Second week

First order equations

I. First order, homogeneous linear equations.

These equations have the form

$$
\begin{equation*}
\sum_{i=1}^{n} f_{i}(x) \frac{\partial u(x)}{\partial x_{i}}=0 \tag{1}
\end{equation*}
$$

The characteristic equation of (11) is:

$$
\begin{equation*}
\dot{x}(t)=f(x(t)) \tag{2}
\end{equation*}
$$

where $\left.f=\left(f_{1}, \ldots f_{n}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}\right)$. The solutions of (2) are the characteristics of (11).
Theorem: Then the following two statements are equivalent:

- u is a solution of (1).
- u is constant along the characteristics (the solutions of (2)).

1. We seek the classical solutions of the following equations:
(a) $y \partial_{x} u(x, y)-x \partial_{y} u(x, y)=0$

Solution: Then the characteristic equation is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=y(t) \tag{3}\\
y^{\prime}(t)=-x(t)
\end{array}\right.
$$

From now on, we can proceed further in two different ways.
First method: The solution of (3) is $x(t)=c_{1} \sin (t)+c_{2} \cos (t)$ and $y(t)=c_{1} \cos (t)-c_{2} \sin (t)$. Then it is easy to see that

$$
(x(t))^{2}+(y(t))^{2}=\text { const. }
$$

which means that $\phi(x, y)=x^{2}+y^{2}$ is a first integral of (3), meaning that it is constant along the characteristics. However we know that u also has this property, and thus

$$
u(x, y)=\Phi\left(x^{2}+y^{2}\right)
$$

for some $\Phi \in C^{1}$ function.
Second method: We do not need to solve (3): we only have to realize that

$$
\dot{x}(t) x(t)+\dot{y}(t) y(t)=0
$$

which means

$$
\left(\frac{1}{2}(x(t))^{2}+\frac{1}{2}(y(t))^{2}\right)^{\prime}=0
$$

So $(x(t))^{2}+(y(t))^{2}$ is constant along the solutions of (3), which means that

$$
u(x, y)=\Phi\left(x^{2}+y^{2}\right)
$$

for some $\Phi \in C^{1}$ function.
(b) $x \partial_{x} u(x, y)=y \partial_{y} u(x, y)$

Solution: Then the characteristic equation is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t) \tag{4}\\
y^{\prime}(t)=-y(t)
\end{array}\right.
$$

From now on, we can proceed further in two different ways.
First method: The solution of (4) is $x(t)=c_{1} e^{t}$ and $y(t)=c_{2} e^{-t}$. Then it is easy to see that

$$
x(t) y(t)=\text { const. }
$$

which means that $\phi(x, y)=x y$ is a first integral of (4), meaning that it is constant along the characteristics. However we know that u also has this property, and thus

$$
u(x, y)=\Phi(x y)
$$

for some $\Phi \in C^{1}$ function.
Second method: We do not need to solve (4): we only have to realize that

$$
\dot{x}(t) y(t)+\dot{y}(t) x(t)=0
$$

which means

$$
(x(t) y(t))^{\prime}=0
$$

So $x(t) y(t)$ is constant along the solutions of (4), which means that

$$
u(x, y)=\Phi(x y)
$$

for some $\Phi \in C^{1}$ function.
Remark: The curve $x y=c$ has two branches, and the solution is not necessarily the same on these branches: it might happen that $u(-1,-1) \neq u(1,1)$, while they correspond to the same, $x y=1$ equation (but are on different branches).
(c) $\partial_{x} u(x, y)=y \partial_{y} u(x, y)$

Solution: Then the characteristic equation is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=1 \tag{5}\\
y^{\prime}(t)=-y(t)
\end{array}\right.
$$

The solution of (5) is $x(t)=t+c_{1}$ and $y(t)=c_{2} e^{-t}$. Then it is easy to see that

$$
e^{x(t)} y(t)=c_{2} e^{c_{1}}=\mathrm{const},
$$

which means that $\phi(x, y)=e^{x} y$ is a first integral of (5), meaning that it is constant along the characteristics. However we know that u also has this property, and thus

$$
u(x, y)=\Phi\left(e^{x} y\right)
$$

for some $\Phi \in C^{1}$ function.
(d) $y^{2} \partial_{x} u(x, y)+e^{x} \partial_{y} u(x, y)=0$

Solution: Then the characteristic equation is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=(y(t))^{2} \tag{6}\\
y^{\prime}(t)=e^{x(t)}
\end{array}\right.
$$

We do not need to solve (6) : we only have to realize that

$$
\dot{y}(t)(y(t))^{2}=e^{x(t)} \dot{x}(t)
$$

which means

$$
\begin{aligned}
& \dot{y}(t)(y(t))^{2}-e^{x(t)} \dot{x}(t)=0 \\
& \quad\left(\frac{(y(t))^{3}}{3}-e^{x(t)}\right)^{\prime}=0
\end{aligned}
$$

So $\frac{(y)^{3}}{3}-e^{x}$ is constant along the solutions of (6), which means that

$$
u(x, y)=\Phi\left(\frac{(y)^{3}}{3}-e^{x}\right)
$$

for some $\Phi \in C^{1}$ function.
(e) $y z \partial_{x} u(x, y, z)+x z \partial_{y} u(x, y, z)+\left(x^{2}+y^{2}\right) \partial_{z} u(x, y, z)=0$

Solution: Then the characteristic equation is

$$
\left\{\begin{align*}
x^{\prime}(t) & =y(t) z(t) \tag{7}\\
y^{\prime}(t) & =x(t) z(t) \\
z^{\prime}(t) & =(x(t))^{2}+(y(t))^{2}
\end{align*}\right.
$$

We do not need to solve (7) : we only have to realize that

$$
\dot{x}(t) x(t)-\dot{y}(t) y(t)=0,
$$

which means that $\varphi_{1}(x, y, z)=x^{2}-y^{2}$ is a first integral. Also,

$$
\dot{z}(t) z(t)=(x(t))^{2} z(t)+(y(t))^{2} z(t)=x(t) \dot{y}(t)+y(t) \dot{x}(t)=(x(t) y(t))^{\prime}
$$

which means that

$$
\left(\frac{(z(t))^{2}}{2}-x(t) y(t)\right)^{\prime}=0
$$

So $\varphi(x, y, z)=\frac{z^{2}}{2}-x y$ is also a first integral of (7), and it is independent of φ_{1}, which means that our solution is

$$
u(x, y)=\Phi\left(x^{2}-y^{2}, \frac{z^{2}}{2}-x y\right)
$$

for some $\Phi \in C^{1}$ function.
(f) $x \partial_{x} u(x, y, z)+y \partial_{y} u(x, y, z)+z \partial_{z} u(x, y, z)=0$

Solution: The characteristic equation is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t) \tag{8}\\
y^{\prime}(t)=y(t) \\
z^{\prime}(t)=z(t)
\end{array}\right.
$$

The solution of is $x(t)=c_{1} e^{t}, y(t)=c_{2} e^{t}$ and $z(t)=c_{3} e^{t}$. Then we have to realize that

$$
\frac{x(t)}{y(t)}=\frac{c_{1}}{c_{2}} \quad \text { and } \quad \frac{y(t)}{z(t)}=\frac{c_{2}}{c_{3}},
$$

which means that the two first integrals are

$$
\phi_{1}(x, y, z)=\frac{x}{y} \quad \text { and } \quad \phi_{2}(x, y, z)=\frac{y}{z} .
$$

Since these two are independent, then our solution is

$$
u(x, y)=\Phi\left(\frac{x}{y}, \frac{y}{z}\right)
$$

for some $\Phi \in C^{1}$ function.
Note that the Cauchy problems corresponding to the homogeneous equations are in exercise 3 . after the next section.
II. Quasi-linear equations These equations have the form

$$
\begin{equation*}
\sum_{i=1}^{n} f_{i}(x, u(x)) \frac{\partial u(x)}{\partial x_{i}}=f_{0}(x, u(x)) \tag{9}
\end{equation*}
$$

Then the auxiliary equation of (9) is:

$$
\begin{equation*}
\sum_{i=1}^{n} f_{i}(x, u(x)) \frac{\partial v(x, u)}{\partial x_{i}}+f_{0}(x, u(x)) \frac{\partial v(x, u)}{\partial u}=0 \tag{10}
\end{equation*}
$$

The main idea of these exercises is observe the characteristic equation associated with (10) (since it is also a homogeneous linear equation). Then search for two different first integrals, and use the fact that for two different (independent) first integrals φ_{1} and φ_{2}, the connection $\varphi_{1}=\Psi\left(\varphi_{2}\right)$ holds. From this we can have the value of u.
2. Give the $u \in C^{2}\left(\mathbf{R}^{3}\right)$ solution to the following equations!
a) $y u(x, y) \partial_{x} u(x, y)+x u(x, y) \partial_{y} u(x, y)=x^{2}+y^{2}$

Solution: The auxiliary equation is

$$
\begin{equation*}
y u(x, y) \partial_{x} v(x, y, u)+x u(x, y) \partial_{y} v(x, y, u)+\left(x^{2}+y^{2}\right) \partial_{u} v(x, y, u)=0 \tag{11}
\end{equation*}
$$

Then the characteristic equation associated with (11) is

$$
\left\{\begin{align*}
x^{\prime}(t) & =y(t) \hat{u}(t) \tag{12}\\
y^{\prime}(t) & =x(t) \hat{u}(t) \\
\hat{u}^{\prime}(t) & =(x(t))^{2}+(y(t))^{2}
\end{align*}\right.
$$

where $\hat{u}(t):=u(x(t), y(t))$. Note that this is the same as the characteristic equation in exercise 1. e), so the two first integrals are $\varphi_{1}(x, y, z)=x^{2}-y^{2}$ and $\varphi(x, y, z)=\frac{\hat{u}^{2}}{2}-x y$. Then because of the connection between them:

$$
\frac{u^{2}}{2}-x y=\Psi\left(x^{2}-y^{2}\right)
$$

From which we get that

$$
u(x, y)= \pm \sqrt{2 x y+\Psi\left(x^{2}-y^{2}\right)}
$$

b) $y \partial_{x} u(x, y)-x \partial_{y} u(x, y)=2 x y u(x, y)$

Solution: The auxiliary equation is

$$
\begin{equation*}
y \partial_{x} v(x, y, u)-x \partial_{y} v(x, y, u)+2 x y u \partial_{u} v(x, y, u)=0 \tag{13}
\end{equation*}
$$

Then the characteristic equation associated to (11) is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=y(t) \tag{14}\\
y^{\prime}(t)=-x(t) \\
\hat{u}^{\prime}(t)=2 x(t) y(t) \hat{u}(t)
\end{array}\right.
$$

where $\hat{u}(t):=u(x(t), y(t))$. We don't have to solve it, just find two independent first integrals of the equation. From the first two equation it is clear that $\varphi_{1}(x, y, u)=x^{2}+y^{2}$ is a first integral. Also,

$$
\frac{\hat{u}^{\prime}(t)}{\hat{u}(t)}=2 x(t) y(t)=2 x(t) x^{\prime}(t)
$$

From which

$$
\begin{gathered}
\frac{\hat{u}^{\prime}(t)}{\hat{u}(t)}-2 x(t) x^{\prime}(t)=0, \\
\left(\ln |\hat{u}(t)|-(x(t))^{2}\right)^{\prime}=0
\end{gathered}
$$

So the other first integral is $\varphi_{2}(x, y, u)=\ln |\hat{u}(t)|-(x(t))^{2}$. Then because of the connection between the two first integrals:

$$
\ln |\hat{u}(t)|-(x(t))^{2}=\Psi\left(x^{2}+y^{2}\right)
$$

from which we get that

$$
u(x, y)= \pm e^{x^{2}+\Psi\left(x^{2}+y^{2}\right)}
$$

Note that since Φ is arbitrary, we might write

$$
u(x, y)= \pm e^{x^{2}} \tilde{\Psi}\left(x^{2}+y^{2}\right)
$$

3. Solve the following Cauchy problems!
(a)

$$
\left\{\begin{align*}
x \partial_{x} u(x, y)-y \partial_{y} u(x, y) & =0 \tag{15}\\
u\left(x, \frac{1}{x}\right) & =1
\end{align*}\right.
$$

Solution: Because of exercise 1. b), the solution is constant on the $x y=c$ hyperbolas. By $u\left(x, \frac{1}{x}\right)=1$, we give the value on one of the characteristics - however, the values on all the others are unknown, meaning that we have infinitely many solutions.
(b)

$$
\left\{\begin{align*}
x \partial_{x} u(x, y)-y \partial_{y} u(x, y) & =0 \tag{16}\\
u\left(x, \frac{1}{x}\right) & =x
\end{align*}\right.
$$

Solution: Because of exercise 1. b), the solution is constant on the $x y=c$ hyperbolas. By $u\left(x, \frac{1}{x}\right)=x$, we require that $u=x$ on the curve $y=\frac{1}{x}$, but this is a characteristic, so it should be constant, meaning that the equation has no solution.
(c)

$$
\left\{\begin{align*}
x \partial_{x} u(x, y)-y \partial_{y} u(x, y) & =0 \tag{17}\\
u(x, y) & =u(-x,-y) \\
u\left(x, x^{2}\right) & =x
\end{align*}\right.
$$

Solution: Because of $u(x, y)=u(-x,-y)$, it is enough to determine the solution on one of the half-planes. We know from exercise 1. b) that $u(x, y)=\phi(x y)$, meaning that $u\left(x, x^{2}\right)=$ $=\phi\left(x^{3}\right)=x$. If we use a new variable $w:=x^{3}$, then $x=\sqrt[3]{w}$ and $\phi(w)=\sqrt[3]{w}$, which means that $u(x, y)=\sqrt[3]{x y}$.

Remark: Here the line at which the initial condition is given $\left(y=x^{2}\right)$ intersects all of the characteristics exactly once, so this is the reason why we have exactly one solution here.
(d)

$$
\left\{\begin{align*}
x u(x, y) \partial_{x} u(x, y)+x u(x, y) \partial_{y} u(x, y) & =x^{2}+y^{2} \tag{18}\\
u(x, 0) & =x^{2}
\end{align*}\right.
$$

Solution: From 2. (d) we know that $u(x, y)= \pm \sqrt{2 x y+\Psi\left(x^{2}-y^{2}\right)}$. Then

$$
\begin{gathered}
u(x, 0)= \pm \sqrt{\Psi\left(x^{2}\right)}=x^{2} \\
\sqrt{\Psi\left(x^{2}\right)}=x^{2} \\
\Psi\left(x^{2}\right)=x^{4} \\
\Psi(x)=x^{2}
\end{gathered}
$$

and consequently $u(x, y)=\sqrt{2 x y+\left(x^{2}-y^{2}\right)^{2}}$.
(e)

$$
\left\{\begin{align*}
x \partial_{x} u(x, y)+y \partial_{y} u(x, y) & =u(x, y) \tag{19}\\
u(x, 1) & =x^{2}
\end{align*}\right.
$$

Solution: The auxiliary equation is

$$
\begin{equation*}
x \partial_{x} v(x, y, u)+y \partial_{y} v(x, y, u)+u \partial_{u} v(x, y, u)=0 \tag{20}
\end{equation*}
$$

Then the characteristic equation associated with 20 is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t) \tag{21}\\
y^{\prime}(t)=y(t) \\
\hat{u}^{\prime}(t)=\hat{u}(t)
\end{array}\right.
$$

Then from 1. (f) we know that the two first integrals are $\phi_{1}(x, y, u)=\frac{u}{y}$ and $\phi_{2}(x, y, u)=\frac{x}{y}$. Then $\frac{u}{y}=\Psi\left(\frac{x}{y}\right)$, and consequently

$$
u(x, y)=y \Psi\left(\frac{x}{y}\right)
$$

Using the condition:

$$
u(x, 1)=\Phi(x)=x^{2}
$$

and

$$
u(x, y)=\frac{x^{2}}{y}
$$

$$
\left\{\begin{align*}
x \partial_{x} u(x, y)-\partial_{y} u(x, y) & =1 \tag{f}\\
u(x, 0) & =x
\end{align*}\right.
$$

Solution: The auxiliary equation is

$$
\begin{equation*}
x \partial_{x} v(x, y, u)-\partial_{y} v(x, y, u)+\partial_{u} v(x, y, u)=0 . \tag{23}
\end{equation*}
$$

Then the characteristic equation associated with (23) is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t), \tag{24}\\
y^{\prime}(t)=-1 \\
\hat{u}^{\prime}(t)=1
\end{array}\right.
$$

Then it is clear that $(u(t)+y(t))^{\prime}=0$, so $\phi_{1}(x, y, u)=u+y$ is a first integral. We also know that $x(t)=c_{1} e^{t}$ and $y(t)=-t+c_{2}$, so

$$
x(t) e^{y(t)}=c_{1} e^{c_{2}},
$$

which means that $\phi_{2}(x, y, u)=x e^{y}$ is also a first integral. Consequently,

$$
u+y=\Psi\left(x e^{y}\right)
$$

and $u(x, y)=-y+\Psi\left(x e^{y}\right)$. Then using the initial condition:

$$
u(x, 0)=\Phi(x)=x
$$

and then $u(x, y)=x e^{y}-y$.
4. Is there such a classical solution of the following equation, for which $u(0, y)=y$?

$$
y \partial_{x} u(x, y)-x \partial_{y} u(x, y)=y .
$$

Solution: The auxiliary equation is

$$
\begin{equation*}
y \partial_{x} v(x, y, u)-x \partial_{y} v(x, y, u)+y \partial_{u} v(x, y, u)=0 \tag{25}
\end{equation*}
$$

Then the characteristic equation associated with (25) is

$$
\left\{\begin{align*}
x^{\prime}(t) & =y(t), \tag{26}\\
y^{\prime}(t) & =-x(t), \\
\hat{u}^{\prime}(t) & =y(t)
\end{align*}\right.
$$

Then it is clear from the first two equations that $\phi_{1}(x, y, u)=x^{2}+y^{2}$ is a first integral. Also, $u^{\prime}(t)-x^{\prime}(t)=0$, so $\phi_{2}(x, y, u)=u-x$ is also a first integral. Consequently,

$$
\begin{gathered}
u-x=\Psi\left(x^{2}+y^{2}\right) \\
u(x, y)=x+\Psi\left(x^{2}+y^{2}\right) .
\end{gathered}
$$

Then $u(0, y)=\Psi\left(y^{2}\right)=y$. However, if $y=1$, then $\Psi(1)=1$, but if $y=-1$, then $\Psi\left((-1)^{2}\right)=$ $=\Psi(1)=-1$, which is a contradiction, meaning that there is no such solution.

Remark : Here there is no global solution, but there are local solutions for the cases $y<0$ and $y>0$.
5. Which solution of the following equation is tangent to the y-axis?

$$
y \partial_{x} u(x, y)-x \partial_{y} u(x, y)=x^{3} y+x y^{3}
$$

Solution: The auxiliary equation is

$$
\begin{equation*}
y \partial_{x} v(x, y, u)-x \partial_{y} v(x, y, u)+\left(x^{3} y+x y^{3}\right) \partial_{u} v(x, y, u)=0 \tag{27}
\end{equation*}
$$

Then the characteristic equation associated with (27) is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=y(t), \tag{28}\\
y^{\prime}(t)=-x(t), \\
\hat{u}^{\prime}(t)=x^{3} y+x y^{3}
\end{array}\right.
$$

Then it is clear from the first two equations that $\phi_{1}(x, y, u)=x^{2}+y^{2}$ is a first integral. Also,

$$
u^{\prime}(t)+y^{\prime}(t)(y(t))^{3}-x^{\prime}(t)(x(t))^{3}=0
$$

so $\phi_{2}(x, y, u)=u+\frac{y^{4}}{4}-\frac{x^{4}}{4}$. Consequently,

$$
\begin{gathered}
u+\frac{y^{4}}{4}-\frac{x^{4}}{4}=\Psi\left(x^{2}+y^{2}\right) \\
u(x, y)=-\frac{y^{4}}{4}+\frac{x^{4}}{4}+\Psi\left(x^{2}+y^{2}\right) .
\end{gathered}
$$

Our solution is tangent to the y-axis, if $u(0, y)=0$ for some y. Then

$$
u(0, y)=-\frac{y^{4}}{4}+\Psi\left(y^{2}\right)=0
$$

and $\Psi(y)=\frac{y^{2}}{4}$. So our solution is

$$
u(x, y)=\frac{\left(x^{2}+y^{2}\right)^{2}}{4}-\frac{y^{4}}{4}+\frac{x^{4}}{4}=\frac{x^{4}}{2}+\frac{x^{2} y^{2}}{2}
$$

6. Let $H \in C^{1}\left(\mathbf{R}^{2}\right), f, g \in C(\mathbf{R})$. Give the first integral of the following systems!
(a)

$$
\left\{\begin{array}{l}
x^{\prime}(t)=\partial_{y} H(x, y), \tag{29}\\
y^{\prime}(t)=-\partial_{x} H(x, y) .
\end{array}\right.
$$

Solution: Here H is the Hamiltonian function (or just simply Hamiltonian), and it is a first integral, since

$$
(H(x(t), y(t)))^{\prime}=\partial_{x} H(x, y) x^{\prime}(t)+\partial_{y} H(x, y) y^{\prime}(t)=-\partial_{x} H(x, y) \partial_{y}+\partial_{y} \partial_{x}=0
$$

(b)

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(y) \tag{30}\\
y^{\prime}(t)=g(x)
\end{array}\right.
$$

Solution: If $H(x, y)=F(y)-G(x)$, then $\partial_{y} H(x, y)=F^{\prime}(y)=f(y)$ and $\partial_{x} H(x, y)=-G^{\prime}(x)=-g(x)$, so we got back the equation of exercise (a), which means that this is just a special case of that one.
Remark: The previous argument shows that if our equation is in the form

$$
f(y) \partial_{x} u(x, y)+g(y) \partial_{y} u(x, y)=0
$$

then the solution is $u(x, y)=\Phi(F(y)-G(x))$.
7. * Solve the following Cauchy problem! (10 points)

$$
\left\{\begin{align*}
x u(x, y) \partial_{x} u(x, y)+y u(x, y) \partial_{y} u(x, y) & =x^{2}+y^{2}+(u(x, y))^{2} \tag{31}\\
u(1, y) & =y^{2}
\end{align*}\right.
$$

Solution: This is a bonus problem, the solution can be submitted.

