Math G2 Practice 7

Function series, Power series, Taylor series

1 Function series

A series of a functions is defines as the infinite sum

$$
\sum_{k=0}^{\infty} f_{k}(x)=f_{0}(x)+f_{1}(x)+f_{2}(x)+\ldots
$$

The interval of convergence is the interval of those points for which the above series is a convergent one.

1. Determine the interval of convergence of the following series, and calculate the sum in these points!

$$
\sum_{n=0}^{\infty}(\ln (x))^{n}
$$

Solution: For a fixed value of x, this is a geometric series with $q=\ln (x)$, so it is convergent if $|q|=|\ln (x)|<1$, meaning that $\frac{1}{e} \leq x \leq e$.
The sum at these points can be given by the usual formula for the sum of a geometric series:

$$
\frac{1}{1-q}=\frac{1}{1-\ln (x)}
$$

2. Determine the interval of convergence of the following series! Where is it absolutely convergent?

$$
\sum_{n=0}^{\infty} \frac{(1-x) x^{n}}{n}
$$

Solution: For the absolute convergence we have to observe the series

$$
\sum_{n=0}^{\infty} \frac{|1-x||x|^{n}}{n}
$$

By the root criterion,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{|1-x||x|^{n}}{n}}=\lim _{n \rightarrow \infty}|x| \frac{\sqrt[n]{|1-x|}}{\sqrt[n]{n}}
$$

This tends to $|x|$ if $x \neq 1$ and to 0 if $x=1$, meaning that it is absolutely convergent when $|x|<1$ (since the limit should be smaller than one).
Let us observe the endpoints of the interval $(-1,1)$: for $x=1$, we get an all-zero sum, so it is absolutely convergent there. For $x=-1$, the series is

$$
\sum_{n=0}^{\infty} \frac{2(-1)^{n}}{n}
$$

which is not absolutely convergent but it is convergent. Consequently, the series is absolutely convergent for $x \in(-1,1]$ and it is convergent for $[-1,1]$.
3. Determine the interval of convergence of the following series! Where is it uniformly convergent?

$$
\sum_{n=0}^{\infty} \frac{\cos (n x)}{n^{2}+x^{2}}
$$

Solution: By the Theorem of Weierstrass, if we an find such a sequence that after some time $|f(x)| \leq a_{n}$ for all values of x, and $\sum_{n=0}^{\infty} a_{n}$ is convergent, then the series $\sum_{n=0}^{\infty} f(x)$ is uniformly and absolutely convergent.
In this case we have

$$
\left|\frac{\cos (n x)}{n^{2}+x^{2}}\right| \leq \frac{|\cos (n x)|}{n^{2}+x^{2}} \leq \frac{1}{n^{2}+x^{2}} \leq \frac{1}{n^{2}}
$$

Then, since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent, the original series is also uniformly and absolutely convergent.

2 Power series

Power series are special function series in the form

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Here a_{n} are real numbers (they are the coefficients) and x_{0} is a given value, usually referred to as the center of the convergence.

The name of the latter one comes from the fact that the interval of convergence for a power series is always in the form $\left(x_{0}-R, x_{0}+R\right)$, where R is a non-negative real value, but it can also be infinity. If $R=0$, then the series is convergent only for $x=x_{0}$, and if $R=\infty$ then the series is convergent for all values of $x \in \mathbb{R}$.

It is worth note mentioning that the endpoints $x_{0}-R$ and $x_{0}+R$ might be inside the interval of convergence, or they might be not, it depends on the given example, so these two points should always be examined separately.

The value of R can be calculated by two different methods:

- Root criterion: Let us consider the limit $\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$. Then, if α is a non-zero finite value, the $R=\frac{1}{\alpha}$. If $\alpha=0$, then $R=\infty$, and if $\alpha=\infty$, then $R=0$.
- Ratio criterion: Let us consider the limit $\alpha=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$. Then, if α is a non-zero finite value, the $R=\frac{1}{\alpha}$. If $\alpha=0$, then $R=\infty$, and if $\alpha=\infty$, then $R=0$.

4. Let us determine the interval of convergence of the following power series!

$$
\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{2}}
$$

Solution: The series can be rewritten as

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}(x-2)^{2}
$$

which means that here $a_{n}=\frac{1}{n^{2}}$ and $x_{0}=2$. We can use both of the criteria in this case:

- Root criterion: $\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\limsup _{n \rightarrow \infty} \sqrt[n]{\frac{1}{n^{2}}}=\limsup _{n \rightarrow \infty}\left(\frac{1}{\sqrt[n]{n}}\right)^{2}=1$, so $R=\frac{1}{1}=$ 1.
- Ration criterion: $\alpha=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2 n+1}=$ $\lim _{n \rightarrow \infty} \frac{1}{1+\frac{2}{n}+\frac{1}{n^{2}}}=1$, meaning that $R=\frac{1}{1}=1$.

Then, the interval of convergence is $(2-1,2+1)=(1,3)$.
We should observe the endpoints $x_{1}=1$ and $x_{2}=3$ separately.

- If $x=1$, then the series has the form

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

which can be proved to be a Leibniz series, so it is convergent.

- If $x=1$, then the series has the form

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

which is convergent.
Then, the interval of convergence is $[1,3]$.
5. Let us determine the interval of convergence of the following power series!

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{\sqrt{n}}
$$

Solution: The series can be rewritten as

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}(x-0)^{2}
$$

which means that here $a_{n}=\frac{(-1)^{n}}{\sqrt{n}}$ and $x_{0}=0$. We are going to use the ratio criterion in this case:

$$
\alpha=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n+1}}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \sqrt{\frac{n}{n+1}}=\lim _{n \rightarrow \infty} \sqrt{\frac{1}{1+\frac{1}{n}}}=1
$$

meaning that $R=\frac{1}{1}=1$.
Then, the interval of convergence is $(0-1,0+1)=(-1,1)$.
We should observe the endpoints $x_{1}=-1$ and $x_{2}=1$ separately.

- If $x=-1$, then the series has the form

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{(-1)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

which is a divergent series (see Exercise 10. from the previous exercise sheet).

- If $x=1$, then the series has the form

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

which is a Leibniz series so it is convergent.
Then, the interval of convergence is $(-1,1]$.

3 Taylor series

Taylor series are special power series in the form

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n},
$$

where $f^{(n)}\left(x_{0}\right)$ denotes the nth derivative of function f evaluated at point x_{0}.
In the following exercises, we will not use this formula, but we are going to use the Taylor series of some well-known functions around $x_{0}=0$ (here $n!=n \cdot(n-1) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$).

- $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots$, interval of convergence: \mathbb{R}.
- $\sinh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\frac{x^{9}}{9!}+\ldots$, interval of convergence: \mathbb{R}.
- $\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots$, interval of convergence: \mathbb{R}.
- $\cosh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\frac{x^{8}}{8!}+\ldots$, interval of convergence: \mathbb{R}.
- $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\ldots$, interval of convergence: \mathbb{R}.
- $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\ldots$, interval of convergence: $|x|<1$.
- $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots$, interval of convergence: $|x|<1$.
- If n is not a positive integer, then

$$
(1+x)^{n}=\sum_{k=0}^{\infty}\binom{n}{k} x^{k}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\binom{n}{4} x^{4}+\binom{n}{5} x^{5}+\ldots,
$$

interval of convergence: $|x|<1$. Here $\binom{n}{k}=\frac{n \cdot(n-1) \cdots \cdots(n-k+1)}{k!}$, so the numerator has k-many elements.

- $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots$, interval of convergence: $|x|<1$.

6. Determine the Taylor series of the following function and the corresponding interval of convergence!

$$
f(x)=\sin (x) \cos (x)
$$

Solution:

$$
f(x)=\sin (x) \cos (x)=\frac{1}{2} \sin (2 x)=
$$

where we used that $\sin (2 x)=2 \sin (x) \cos (x)$.

$$
=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n+1}}{(2 n+1)!}=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1}}{(2 n+1)!} x^{2 n+1} .
$$

The interval of convergence is $x \in \mathbb{R}$.
Alternatively, one can also calculate the derivatives of the function $\sin (x) \cos (x)$ at $x=0$ and then use the definition.
7. Determine the Taylor series of the following function and the corresponding interval of convergence!

$$
f(x)=\sin ^{2}(x)
$$

Solution:

$$
f(x)=\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}=
$$

where we used the facts $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$ and $\sin ^{2}(x)+\cos ^{2}(x)=1$.
$=\frac{1}{2}-\frac{1}{2} \cos (2 x)=\frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n}}{(2 n)!}=\frac{1}{2}+\sum_{n=0}^{\infty}(-1)^{n+1} \frac{2^{2 n-1}}{(2 n)!} x^{2 n}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{2 n-1}}{(2 n)!} x^{2 n}$,
where we used the fact that the $n=0$ term of the right sum was $-\frac{1}{2}$, so it makes the other $\frac{1}{2}$ vanish. The interval of convergence is $x \in \mathbb{R}$.
Alternatively, one can also calculate the derivatives of the function $\sin ^{2}(x)$ at $x=0$ and then use the definition.
8. Determine the Taylor series of the following function and the corresponding interval of convergence! Here $a \in \mathbb{R}^{+}$.

$$
f(x)=a^{x} .
$$

Solution:

$$
a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)}=\sum_{n=0}^{\infty} \frac{(x \ln (a))^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(\ln (a))^{n}}{n!} x^{n}
$$

The interval of convergence is $x \in \mathbb{R}$.
9. Determine the Taylor series of the following function and the corresponding interval of convergence!

$$
f(x)=(1+x)^{3}
$$

Solution: Since

$$
(1+x)^{3}=1+3 x+3 x^{2}+x^{3}
$$

we do not even have to use the previous formulas, since this can be thought of as a (finite) Taylor series with $a_{0}=a_{3}=1, a_{1}=a_{2}=3$ and $a_{n}=0$ for $n>3$. This of course holds for any $x \in \mathbb{R}$. so the interval of convergence is \mathbb{R}.
10. Determine the Taylor series of the following function and the corresponding interval of convergence!

$$
f(x)=(1+x)^{-3}
$$

Solution: Since the power is not a positive integer, we can use the previous formula:

$$
(1+x)^{-3}=\sum_{n=0}^{\infty}\binom{-3}{n} x^{n}
$$

The interval of convergence is $|x|<1$.
11. Determine the Taylor series of the following function and the corresponding interval of convergence!

$$
f(x)=(1+x)^{-1 / 3}
$$

Solution: Since the power is not a positive integer, we can use the previous formula:

$$
(1+x)^{-1 / 3}=\sum_{n=0}^{\infty}\binom{-\frac{1}{3}}{n} x^{n}
$$

The interval of convergence is $|x|<1$.
12. Determine the Taylor series of the following function and the corresponding interval of convergence!

$$
f(x)=\frac{x}{1+x^{2}}
$$

Solution: We know that

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

then

$$
\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n}\left(x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

and

$$
\frac{x}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n+1}
$$

Another method: It can be seen that

$$
\frac{x}{1+x^{2}}=\frac{1}{2}\left(\ln \left(1+x^{2}\right)\right)^{\prime}
$$

Since we know that

$$
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
$$

then

$$
\ln \left(1+x^{2}\right)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{2 n}}{n}
$$

Then, if we calculate the derivative:

$$
\frac{1}{2}\left(\ln \left(1+x^{2}\right)\right)^{\prime}=\frac{1}{2}\left(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{2 n}}{n}\right)^{\prime}=
$$

Since the series is uniformly convergent, then the order of the differentiation and the sum can be changed:

$$
=\frac{1}{2} \sum_{n=1}^{\infty}\left((-1)^{n+1} \frac{x^{2 n}}{n}\right)^{\prime}=\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n+1}(2 n) \frac{x^{2 n-1}}{n}=\sum_{n=1}^{\infty}(-1)^{n+1} x^{2 n-1}
$$

13. Determine the Taylor series of the following function and the corresponding interval of convergence!

$$
f(x)=\ln \left(\sqrt{\frac{1+x}{1-x}}\right)
$$

Solution:

$$
\begin{aligned}
\ln \left(\sqrt{\frac{1+x}{1-x}}\right)= & \ln \left(\left(\frac{1+x}{1-x}\right)^{1 / 2}\right)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)=\frac{1}{2}(\ln (1+x)-\ln (1-x))= \\
& =\frac{1}{2}\left(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}-\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(-x)^{n}}{n}\right)=
\end{aligned}
$$

here we use that $(-1)^{n+1}(-1)^{n}=-1$:

$$
=\frac{1}{2}\left(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}+\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right)=\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}+\frac{x^{n}}{n}=
$$

when n is even, then $(-1)^{n+1}=-1$, so in this case these terms vanish, meaning that we only have to care about the case when n is odd, i.e. $n=2 k+1$.

$$
=\frac{1}{2} \sum_{k=1}^{\infty} 2 \frac{x^{2 k+1}}{n}=\sum_{k=1}^{\infty} \frac{x^{2 k+1}}{n}
$$

The interval of convergence is $|x|<1$.
14. Determine the Taylor series of the following function and the corresponding interval of convergence!

$$
f(x)=\arccos (x)
$$

Solution: The main idea of this exercise is the fact that

$$
\int_{0}^{x}(\arccos (t))^{\prime} d t=\arccos (x)-\arccos (0)=\arccos (x)-\frac{\pi}{2}
$$

Then,

$$
\arccos (x)=\frac{\pi}{2}+\int_{0}^{x}(\arccos (t))^{\prime} d t=\frac{\pi}{2}+\int_{0}^{x} \frac{-1}{\sqrt{1-t^{2}}} d t=\frac{\pi}{2}-\int_{0}^{x}\left(1-t^{2}\right)^{-1 / 2} d t=
$$

Now we use the Taylor series of the function $\left(1-t^{2}\right)^{-1 / 2}$:

$$
=\frac{\pi}{2}-\int_{0}^{x}\left(\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(-t^{2}\right)^{n}\right) d t=
$$

Since the series is uniformly convergent, wwe can change the order of the integration and the sum:

$$
\begin{gathered}
=\frac{\pi}{2}-\sum_{n=0}^{\infty}\left(\int_{0}^{x}\binom{-\frac{1}{2}}{n}(-1)^{n} t^{2 n} d t\right)=\frac{\pi}{2}-\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}(-1)^{n}\left(\int_{0}^{x} t^{2 n} d t\right)= \\
=\frac{\pi}{2}-\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}(-1)^{n}\left[\frac{t^{2 n+1}}{2 n+1}\right]_{0}^{x}=\frac{\pi}{2}+\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}(-1)^{n+1} \frac{x^{2 n+1}}{2 n+1}
\end{gathered}
$$

The interval of convergence is $|x|<1$.
15. Calculate the following integral by using the Taylor series of the function!

$$
\int_{0}^{x} \frac{\sin (t)}{t} d t
$$

Solution:

$$
\int_{0}^{x} \frac{\sin (t)}{t} d t=\int_{0}^{x} \frac{1}{t}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n+1}}{(2 n+1)!}\right) d t=\int_{0}^{x}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{(2 n+1)!}\right) d t=
$$

Since the series is uniformly convergent, we can change the order of the integral and the sum:

$$
\begin{gathered}
=\sum_{n=0}^{\infty}\left(\int_{0}^{x}(-1)^{n} \frac{t^{2 n}}{(2 n+1)!} d t\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!}\left(\int_{0}^{x} t^{2 n} d t\right)= \\
=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!}\left[\frac{t^{2 n+1}}{2 n+1}\right]_{0}^{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \frac{x^{2 n+1}}{2 n+1}
\end{gathered}
$$

The interval of convergence is \mathbb{R}.
16. Give the Taylor series of the following function around $x_{0}=1$.

$$
f(x)=e^{x}
$$

Solution: The goal here is to have a power series in the form $\sum_{n=0}^{\infty} a_{n}(x-1)^{n}$. For this, we would need to have the expression $(x-1)$ in our function.

$$
e^{x}=e^{(x-1)+1}=e \cdot e^{x-1}=e \sum_{n=0}^{\infty} \frac{(x-1)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{e}{n!}(x-1)^{n} .
$$

The interval of convergence is \mathbb{R}.
17. Give the Taylor series of the following function around $x_{0}=1$.

$$
f(x)=\ln (x) .
$$

Solution: The goal here is to have a power series in the form $\sum_{n=0}^{\infty} a_{n}(x-1)^{n}$. For this, we would need to have the expression $(x-1)$ in our function.

$$
\ln (x)=\ln ((x-1)+1)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-1)^{n}}{n}
$$

The interval of convergence is $|x-1|<1$.
18. Give the Taylor series of the following function around $x_{0}=c$ (where $c \neq-1$).

$$
f(x)=\frac{1}{1+x}
$$

Solution: The goal here is to have a power series in the form $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$. For this, we would need to have the expression $(x-c)$ in our function.
$\frac{1}{1+x}=\frac{1}{1+(x-c)+c}=\frac{1}{(1+c)+(x-c)}=\frac{1}{1+c} \frac{1}{1+\frac{x-c}{1+c}}=\frac{1}{1+c} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x-c}{1+c}\right)^{n}=$

$$
=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-c)^{n}}{(1+c)^{n+1}}
$$

The interval of convergence is those points for which $\left|\frac{x-c}{1+c}\right|<1$.

4 Application: approximation of a hard integral

19. Approximate the following integral by using the Taylor series of the function:

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x
$$

How many terms should we add up in the series that our error is smaller than $5 \cdot 10^{-4}$?
Solution:

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x=\int_{0}^{1}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n+1}}{(2 n+1)!}\right) d x=
$$

Since the series converges uniformly, the order of the integral and the sum can be changed:

$$
\begin{gathered}
=\sum_{n=0}^{\infty}\left(\int_{0}^{1} \frac{(-1)^{n}\left(x^{2}\right)^{2 n+1}}{(2 n+1)!} d x\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\int_{0}^{1} x^{4 n+2} d x\right)= \\
=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left[\frac{x^{4 n+3}}{4 n+3}\right]_{0}^{1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!(4 n+3)}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!(4 n+3)}
\end{gathered}
$$

This can be proved to be a Leibniz series, so it converges.
The error after the addition of N-many elements is

$$
\left|e_{N}\right|<\left|a_{N+1}\right|=\frac{1}{(2(N+1)+1)!(4(N+1)+3)}=\frac{1}{(2 N+3)!(4 N+7)}
$$

If $N=1$, then the above value is $\approx 7.57 \cdot 10^{-4}$, but for $N=2$ it is $1.32 \cdot 10^{-5}$, so it is smaller than the desired error. This means that we have to calculate the following sum for the integral:

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x \approx \sum_{0}^{2}(-1)^{n} \frac{1}{(2 n+1)!(4 n+3)}=\frac{1}{3}-\frac{1}{3!\cdot 7}+\frac{1}{5!\cdot 11}
$$

