)dx ≈
2∑
0

(−1)n
1

(2n+ 1)!(4n+ 3)
=

1

3
− 1

3! · 7
+

1

5! · 11
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