Mock exam

Partial differential equations

2022

Exam grade:

- 40 − 59 2,
- 60 − 79 3,
- 80 − 99 4,
- 5 above 100.

1 First part: definitions, theorems

For every correct answer you'll get 9 points.

1. Let us consider the equation

$$\sum_{j,k=1}^{n} a_{j,k} \partial_j \partial_k u + \sum_{j=1}^{k} b_j \partial_j u + cu = f.$$

In which case is this equation called elliptic?

- 2. Let us consider the interval $[0,1] \subset \mathbb{R}$ and another one Ω for which $[0,1] \subset \Omega$. Is it possible to construct such functions φ_1, φ_2 and φ_3 , for which $\varphi_1, \varphi_2, \varphi_3 \in C_0^{\infty}(\Omega)$, and also $0 \leq \varphi_i \leq 1$ (i = 1, 2, 3) and $\varphi_1(x) + \varphi_2(x) + \varphi_3(x) = 1$ ($\forall x \in [0, 1]$)? If yes, give the theorem that guarantees this property, if not, give a counterexample!
- 3. Define the convergence $\varphi_j \xrightarrow{\mathcal{D}(\Omega)} \varphi!$ What do we call distributions in the theory of PDEs?
- 4. Define the Cartesian product of distributions $u(\phi) \in \mathcal{D}'(\mathbb{R}^n)$ and $v(\psi) \in \mathcal{D}'(\mathbb{R}^m)!$
- 5. Assume that $u, v \in \mathcal{D}'(\Omega)$ and u * v exists. Is it possible that $\partial^{\alpha}(u * v) \neq u * (\partial^{\alpha} v)$?
- 6. State the maximum principle for the heat equation defined on $(t, x) \in [0, T] \times \mathbb{R}$.
- 7. Let us consider operator $L: \text{Dom}(L) \subset L^2(\Omega) \to L^2(\Omega)$ with domain

$$\operatorname{Dom}(L) := \left\{ u \in C^2(\Omega \cap C^1(\overline{\Omega})) : Lu \in L^2(\Omega), gu|_{\partial\Omega} + h\partial_\mu u|_{\partial\Omega} = 0 \right\}$$

defined as

$$Lu = -\operatorname{div}(\operatorname{grad}(u))$$

in which $p \in C^1(\overline{\Omega})$, p(x) > 0, $q \in C(\overline{\Omega})$, $g, h \in C(\partial\Omega)$. What can we say about operator L and its eigenvalues and eigenfunctions?

- 8. Define the Sobolev space $H^k(\Omega)$!
- 9. Let us assume that the first boundary value problem has a weak (or general) solution. What do we have to prove to show that it is also a classical solution?

2 Part two: theorems and proofs

Topic: wave equation

- 1. Define the classical solution of the wave equation! (5 points)
- 2. Extend functions u and f onto \mathbb{R}^n . (5 points)
- 3. State the result about the 'wave equation' for $T_{\tilde{u}}$. (5 points)
- 4. Prove the previous statement. (45 points) **Hint:** Compute the left-hand side, and then observe the three terms separately.
- 5. Define the general (or weak) form of the wave equation. (5 points)
- 6. State the connection between the classical and the weak solution. (5 points)
- 7. State the result about the uniqueness of the solution of the general equation. (5 points)
- 8. What can we say about the number of solutions of the classical problem? Why? (5 points)