Math G2 Practices 8

Fourier series

The Fourier series of a function which is periodic by $P, P \in \mathbb{R}$ (or: it is defined on $[0, P]$) is given by

$$
(\mathcal{F} f)(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{2 \pi k}{P} x\right)+b_{k} \sin \left(\frac{2 \pi k}{P} x\right)
$$

where

$$
\begin{gathered}
a_{0}=\frac{1}{P} \int_{0}^{P} f(x) d x \\
a_{k}=\frac{2}{P} \int_{0}^{P} f(x) \cos \left(\frac{2 \pi k}{P} x\right) d x \\
b_{k}=\frac{2}{P} \int_{0}^{P} f(x) \sin \left(\frac{2 \pi k}{P} x\right) d x
\end{gathered}
$$

1. Determine the Fourier series of the following function:

$$
f(x)=\left\{\begin{aligned}
x & \text { if } 0 \leq x<\pi \\
-x & \text { if } \pi \leq x<2 \pi
\end{aligned}\right.
$$

and $f(x+2 \pi)=f(x)$.
Solution: Here $P=2 \pi$.

$$
\begin{align*}
a_{0} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x=\frac{1}{2 \pi}\left(\int_{0}^{\pi} x d x+\int_{\pi}^{2 \pi}-x d x\right)=\frac{1}{2 \pi}\left(\left[\frac{x^{2}}{2}\right]_{0}^{\pi}-\left[\frac{x^{2}}{2}\right]_{\pi}^{2 \pi}\right)= \\
& =\frac{1}{2 \pi}\left(\left[\frac{\pi^{2}}{2}-0\right]-\left[\frac{(2 \pi)^{2}}{2}-\frac{\pi^{2}}{2}\right]\right)=\frac{1}{2 \pi}\left(\frac{\pi^{2}}{2}-2 \pi^{2}+\frac{\pi^{2}}{2}\right)=\frac{-\pi^{2}}{2 \pi}=-\frac{\pi}{2} . \\
& a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos (k x) d x=\frac{1}{\pi}\left(\int_{0}^{\pi} x \cos (k x) d x+\int_{\pi}^{2 \pi}-x \cos (k x) d x\right)= \tag{1}
\end{align*}
$$

Now we use the fact that

$$
\int x \cos (k x) d x=x \frac{\sin (k x)}{k}-\int \frac{\sin (k x)}{k} d x
$$

so the calculations of Equation (11) can be followed as

$$
\begin{gathered}
=\frac{1}{\pi}\left(\left[x \frac{\sin (k x)}{k}\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{\sin (k x)}{k} d x-\left[x \frac{\sin (k x)}{k}\right]_{\pi}^{2 \pi}+\int_{\pi}^{2 \pi} \frac{\sin (k x)}{k} d x\right)= \\
=\frac{1}{\pi}\left(\left[\pi \frac{\sin (k \pi)}{k}\right]-\int_{0}^{\pi} \frac{\sin (k x)}{k} d x-\left[2 \pi \frac{\sin (2 \pi k)}{k}-\pi \frac{\sin (k \pi)}{k}\right]+\int_{\pi}^{2 \pi} \frac{\sin (k x)}{k} d x\right)=
\end{gathered}
$$

Now we use the fact that $\sin (k \pi)=0$ for every integer value of k.

$$
\begin{gathered}
=\frac{1}{\pi}\left(-\int_{0}^{\pi} \frac{\sin (k x)}{k} d x+\int_{\pi}^{2 \pi} \frac{\sin (k x)}{k} d x\right)=\frac{1}{\pi}\left(-\left[-\frac{\cos (k x)}{k^{2}}\right]_{0}^{\pi}+\left[\frac{-\cos (k x)}{k^{2}}\right]_{\pi}^{2 \pi}\right)= \\
=\frac{1}{\pi}\left(-\left[-\frac{\cos (k \pi)}{k^{2}}+\frac{1}{k^{2}}\right]+\left[-\frac{\cos (2 k \pi)}{k^{2}}+\frac{\cos (k \pi)}{k^{2}}\right]\right)=
\end{gathered}
$$

Now we use the fact that $\cos (2 k \pi)=1$ for any value of k :

$$
=\frac{1}{\pi}\left(-\left[-\frac{\cos (k \pi)}{k^{2}}+\frac{1}{k^{2}}\right]+\left[-\frac{1}{k^{2}}+\frac{\cos (k \pi)}{k^{2}}\right]\right)=\frac{1}{\pi}\left(2 \frac{\cos (k \pi)}{k^{2}}-\frac{2}{k^{2}}\right)=
$$

The value of $\cos (k \pi)$ might be 1 if k is even and can be -1 when k is odd, so the value is:

$$
=\left\{\begin{aligned}
0 & \text { if } \mathrm{k} \text { is even } \\
-\frac{4}{\pi k^{2}} & \text { if } \mathrm{k} \text { is odd }
\end{aligned}\right.
$$

$$
b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin (k x) d x=\frac{1}{\pi}\left(\int_{0}^{\pi} x \sin (k x) d x+\int_{\pi}^{2 \pi}(-x) \sin (k x) d x\right)=
$$

Now we use the fact that

$$
\int x \sin (k x) d x=-x \frac{\cos (k x)}{k}+\int \frac{\cos (k x)}{k} d x
$$

so the previous line continues as

$$
\begin{gathered}
=\frac{1}{\pi}\left(\left[-x \frac{\cos (k x)}{k}\right]_{0}^{\pi}+\int_{0}^{\pi} \frac{\cos (k x)}{k} d x-\left[-x \frac{\cos (k x)}{k}\right]_{\pi}^{2 \pi}-\int_{\pi}^{2 \pi} \frac{\cos (k x)}{k} d x\right)= \\
=\frac{1}{\pi}\left(\left[-\pi \frac{\cos (k \pi)}{k}\right]+\int_{0}^{\pi} \frac{\cos (k x)}{k} d x-\left[-(2 \pi) \frac{\cos (2 k \pi)}{k}+\pi \frac{\cos (k \pi)}{k}\right]-\int_{\pi}^{2 \pi} \frac{\cos (k x)}{k} d x\right)=
\end{gathered}
$$

Now we use the fact that $\cos (2 k \pi)=1$ for any integer value of k :

$$
\begin{gathered}
==\frac{1}{\pi}\left(-\pi \frac{\cos (k \pi)}{k}+\int_{0}^{\pi} \frac{\cos (k x)}{k} d x-\left[\frac{-2 \pi}{k}+\pi \frac{\cos (k \pi)}{k}\right]-\int_{\pi}^{2 \pi} \frac{\cos (k x)}{k} d x\right)= \\
==\frac{1}{\pi}\left(-\pi \frac{2 \cos (k \pi)}{k}+\frac{2 \pi}{k}+\int_{0}^{\pi} \frac{\cos (k x)}{k} d x-\int_{\pi}^{2 \pi} \frac{\cos (k x)}{k} d x\right)= \\
=\frac{1}{\pi}\left(-\pi \frac{2 \cos (k \pi)}{k}+\frac{2 \pi}{k}+\left[\frac{\sin (k x)}{k^{2}}\right]_{0}^{\pi}-\left[\frac{\sin (k x)}{k^{2}}\right]_{\pi}^{2 \pi}\right)=
\end{gathered}
$$

Now we use the fact that $\sin (k x)=0$ for any integer value of k.

$$
=\frac{1}{\pi}\left(-\pi \frac{2 \cos (k \pi)}{k}+\frac{2 \pi}{k}\right)=
$$

When k is even, then $\cos (k x)=1$ and when k is odd then $\cos (k x)=-1$.

$$
=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{k} \text { is even } \\
-\frac{4}{k} & \text { if } \mathrm{k} \text { is odd }
\end{array}\right.
$$

Then, the Fourier series has the form

$$
(\mathcal{F} f)(x)=-\frac{\pi}{2}+\sum_{k=1}^{\infty}-\frac{4}{\pi(2 k-1)^{2}} \cos ((2 k-1) x)+\frac{4}{2 k-1} \sin ((2 k-1) x)
$$

The reason for this is that the index should be odd (the even terms are zero).
2. Determine the Fourier series of the function $f(x)=|\sin (x)|$.

Solution: Here $P=2 \pi$ ($P=\pi$ can also be used). We are going to use the fact that $|\sin (x)|=\sin (x)$ for $x \in(0, \pi)$ and $|\sin (x)|=-\sin (x)$ for $x \in(\pi, 2 \pi)$.

$$
a_{0}=\frac{1}{2 \pi} \int_{0}^{\pi} \sin (x) d x+\int_{\pi}^{2 \pi}(-\sin (x)) d x=\frac{1}{\pi} \int_{0}^{\pi} \sin (x) d x=
$$

Here we used the fact that the function is symmetric.

$$
=\frac{1}{\pi}[-\cos (x)]_{0}^{\pi}=\frac{1}{\pi}(-(-1)-(-1))=\frac{2}{\pi} .
$$

$$
a_{k}=\frac{1}{\pi}\left(\int_{0}^{\pi} \sin (x) \cos (k x) d x+\int_{\pi}^{2 \pi}(-\sin (x)) \cos (k x) d x\right)=
$$

Now we use symmetry:

$$
=\frac{1}{\pi}\left(\int_{0}^{\pi} \sin (x) \cos (k x) d x+\int_{-\pi}^{0}(-\sin (x)) \cos (k x) d x\right)=
$$

Then, since the cosine function is even and the sine function is odd:

$$
=\frac{2}{\pi} \int_{0}^{\pi} \sin (x) \cos (k x) d x=
$$

Here we can use either partial integration or the identity

$$
2 \sin (\alpha) \cos (\beta)=\sin (\alpha+\beta)-\sin (\beta-\alpha)
$$

if we use the latter with $\alpha=x$ and $\beta=k x$, then

$$
\begin{gathered}
=\frac{1}{\pi} \int_{0}^{\pi} \sin ((k+1) x)-\sin ((k-1) x) d x=\frac{1}{\pi}\left[-\frac{\cos ((k+1) x)}{k+1}+\frac{\cos ((k-1) x)}{k-1}\right]_{0}^{\pi}= \\
=\frac{1}{\pi}\left[-\frac{\cos ((k+1) \pi)}{k+1}+\frac{\cos ((k-1) \pi)}{k-1}+\frac{1}{k+1}-\frac{1}{k-1}\right]=
\end{gathered}
$$

now we use the fact that $\cos ((k+1) \pi)=\cos ((k-1) \pi)=1$ if k is odd and they are both -1 if k is even:

$$
=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{k} \text { is odd } \\
\frac{2}{\pi}\left(\frac{1}{k+1}-\frac{1}{k-1}\right) & \text { if } \mathrm{k} \text { is even }
\end{array}\right.
$$

Since f is an even function, then $b_{k}=0$ (this can also be gotten by calculations).
Then, the Fourier series is

$$
(\mathcal{F} f)(x)=\frac{2}{\pi}+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{2 k+1}-\frac{1}{2 k-1}
$$

3. Determine the Fourier series of the function $f(x)=\sin ^{2}(x) \cos (2 x)$.

Solution: Instead of complicated calculations, we can use some identities: first, $\sin ^{2}(x)=$ $\frac{1-\cos (2 x)}{2}$:

$$
f(x)=\sin ^{2}(x) \cos (x)=\frac{1-\cos (2 x)}{2} \cos (2 x)=\frac{1}{2} \cos (2 x)-\frac{1}{2} \cos ^{2}(2 x)=
$$

Now, from the identities $\sin ^{2}(2 x)+\cos ^{2}(2 x)=1$ and $\cos (4 x)=\cos ^{2}(2 x)-\sin ^{2}(2 x)$ we get $\cos ^{2}(2 x)=\frac{1+\cos (4 x)}{2}$, meaning that

$$
f(x)=\frac{1}{2} \cos (2 x)-\frac{1}{2} \frac{1+\cos (4 x)}{2}=\frac{1}{2} \cos (2 x)-\frac{1}{4}-\frac{1}{4} \cos (4 x)
$$

which is a Fourier series with $a_{0}=-\frac{1}{4}, a_{2}=\frac{1}{2}, a_{4}=-\frac{1}{4}$ and all the other coefficients are zero.
4. Determine the Fourier series of the following function:

$$
f(x)=\left\{\begin{array}{rl}
-2 & \text { if }-2 \leq x<-1 \\
x & \text { if } \\
2 & \text { if } \quad 1 \leq x<1 \\
2 & 1 \leq 2
\end{array}\right.
$$

and $f(x+4)=f(x)$.
Solution: Here $P=4$.

$$
a_{0}=\frac{1}{4} \int_{-2}^{2} f(x)=0
$$

since this is an odd function. Similarly, $a_{k}=0$ since f is an odd function.

$$
\begin{gathered}
b_{k}=\frac{2}{4} \int_{-2}^{2} f(x) \sin \left(\frac{2 \pi}{4} k x\right) d x= \\
=\frac{1}{2}\left(\int_{-2}^{-1}(-2) \sin \left(\frac{\pi k}{2} x\right) d x+\int_{-1}^{1} x \sin \left(\frac{\pi k}{2} x\right) d x+\int_{1}^{2} 2 \sin \left(\frac{\pi k}{2} x\right) d x\right)=
\end{gathered}
$$

we can combine the first and the last integrals:

$$
=\frac{1}{2}\left(\int_{-1}^{1} x \sin \left(\frac{\pi k}{2} x\right) d x+2 \int_{1}^{2} 2 \sin \left(\frac{\pi k}{2} x\right) d x\right)=
$$

Now, since

$$
\int x \sin \left(\frac{\pi k}{2} x\right) d x=-x \frac{\cos \left(\frac{k \pi}{2} x\right)}{\frac{k \pi}{2}}+\int \frac{\cos \left(\frac{k \pi}{2} x\right)}{\frac{k \pi}{2}} d x
$$

we get

$$
\begin{gathered}
=\frac{1}{2}\left(\left[-x \frac{\cos \left(\frac{k \pi}{2} x\right)}{\frac{k \pi}{2}}\right]_{-1}^{1}+\int_{-1}^{1} \frac{\cos \left(\frac{k \pi}{2} x\right)}{\frac{k \pi}{2}} d x-4\left[\frac{\cos \left(\frac{k \pi}{2} x\right)}{\frac{k \pi}{2}}\right]_{1}^{2}\right)= \\
=\frac{1}{k \pi}\left(-\cos \left(\frac{k \pi}{2}\right)+\cos \left(-\frac{k \pi}{2}\right)\right)+\frac{1}{2}\left[\frac{\sin \left(\frac{k \pi}{2} x\right)}{\left(\frac{k \pi}{2}\right)^{2}}\right]_{-1}^{1}-\frac{4}{k \pi}\left[\cos (k \pi)-\cos \left(\frac{k \pi}{2}\right)\right]=
\end{gathered}
$$

Now we use the fact that the cosine function is even, so the first term is zero:

$$
\begin{gathered}
=\frac{1}{2}\left[\frac{\sin \left(\frac{k \pi}{2}\right)}{\left(\frac{k \pi}{2}\right)^{2}}-\frac{\sin \left(-\frac{k \pi}{2}\right)}{\left(\frac{k \pi}{2}\right)^{2}}\right]-\frac{4}{k \pi}\left[\cos (k \pi)-\cos \left(\frac{k \pi}{2}\right)\right]= \\
=\frac{2}{k^{2} \pi^{2}}\left[\sin \left(\frac{k \pi}{2}\right)+\sin \left(\frac{k \pi}{2}\right)\right]-\frac{4}{k \pi}\left[\cos (k \pi)-\cos \left(\frac{k \pi}{2}\right)\right]= \\
=\frac{4}{k^{2} \pi^{2}} \sin \left(\frac{k \pi}{2}\right)-\frac{4}{k \pi}\left[\cos (k \pi)-\cos \left(\frac{k \pi}{2}\right)\right]=
\end{gathered}
$$

Depending on the value of k, we have four cases:

- If $k=4 n(n$ is a positive integer $)$, then $\cos (k \pi)=1, \sin \left(\frac{k \pi}{2}\right)=0$ and $\cos \left(\frac{k \pi}{2}\right)=1$. In these cases the coefficient is zero.
- If $k=4 n+1$ (n is a positive integer), then $\cos (k \pi)=-1, \sin \left(\frac{k \pi}{2}\right)=1$ and $\cos \left(\frac{k \pi}{2}\right)=0$. In these cases the coefficient is $\frac{4}{k^{2} \pi^{2}}+\frac{4}{k \pi}$.
- If $k=4 n+2$ (n is a positive integer), then $\cos (k \pi)=1, \sin \left(\frac{k \pi}{2}\right)=0$ and $\cos \left(\frac{k \pi}{2}\right)=-1$. In these cases the coefficient is $-\frac{8}{k \pi}$.
- If $k=4 n+3$ (n is a positive integer), then $\cos (k \pi)=-1, \sin \left(\frac{k \pi}{2}\right)=-1$ and $\cos \left(\frac{k \pi}{2}\right)=0$. In these cases the coefficient is $-\frac{4}{k^{2} \pi^{2}}+\frac{4}{k \pi}$.

5. Calculate the following numerical sum, if we know the result of Exercise 1.

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}
$$

Solution: From Exercise 1 we know that the Fourier series of that function was

$$
(\mathcal{F} f)(x)=-\frac{\pi}{2}+\sum_{k=1}^{\infty}-\frac{4}{\pi(2 k-1)^{2}} \cos ((2 k-1) x)+\frac{4}{2 k-1} \sin ((2 k-1) x)
$$

If we substitute here $x=0$, then

$$
(\mathcal{F} f)(0)=-\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}
$$

Now we use the following theorem:

Theorem: Let f be a periodic function, which is continuous apart from finitely many points where it can have jumps or removable discontinuities. Then,

$$
(\mathcal{F} f)\left(x_{0}\right)=\frac{\lim _{x \rightarrow x_{0}+0} f(x)+\lim _{x \rightarrow x_{0}-0} f(x)}{2}
$$

In this case if $x_{0}=0$, then we know that $\lim _{x \rightarrow x_{0}+0} f(x)=0$ and $\lim _{x \rightarrow x_{0}-0} f(x)=(-2 \pi)$, so the equation we have is

$$
\begin{gathered}
-\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{0+(-2 \pi)}{2} \\
\frac{\pi}{2}=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \\
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8}
\end{gathered}
$$

6. Calculate the Fourier sine series of the function $f(x)=\cos (x), x \in(0, \pi)$.

Solution: We get a Fourier sine function (i.e. $a_{k}=0$ for every $k \in \mathbb{Z}^{+}$) if the function is odd. For this, let us extend the function to the interval $(-\pi, \pi)$ according to the following rule:

$$
f(x)=\left\{\begin{aligned}
-\cos (x) & \text { if }-\pi \leq x<0 \\
\cos (x) & \text { if } \quad 0 \leq x<\pi
\end{aligned}\right.
$$

We can also make it a periodic function by the rule $f(x+2 \pi)=f(x)$, and then f is defined for every $x \in \mathbb{R}$.
Since this is odd, we get $a_{k}=0$ for $k>0$, and also $a_{0}=0$ since the integral of f is zero on $(-\pi, \pi)$ (this can be seen either by the symmetry of the function, or by calculations.)
For b_{k}, we get

$$
b_{k}=\frac{1}{\pi}\left(\int_{-\pi}^{0}-\cos (x) \sin (k x) d x+\int_{0}^{\pi} \cos (x) \sin (k x) d x\right)=
$$

Now we use the same trick as in Exercise 2., namely

$$
2 \sin (\alpha) \cos (\beta)=\sin (\alpha+\beta)-\sin (\beta-\alpha)
$$

Then,

$$
\begin{gathered}
=\frac{1}{\pi}\left(-\int_{-\pi}^{0} \sin ((k+1) x)-\sin ((1-k) x) d x+\int_{0}^{\pi} \sin ((k+1) x)-\sin ((1-k) x) d x\right)= \\
=\frac{1}{\pi}\left(-\left[-\frac{\cos ((k+1) x)}{k+1}\right]_{-\pi}^{0}+\left[-\frac{\cos ((1-k) x)}{1-k}\right]_{-\pi}^{0}+\left[-\frac{\cos ((k+1) x)}{k+1}\right]_{0}^{\pi}-\left[-\frac{\cos ((1-k) x)}{1-k}\right]_{0}^{\pi}\right)= \\
=\frac{1}{\pi}\left(\left[\frac{1}{k+1}-\frac{\cos ((k+1)(-\pi))}{k+1}\right]-\left[\frac{1}{1-k}-\frac{\cos ((1-k)(-\pi))}{1-k}\right]-\right. \\
\left.-\left[\frac{\cos ((k+1) \pi)}{k+1}-\frac{1}{k+1}\right]+\left[\frac{\cos ((1-k) \pi)}{1-k}-\frac{1}{1-k}\right]\right)= \\
=\frac{1}{\pi}\left(\frac{2}{k+1}-\frac{2}{1-k}-\frac{2 \cos ((k+1) \pi)}{k+1}+\frac{2 \cos ((1-k) \pi)}{1-k}\right)
\end{gathered}
$$

Now we have two cases:

- If k is odd, then $b_{k}=0$.
- If k is even, then $b_{k}=\frac{1}{\pi}\left(\frac{4}{k+1}-\frac{4}{1-k}\right)=\frac{-8 k}{\pi\left(1-k^{2}\right)}$.

7. How should we extend the following function to get a Fourier sine series?

$$
f(x)=\left\{\begin{array}{cc}
2 x & \text { if } 0 \leq x<1 \\
-\frac{2}{3} x+\frac{8}{3} & \text { if } 1 \leq x<4
\end{array}\right.
$$

Solution: By extending the function onto $[-4,4]$ as

$$
f(x)=\left\{\begin{array}{cl}
-\frac{2}{3} x-\frac{8}{3} & \text { if } 1 \leq x<4 \\
2 x & \text { if }-1 \leq x<1 \\
-\frac{2}{3} x+\frac{8}{3} & \text { if }-4 \leq x<-1
\end{array}\right.
$$

we get an odd function, resulting in a sine series.
8. Calculate the Fourier cosine series of the function $f(x)=\sin (x), x \in(0, \pi)$.

Solution: We get a Fourier cosine function (i.e. $b_{k}=0$ for every k) if the function is even. For this, let us extend the function to the interval $(-\pi, \pi)$ according to the following rule:

$$
f(x)=\left\{\begin{aligned}
-\sin (x) & \text { if }-\pi \leq x<0 \\
\cos (x) & \text { if } \quad 0 \leq x<\pi
\end{aligned}\right.
$$

We can also make it a periodic function by the rule $f(x+2 \pi)=f(x)$, and then f is defined for every $x \in \mathbb{R}$.
Note that this function is the same as $|\sin (x)|$, whose Fourier series was calculated in Exercise 2 , so we can use the result of that one.

