
Tenth practice

Eigenvalues, parabolic problems

1. Let a > 0, and compute the eigenvalues and eigenfunctions of the following operators!

a) D(L) = {u ∈ C2(0, a) ∩ C([0, a]) : u(0) = u(a) = 0}, Lu = −u′′,

b) D(L) = {u ∈ C2(0, a) ∩ C1([0, a]) : u′(0) = u′(a) = 0}, Lu = −u′′.

Solution:

a) We seek those numbers λ ∈ R, for which there is such a u ∈ D(L), u ̸≡ 0, for
which Lu = λu, i.e. −u′′ = λu. Then by combining these with the conditions inside the
domain of the operator, we get the following one-dimensional boundary-value problem:

−u′′(x) = λu(x) (x ∈ (0, a))
u(0) = 0
u(a) = 0.

The solution of this equation is (See Exercise 4 on Practice 1):

u(x) =


c1 sin(

√
λx) + c2 cos(

√
λx), if λ > 0,

c1e
√

|λ|x + c2e
−
√

|λ|x, if λ < 0,
c1x+ c2, if λ = 0.

(1)

Now let us use the boundary conditions! If λ = 0, then by u(0) = 0 we get c2 = 0,
so since u(a) = 0 we get c1a = 0, so c1 = 0, and then u ≡ 0. If λ < 0, then by

u(0) = 0 we get c1 + c2 = 0, so since u(a) = 0 we get c1e
√

|λ|a − c1e
−
√

|λ|a = 0, then
c1 = 0, therefore u ≡ 0. The remaining case is λ > 0. In this case since u(0) = 0, then
c2 cos 0 = 0, so c2 = 0. On the other hand, since u(a) = 0, then sin

√
λa = 0, therefore√

λa = kπ, in which k is a positive whole number (since here we have λ > 0). This

means that λ =
(
kπ
a

)2
, then u(x) = sin kπ

a
x, in which k is a positive whole number,

so the eigenvalues are positive, and there are countably in�nitely-many of them. It is
well know (from e.g. Fourier analysis), that the sinus system is orthogonal in L2(0, a).
Let us norm the previous u functions, then we get the complete system of orthonormal
eigenfunctions and eigenvalues of operator L in L2(0, a) :

λk =

(
kπ

a

)2

, uk(x) =

√
2

a
sin

(
kπ

a
x

)
(k = 1,2, . . . )

Note that during the normalization, we used that∫ a

0

sin2

(
kπ

a
x

)
dx =

a

2
,

which can be proved e.g. the following way. If we know that cos 2φ = cos2 φ − sin2 φ,
then we get sin2 φ = 1−cos 2φ

2
. Therefore,∫ a

0

sin2

(
kπ

a
x

)
dx =

∫ a

0

1− cos
(
2kπ
a
x
)

2
dx =

a

2
− a

4kπ

[
sin

(
2kπ

a
x

)]a
x=0

=
a

2
.

b) Like in case (a), this problem can also be transformed to a boundary-value problem:
−u′′(x) = λu(x) (x ∈ (0, a))

u′(0) = 0
u′(a) = 0.
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The solutions of this equation can be found in Table (1). Taking the boundary condi-
tions into account, if λ = 0 we get c1 = 0, so u ≡ c2. If λ < 0, then by u′(0) = 0 we get√

|λ|(c1 − c2) = 0, i.e. c1 = c2, so by u′(a) = 0 we get
√

|λ|c1
(
e
√

|λ|a − e−
√

|λ|a
)
= 0,

therefore c1 = 0, so u ≡ 0. Finally, in the case λ > 0, by u′(0) = 0 we get
√
λc1 cos 0 =

= 0, and then c1 = 0. On the other hand, by u′(a) = 0 we get c2
√
λ sin

√
λa = 0,

consequently
√
λa = kπ, in which k is a positive whole number (since we consider the

case λ > 0). Then u(x) = cos kπ
a
x, in which by the choice k = 0 we get the constant

functions we got in the case λ = 0. The eigenvalues are non-negative, and there are
countably in�nitely-many of them (also, the 0 eigenvalue has multiplicity one, and
the constant functions are the corresponding eigenfunctions). It is well known (from
Fourier analysis), that the cosine system is orthogonal in L2(0, a), so by normalizing
the previous functions we get the complete orthonormal eigenfunction and eigenvalue
system of operator L inside L2(0, a) :

λk =

(
kπ

a

)2

, u0(x) =
1√
a
, uk(x) =

√
2

a
cos

(
kπ

a
x

)
(k = 0,1,2, . . . )

The constant
√

2
a
comes from similar arguments to the ones discussed in the previous

exercise.

2. Let T = (0, a)× (0, b) ⊂ R2 (a, b > 0), and compute the eigenvalues and eigenfunctions
of the following operators!

a) D(L) = {u ∈ C2(T ) ∩ C(T ) : u|∂T = 0}, Lu = −∆u,

b) D(L) = {u ∈ C2(T ) ∩ C1(T ) : ∂νu|∂T = 0}, Lu = −∆u.

Solution: a) We use the method of separation of variables, i.e. we search for the
eigenfunctions in the form u(x, y) = v(x) ·w(y). Then the eigenvalue-problem Lu = λu
means the following di�erential equation on the two-dimensional interval T :

−v′′(x)w(y)− v(x)w′′(y) = λv(x)w(y).

Supposing that v(x) · w(y) ̸= 0, after a formal division we get

−v′′(x)

v(x)
= λ+

w′′(y)

w(y)
.

Note that the left-hand side of the above equation only depends on x, while the right-
hand side only depends on y. Since the equation should hold for all (x, y) ∈ T values,
then this can only happen, if we have constant functions on both sides, i.e. there is a
constant α, β ∈ R for which

−v′′(x)

v(x)
= α,

−w′′(y)

w(y)
= β

and α+β = λ. By the boundary conditions we get the homogeneous Dirichlet conditions
v(0) = v(a) = 0, w(0) = w(b) = 0. This means that v is an eigenfunction, and α is an
eigenvalue of the operator in Exercise 1. a), so

α = αk =

(
kπ

a

)2

and

v(x) = vk(x) =

√
2

a
sin

(
kπ

a
x

)
.

Similarly, w is an eigenfunction of the same operator (but here we should write b instead
of a), so

β = βk =

(
kπ

b

)2
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and

w(x) = wk(y) =

√
2

b
sin

(
kπ

b
y

)
.

Consequently, operator L has countably-many eigenvalues, and these are

λk,l = π2

(
k2

a2
+

l2

b2

)
(k, l = 1,2, . . . ),

and the corresponding orthonormal eigenfunction-system (which is complete in L2(T ))
is

uk,l(x, y) =
2√
ab

sin

(
kπ

a
x

)
sin

(
lπ

b
y

)
(k, l = 1,2, . . . ).

Note that from the previous arguments it is still not clear that the operator has no
other eigenvalues. This comes from the fact that the eigenfunctions form a complete
orthogonal system (see the Lecture), and the previous system was complete, so there
are no other eigenfunctions.

b) We proceed similarly as in the previous exercise. By using the method of sepa-
ration of variables, we search for our solution in the form u(x, y) = v(x)w(y). After
substitution and division (assuming that v(x)w(y) ̸= 0), we get that

−v′′(x)

v(x)
= λ+

w′′(y)

w(y)
.

This should hold for all (x, y) ∈ T values, and it can only hold if we have a constant
on both sides, so there exists such an α, β ∈ R value, for which

−v′′(x)

v(x)
= α,

−w′′(y)

w(y)
= β

and α + β = λ.

Note that ∂νu|∂T = −v(x)w′(0) on side (0, a) × {0}, ∂νu|∂T = v(x)w′(b) on side
(0, a) × {b}, ∂νu|∂T = −v′(0)w(y) on side {0} × (0, b) and ∂νu|∂T = v′(a)w(y) on side
{a} × (0, b). These (under the assumption v(x)w(y) ̸= 0) mean that v′(0) = v′(a) = 0
and w′(0) = w′(b) = 0. So we got that v is an eigenfunction, and α is an eigenvalue of
the operator L in Exercise 1. b). Similarly, w is an eigenfunction, and β is an eigevalueof
the same operator L. By Exercise 1. b), so

α = αk =

(
kπ

a

)2

,

β = βk =

(
kπ

b

)2

,

moreover,

v(x) = vk(x) =

√
2

a
cos

(
kπ

a
x

)
,

w(x) = wk(y) =

√
2

b
cos

(
kπ

b
y

)
,

in which k, l are non-negative whole numbers. In conclusion, the eigenvalue-system and
eigenfunction-system (which is complete in L2(T )) of operator L is :

λk,l = π2

(
k2

a2
+

l2

b2

)
(k, l = 0,1, . . . ),
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and

u0,0(x, y) =
1√
ab

,

uk,0(x, y) =

√
2

ab
cos

(
kπ

a
x

)
(k = 1,2 . . . ),

u0,l(x, y) =

√
2

ab
cos

(
lπ

b
y

)
(l = 1,2, . . . ),

uk,l(x, y) =
2√
ab

cos

(
kπ

a
x

)
cos

(
lπ

b
y

)
(k, l = 1,2 . . . ).

Note that from the previous arguments it is still not clear that the operator has no
other eigenvalues. This comes from the fact that the eigenfunctions form a complete
orthogonal system (see the Lecture), and the previous system was complete, so there
are no other eigenfunctions.

3. Let T = (0, π)2 and solve the following elliptic boundary-value problems!

a)

{
−∆u = x+ y inside T,
u|∂T = 0,

b)

{
−∆u = 3 sinx sin 4y − 8 sin 2x sin 5y inside T,
u|∂T = 0,

c)

{
−∆u = cos x cos y inside T,

∂νu|∂T = 0.

Solution: a) We construct the solution from the eigenfunction-system of the operator
orthonormed in L2(T ). For this, let us write up function f also in this system:

f =
∞∑

k,l=1

ck,luk,l,

in which uk,l is the system from Exercise 2 a). The coe�cients can be computed in the
following way:

ck,l =

∫
T

fuk,l =

∫ π

0

∫ π

0

(x+ y)
2

π
sin(kx) sin(ly) dx dy =

=
2

π

[∫ π

0

x sin(kx) dx

∫ π

0

sin(ly) dy +

∫ π

0

y sin(ly) dy

∫ π

0

sin(kx) dx

]
=

=
2

kl

(
(−1)k+1(1− (−1)l) + (−1)l+1(1− (−1)k)

)
=:

2

kl
wk,l,

in which we used that∫ π

0

sin(ly) dy =
1

l
[− cos(ly)]πy=0 =

1

l
(1− (−1)l),

and ∫ π

0

x sin(kx) dx =
1

k
[−x cos(kx)]πx=0 +

1

k

∫ π

0

cos(ky) dy = (−1)k+1π

k
. (2)

By these,

u(x, y) =
∞∑

k,l=1

2wk,l

kl(k2 + l2)
· 2
π
sin(kx) sin(ly).

Note that the convergence of this line is meant in L2(T ) (actually, a much stronger
convergence also holds, but those theorems are non-trivial).

b) Since on the right-hand side we have an eigenfunction of the operator on the left,
then we should search for the solution in the form

u(x, y) = c1 sinx sin 4y + c2 sin 2x sin 5y.
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Then
−∆u(x, y) = (32 + 42)c1 sin 3x sin 4y + (22 + 52)c2 sin 2x sin 5y =

= 25c1 sin 3x sin 4y + 29c2 sin 2x sin 5y.

If we compare these terms to the right-hand side of our equation, we get
25c1 = 3, 29c2 = −8, so c1 = 3

25
and c2 = − 8

29
. Then the solution of the problem

is

u(x, y) =
3

25
sinx sin 4y − 8

29
sin 2x sin 5y.

By the unique solution of the Dirichlet problem, this is the only solution
in C2(T ) ∩ C1(T ).

c) Since on the right-hand side we have an eigenfunction of the operator on the left,
then we should search for the solution in the form

u(x, y) = c1 cosx cos y + c2.

Then
−∆u(x, y) = (12 + 12)c1 cosx cos y = 2c1 cosx cos y.

If we compare these terms to the right-hand side of our equation, we get
2c1 = 1, so c1 =

1
2
. Then the solutions of the problem are

u(x, y) =
1

2
cosx cos y + c.

By the theorem about the form of the solutions of the Neumann-problem, we get that
these are the only solutions in C2(T ) ∩ C1(T ).

4. * Let T := (0, π)2 ⊂ R2, and also Γ1 := {π}×[0, π), Γ2 := (0, π]×{π}, Γ3 := {0}×(0, π],
Γ4 := [0, π)× {0}. Also, let g, h : R2 → R be such functions that

h|Γ1∪Γ3 = 1, h|Γ2∪Γ4 = 0,

g|Γ1∪Γ3 = 0, g|Γ2∪Γ4 = 1.

Then solve the following boundary-value problem! (12 points){
−∆u(t, x) = sin(x) cos(3y)− 5 sin(3x) cos(4y) inside T,

(g∂νu+ hu)|∂T = 0.

Solution: The solution can be submitted.

5. Solve the following mixed parabolic problems!

a)


∂tu(t, x)− ∂2

xu(t, x) = 0 ((t, x) ∈ (R+ × (0, π))),
u(0, x) = x (x ∈ [0, π]),

u(t,0) = u(t, π) = 0 (t ∈ R+
0 ).

b)


∂tu(t, x)− ∂2

xu(t, x) = 0 ((t, x) ∈ (R+ × (0, π))),
u(0, x) = sin 3x− 4 sin 5x (x ∈ [0, π]),

u(t,0) = u(t, π) = 0. (t ∈ R+
0 ).

c)


∂tu(t, x)− ∂2

xu(t, x) = sin 2x ((t, x) ∈ (R+ × (0, π))),
u(0, x) = 0 (x ∈ [0, π]),

u(t,0) = u(t, π) = 0 (t ∈ R+
0 ).

d)


∂tu(t, x)− ∂2

xu(t, x) = t sinx ((t, x) ∈ (R+ × (0, π))),
u(0, x) = 0 (x ∈ [0, π]),

u(t,0) = u(t, π) = 0. (t ∈ R+
0 ).

Solution: a) We use Fourier's method: we search for the solution u in the form

u(t, x) =
∞∑
k=1

ξk(t)uk(x),
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in which uk is the eigenfunction of the one-dimensional (minus) Laplace operator with
Dirichlet boundary (k = 1, . . . ) and ξk(t) are some unknown functions depending only
on t. For this, let us write up the functions present in the equation also in the {uk}∞k=1

basis. The series of the constant 0 function is easy, since all of the coe�cients in its
series are zero. It is also clear that

x =
∞∑
k=1

(∫ π

0

x sin kx dx

)
· uk(x) =

∞∑
k=1

(−1)k+1π

k
uk(x),

in which we used the fact (2) from Exercise 3. a), so∫ π

0

x sin kx dx = (−1)k+1π

k
.

Also, since u(t, x) =
∑∞

k=1 ξk(t)uk(x), we have

∂tu(t, x) =
∞∑
k=1

ξ′k(t)uk(x)

and

∂2
xu(t, x) =

∞∑
k=1

ξk(t)u
′′
k(x) =

∞∑
k=1

ξk(t)

(√
2

π
sin(kx)

)′′

= −k2

∞∑
k=1

ξk(t)uk(x)

If we substitute these into our equation, we get

∞∑
k=1

ξ′k(t)uk(x) + k2

∞∑
k=1

ξk(t)uk(x) = 0,

which can only hold if ξ′k(t) + k2ξk(t) = 0. Similarly, for the initial condition we have

∞∑
k=1

ξk(0)uk(x) = u(0, x) = x =
∞∑
k=1

(−1)k+1π

k
uk(x),

which can only hold if ξk(0) = (−1)k+1 π
k
.

Then, we get the following initial-value problem for ξk inside R+ :ξ′k(t) + k2ξk(t) = 0,

ξk(0) = (−1)k+1π

k
.

Let us multiply both sides of the equation by ek
2t, then

ξ′k(t)e
k2t + k2ek

2t = 0,(
ξk(t)e

k2t
)′

= 0,

ξk(t) = ξk(0)e
−k2t = (−1)k+1π

k
e−k2t.

Therefore, the solution of the parabolic mixed problem is:

u(t, x) = 2
∞∑
k=1

(−1)k+1π

k
e−k2t sin kx.

Note that the above convergence meant for every t > 0 inside L2(0, π) (actually, a
much stronger convergence also holds, but those theorems are non-trivial).

b) We use Fourier's method: we search for the solution u in the form

u(t, x) =
∞∑
k=1

ξk(t) sin kx,
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since the initial function is the eigenfunction of the one-dimensional (minus) Laplace
operator with homogeneous Dirichlet boundary. Then by the equation and the condi-
tions we get that

ξ′k + ξk = 0,

ξk(0) = 0,

if k ̸= 3, 5, which has only the constant zero function as a solution, and also

ξ′3(t) = −9ξ3(t), ξ3(0) = 1

and
ξ′5(t) = −25ξ5(t), ξ5(0) = −4.

The solutions of these are ξ3(t) = e−9t and ξ5(t) = −4e−25t, so the solution of the
parabolic mixed problem is

u(t, x) = e−9t sin 3x− 4e−25t sin 5x.

There are no other solutions, since the solution of the mixed problem is unique.

c) We use the method of Fourier: let us write function sin 2x into the form

sin 2x =
∞∑
k=1

ck · sin kx

It is clear that ck = 1 if k = 2, and in other cases ck = 0. Then by searching for solution
u in the form

u(t, x) =
∞∑
k=1

ξk(t) sin kx,

by the equation and the conditions we get that ξk = 0, if k ̸= 2, and for ξ2 :

ξ′2(t) + 4ξ2(t) = 1, ξ2(0) = 0.

By multiplying both sides of the equation with e4t :

e4tξ′2(t) + 4e4tξ2(t) = e4t,

(e4tξ2(t))
′ = e4t,

ξ2(t) = e−4tC +
1

4
,

and since ξ2(0) = C + 1
4
= 0, C = −1

4
and we have ξ2(t) =

1
4
(1− e−4t). Consequently,

the solution of the mixed parabolic problem is

u(t, x) =
1

4
(1− e−4t) sin 2x.

There are no other solutions, since the solution of the mixed problem is unique.

d) As in the previous cases, we apply the Fourier's method to the problem. We seek
our solution u in the form

u(t, x) = c(t) sinx.

Then from the initial condition we get c(0) = 0, and by substituting u into the equation
we get the ordinary di�erential equation

c′(t) + c(t) = t.

By multiplying both sides by et,

etc′(t) + etc(t) = tet

(etc(t))′ = tet,

so (since ((tet − et)′ = tet) :
c(t) = t− 1 + ce−t

and by the initial condition
c(t) = t− 1 + e−t.

The solution of the parabolic mixed problem is

u(t, x) = (et + t− 1) sinx.

There are no other solutions, since the solution of the mixed problem is unique.
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