
Practice 1

Simple equations

I. Simple equations.

1. We seek the u : R2 −→ R (classical) solutions of the following equations:

(a) ∂yu = 0
Solution: By integrating with respect to variable y : u(x, y) = f(x), where f(x) ∈ C1(R).

(b) ∂xyu = 0
Solution: Or equation is

∂xyu = ∂x (∂yu(x, y)) = 0.

By integrating with respect to variable x :

∂yu(x, y) = f(y).

Then by integrating with respect to y :

u(x, y) = F (y) +G(x),

in which f, F, G ∈ C2(R).

(c) ∂xyu =
4xy

(x2 + y2)2

Solution: By integrating with respect to x :

∂yu = − 2y

x2 + y2
+ f(y).

Then by integrating with respect to y :

u(x, y) = − ln(x2 + y2) + F (y) +G(x),

in which f, F,G ∈ C2(R).
Remark: This solution is only de�ned on R2\{(0,0)}.

(d) ∂xyu+ 2x∂yu = x
Solution: Let us de�ne the following new function v : R → R : v(x; y) = ∂yu(x, y) (here
we suppose that y is only a parameter in v). Consequently, we get the following equation:

v′(x; y) + 2xv(x; y) = x. (1)

(Here ′ is a derivation in x, and the notation (x; y) means that we think of this function as
a function in x, and y is only a parameter in it.)
First method: Let us multiply both sides by ex

2
:

ex
2

v′(x; y) + ex
2

2xv(x; y) = ex
2

x.

Note that on the left side, we have (ex
2
v(x, y))′, and on the right hand side

(
1

2
ex

2

)′

, so we

can integrate both sides and we get

ex
2

v(x, y) =
1

2
ex

2

+ f(y).

(The term f(y) appears since y is a parameter in v.) If we multiply both sides by e−x2
:

v(x, y) =
1

2
+ e−x2

f(y).

Since v(x; y) = ∂yu(x, y), we get that

u(x, y) =
1

2
y + F (y)e−x2

+G(x),

where f, F,G ∈ C2(R).
Second method: We can solve equation (1) by searching for a particular solution, and add
it to the homogeneous form of equation (1) - see your ODE practice notes for details.
Third method: We can solve the problem without introducing the function v(x; y) : let us
multiply our initial problem by ex

2
, so we have ex

2
∂xyu + 2xex

2
∂yu on the left, which is

∂xy

(
ex

2
u(x, y)

)
.

Fourth method: We can even integrate the initial problem in y, and we then get an ODE,
which can be solved similarly as the one in the �rst method.
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(e) ∂xu = ∂yu
Solution:

First method: Let us de�ne vector v as v = (1,−1)T . Then our initial problem can be
expressed as

0 = (∂xu, ∂yu) · v = ∂vu.

This means that the derivative of u in direction v is zero, meaning that our function u is
constant on the x+y = c, c ∈ R lines. This means that u(x, y) = f(x+y), where f ∈ C1(R).
Second method: Let us use the following transformation of variables: ξ = x+ y, η = x− y,
and de�ne a new function: u(x, y) = U(ξ, η). Then:

(∂xu, ∂yu) = u′(x, y) = U ′(ξ, η)


∂ξ

∂x

∂ξ

∂y
∂η

∂x

∂η

∂y

 = (∂ξU, ∂ηU)

(
1 1
1 −1

)
.

This means that {
∂xu = ∂ξU + ∂ηU,

∂yu = ∂ξU − ∂ηU.

Then by substituting these into the original equation we get that

0 = ∂xu− ∂yu = 2∂ηU,

from which we get that ∂ηU = 0, which means that U(ξ, η) = f(ξ), so the solution of our
original problem is u(x, y) = f(x+ y) where f ∈ C1(R).

(f) ∂2
xu− ∂2

yu = 0
Solution: If we apply the same method as in the second method of problem (e), we have
U(ξ, η) = u(x, y), and also ξ = x+ y and η = x− y. We have also computed that

∂xu = ∂ξU + ∂ηU,

∂yu = ∂ξU − ∂ηU.

Therefore,

∂x(∂xu) = ∂ξ(∂ξU + ∂ηU) + ∂η(∂ξU + ∂ηU) = ∂ξξU + ∂ξηU + ∂ηξU + ∂ηηU,

and also

∂yyu = ∂ξ(∂ξU − ∂ηU)− ∂η(∂ξU − ∂ηU) = ∂ξξU − ∂ξηU − ∂ηξU + ∂ηηU.

By subtracting these from each other we get 4∂ξηU = 0, and according to problem (b), the
solution is u = F (x− y) +G(x+ y) (F,G ∈ C2(R)).

(g) ∂xxu− a2∂yyu = 0
Solution: At �rst, let us suppose that a ̸= 0. Then let us de�ne a function v(x, y) : R2 → R
as v(x, y) := u(x, ay). Then

∂yyv(x, y) = a2∂yyu(x, ay)

and
∂xxv(x, y) = ∂xxu(x, ay)

so because of our initial problem we have

∂xxv(x, y)− ∂yyv(x, y) = 0.

However, because of (f), we get that

v(x, y) = G(x+ y) + F (x− y).

u(x, y) = v
(
x,

y

a

)
= G

(
x+

y

a

)
+ F

(
x− y

a

)
= G

(
1

a
(ax+ y)

)
+ F

(
1

a
(ax− y)

)
=

= g(ax+ y) + f(−ax+ y),

in which f, g, F,G ∈ C2(R).
Now let us observe the case a = 0. Then our equation simpli�es to

∂2
xu(x, y) = 0.

From which we get (through two integrations with respect to x) :

u(x, y) = xf(y) + g(y),
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in which f, g ∈ C2(R).
Remark: The one dimensional wave equation has the form

∂2
t u− a2∂2

xu = 0

Then, according to (g), its solution has the form

u(t, x) = f(x+ at) + g(x− at)

in which the left hand term on the right hand side corresponds to a wave travelling to the
left with speed a, while the right-hand term corresponds to a wave travelling to the right.

2. Give the solution u ∈ C2(R3) to the following equation:

∂2
xu(x, y, z) = 0

Solution: By simple integrations:

∂x (∂xu(x, y, z)) = 0

∂xu(x, y, z) = f(y, z)

u(x, y, z) = xf(y, z) + g(y, z)

in which f, g ∈ C2(R2).

3. Give the solution u ∈ C2(R2) of the following equation!

(a) 
∂xyu = x+ y,

u(x, x) = x,

∂xu(x, x) = 0.

(2)

Solution: Since ∂xyu = x+ y, then by integration

∂xu(x, y) = xy +
1

2
y2 + f(x)

Then by the third line of (2), we have

0 = ∂xu(x, x) =
3

2
x2 + f(x)

so f(x) = −3

2
x2, which also means that

∂xu(x, y) = xy +
1

2
y2 − 3

2
x2

u(x, y) =
1

2
x2y +

1

2
xy2 − 1

2
x3 + g(y)

Now we use the second line of (2):

x = u(x, x) =
1

2
x3 + g(x)

from which we get that g(x) = x− 1

2
x3, and our solution is

u(x, y) =
1

2
x2y +

1

2
xy2 − 1

2
x3 + y − 1

2
y3

(b) 
∂2
xu− ∂2

yu = 0,

u(0, y) = 1,

∂xu(0, y) = 1.

(3)

Solution: Because of problem 1. (f), the solution is in the form

u(x, y) = G(x+ y) + F (x− y)

Then we use the boundary conditions:

u(0, y) = G(y) + F (−y) = 1 (4)

∂xu(0, y) = G′(y) + F ′(−y) = 1 (5)
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Now upon di�erentiating (4), we get

G′(y)− F ′(−y) = 0

and if we add this up with (5):
2G′(y) = 1

G(y) =
1

2
y + c ⇒ F (−y) = 1−G(y) = 1− 1

2
y − c ⇒ F (y) = 1 +

1

2
y − c

From these, our solution is

u(x, y) =
1

2
(x+ y) + c+ 1 +

1

2
(x− y)− c = x+ 1.

4. Search for the solutions of the following equation in the form u(x, y) = X(x)Y (y) :

∂2
xu− ∂yu = 0.

Solution: Since u(x, y) = X(x)Y (y), then

∂xxu = X ′′(x)Y (y),

and
∂yu = X(x)Y ′(y).

Since these previous two terms are equal, we have

X ′′(x)Y (y) = X(x)Y ′(y),

X ′′(x)

X(x)
=

Y ′(y)

Y (y)
.

Since we have a one-variable function on both sides but with di�erent variables, then the equality
can only hold if these two are constant functions - let us denote their value by α. From this, we
get the following equations:

X ′′(x)− αX(x) = 0

Y ′(y)− αY (y) = 0

The solution of the second one is Y (y) = c0 eαy (c ∈ R), and the solution of the �rst depends
on the sign of α :

X(x) =


c1 sin(

√
−αx) + c2 cos(

√
−αx) if α < 0

c1e
√
αx + c2e

−
√
αx if α > 0

c1x+ c2 if α = 0

Then the solution is the product of the corresponding X(x) and Y (y).

Remark: It is worth mentioning that these are not all solutions of the problem, e.g. x2 + 2y is
also a solution. However, the (possibly in�nite) linear combination of the functions calculated
above produces all solutions.

5. Give all u : R2 → R polynomials for which

∆u = 0. (6)

Solution: We can easily �nd such functions, e.g. x, y or x2 + y2 are �ne. Now the question is:
how to determine all such functions?

We use a theorem from complex analysis, which states that the solution of (6) has the form

u(x, y) = Re [f(x+ iy)]

where f : C → C is a regular (or holomorphic) function.

Now let us de�ne our function as f(z) := zn, or in other words f(x+ iy) = (x+ iy)n. Here f is
regular, so (6) holds for u if it is de�ned using this f . Also, Re(f) is a two-variable polynomial
(since e.g. for n = 1, we have x, for n = 2 we have x2 − y2, for n = 3 we have x3 − 3xy2 and so
on). But Im(f) is also a two-variable polynomial. This means that for all n, we have two, nth
degree polynomials for which (6) holds. Our goal from now is to show that these polynomials
are also the base of the vector space of nth degree polynomials. For this we need to prove two
things: that they are linearly independent, and also that the vector space of the nth degree such
polynomials has dimension of 2.

The linear independence is true, because of the di�erent monomials inside the di�erent functions.

4



For the dimension of the vector space, let us de�ne

Pn := {xjyk : j + k = n, j, k ≥ 0}.

Then it is clear that the Laplace operator ∆ maps Pn to Pn−2. Also, this map is surjective,
since all elements of Pn−2 are the image of one element in Pn (this can be proved by induction).
However, surjectivity means that

dim (Ker(∆)) = dim(Pn)− dim(Pn−2),

(since there are no elements of Pn which are mapped somewhere else.)

We also know that dim(Pn) = n+ 1, since if j + k = n and k is determined, then for j we have
n+ 1 di�erent choices. Therefore,

dim (Ker(∆)) = dim(Pn)− dim(Pn−2) = n+ 1− (n− 2 + 1) = 2

which is in fact the space of functions which are solutions of (6), so it truly has dimension
2. Consequently, we proved that this space has dimension 2, and we also gave two linearly
independent elements, which means that it forms a base.

Thus, all polynomial solutions of (6) are linear combinations of Re((x+ iy)n) and Im((x+ iy)n).

Remark: Those functions for which (6) holds are called harmonic functions.

6. Suppose that for some u ∈ C4(R2), we have ∆u = 0. Prove that if v(x, y) := (x2 + y2)u(x, y),
then ∆2v = 0.

Solution:

∂xv(x, y) = 2xu(x, y) + (x2 + y2)∂xu(x, y)

∂yv(x, y) = 2yu(x, y) + (x2 + y2)∂yu(x, y)

and also,
∂2
xv(x, y) = 2u(x, y) + 4x∂xu(x, y) + (x2 + y2)∂2

xu(x, y)

∂2
yv(x, y) = 2u(x, y) + 4y∂yu(x, y) + (x2 + y2)∂2

yu(x, y)

Then (we use that ∆u = 0) :
∆v = 4u+ 4x∂xu+ 4y∂yu,

∆2v = ∆(4x∂xu+ 4y∂yu)

(where we also used that ∆u = 0, and that ∆ is a linear operator). Then:

∆(4x∂xu) = ∂2
x(4x∂xu) + ∂2

y(4x∂xu) = ∂x(4∂xu+ 4x∂2
xu) + ∂2

y(4x∂xu) =

= 4∂2
xu+ 4∂2

xu+ 4x∂3
xu+ 4x∂x∂

2
yu = 8∂2

xu+ 4x∂x(∆u) = 8∂2
xu

Similarly,
∆(4y∂yu) = 8∂2

yu,

and then
∆2v = 8∆u = 0.

7. * Solve the following equation for functions u ∈ C2(R2,R) ! (10 points)

∂xu · ∂yu = 0

Solution: This is a bonus problem, the solution can be submitted.
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