
Second week

First order equations

I. First order, homogeneous linear equations.

These equations have the form

n∑
i=1

fi(x)
∂u(x)

∂xi

= 0 (1)

The characteristic equation of (1) is :

ẋ(t) = f(x(t)) (2)

where f = (f1, . . . fn) : R
n → Rn). The solutions of (2) are the characteristics of (1).

Theorem: Then the following two statements are equivalent:

� u is a solution of (1).

� u is constant along the characteristics (the solutions of (2)).

1. We seek the classical solutions of the following equations:

(a) y ∂xu(x, y)− x ∂yu(x, y) = 0

Solution: Then the characteristic equation is{
x′(t) = y(t),

y′(t) = −x(t).
(3)

From now on, we can proceed further in two di�erent ways.

First method: The solution of (3) is x(t) = c1 sin(t)+c2 cos(t) and y(t) = c1 cos(t)−c2 sin(t).
Then it is easy to see that

(x(t))2 + (y(t))2 = const.

which means that ϕ(x, y) = x2 + y2 is a �rst integral of (3), meaning that it is constant
along the characteristics. However we know that u also has this property, and thus

u(x, y) = Φ(x2 + y2)

for some Φ ∈ C1 function.

Second method: We do not need to solve (3): we only have to realize that

ẋ(t) x(t) + ẏ(t) y(t) = 0,

which means (
1

2
(x(t))2 +

1

2
(y(t))2

)′

= 0.

So (x(t))2 + (y(t))2 is constant along the solutions of (3), which means that

u(x, y) = Φ(x2 + y2)

for some Φ ∈ C1 function.

(b) x ∂xu(x, y) = y ∂yu(x, y)

Solution: Then the characteristic equation is{
x′(t) = x(t),

y′(t) = −y(t).
(4)
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From now on, we can proceed further in two di�erent ways.

First method: The solution of (4) is x(t) = c1e
t and y(t) = c2e

−t. Then it is easy to see that

x(t)y(t) = const.

which means that ϕ(x, y) = xy is a �rst integral of (4), meaning that it is constant along
the characteristics. However we know that u also has this property, and thus

u(x, y) = Φ(xy)

for some Φ ∈ C1 function.

Second method: We do not need to solve (4): we only have to realize that

ẋ(t) y(t) + ẏ(t) x(t) = 0,

which means
(x(t) y(t))′ = 0.

So x(t)y(t) is constant along the solutions of (4), which means that

u(x, y) = Φ(xy)

for some Φ ∈ C1 function.

Remark: The curve xy = c has two branches, and the solution is not necessarily the same
on these branches: it might happen that u(−1,−1) ̸= u(1,1), while they correspond to the
same, xy = 1 equation (but are on di�erent branches).

(c) ∂xu(x, y) = y∂yu(x, y)

Solution: Then the characteristic equation is{
x′(t) = 1,

y′(t) = −y(t).
(5)

The solution of (5) is x(t) = t+ c1 and y(t) = c2e
−t. Then it is easy to see that

ex(t)y(t) = c2e
c1 = const,

which means that ϕ(x, y) = exy is a �rst integral of (5), meaning that it is constant along
the characteristics. However we know that u also has this property, and thus

u(x, y) = Φ(exy)

for some Φ ∈ C1 function.

(d) y2∂xu(x, y) + ex∂yu(x, y) = 0

Solution: Then the characteristic equation is{
x′(t) = (y(t))2,

y′(t) = ex(t).
(6)

We do not need to solve (6): we only have to realize that

ẏ(t) (y(t))2 = ex(t)ẋ(t),

which means
ẏ(t) (y(t))2 − ex(t)ẋ(t) = 0,(

(y(t))3

3
− ex(t)

)′

= 0.

So
(y)3

3
− ex is constant along the solutions of (6), which means that

u(x, y) = Φ

(
(y)3

3
− ex

)
for some Φ ∈ C1 function.
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(e) yz ∂xu(x, y, z) + xz ∂yu(x, y, z) + (x2 + y2)∂zu(x, y, z) = 0

Solution: Then the characteristic equation is
x′(t) = y(t)z(t),

y′(t) = x(t)z(t),

z′(t) = (x(t))2 + (y(t))2.

(7)

We do not need to solve (7): we only have to realize that

ẋ(t) x(t)− ẏ(t) y(t) = 0,

which means that φ1(x, y, z) = x2 − y2 is a �rst integral. Also,

ż(t) z(t) = (x(t))2z(t) + (y(t))2z(t) = x(t)ẏ(t) + y(t)ẋ(t) = (x(t)y(t))′,

which means that (
(z(t))2

2
− x(t)y(t)

)′

= 0.

So φ(x, y, z) =
z2

2
− xy is also a �rst integral of (7), and it is independent of φ1, which

means that our solution is

u(x, y) = Φ

(
x2 − y2,

z2

2
− xy

)
for some Φ ∈ C1 function.

(f) x∂xu(x, y, z) + y∂yu(x, y, z) + z∂zu(x, y, z) = 0

Solution: The characteristic equation is
x′(t) = x(t),

y′(t) = y(t),

z′(t) = z(t).

(8)

The solution of is x(t) = c1e
t, y(t) = c2e

t and z(t) = c3e
t. Then we have to realize that

x(t)

y(t)
=

c1
c2

and
y(t)

z(t)
=

c2
c3
,

which means that the two �rst integrals are

ϕ1(x, y, z) =
x

y
and ϕ2(x, y, z) =

y

z
.

Since these two are independent, then our solution is

u(x, y) = Φ

(
x

y
,
y

z

)
for some Φ ∈ C1 function.

Note that the Cauchy problems corresponding to the homogeneous equations are in exercise 3.
after the next section.

II. Quasi-linear equations These equations have the form

n∑
i=1

fi(x, u(x))
∂u(x)

∂xi

= f0(x, u(x)) (9)

Then the auxiliary equation of (9) is :

n∑
i=1

fi(x, u(x))
∂v(x, u)

∂xi

+ f0(x, u(x))
∂v(x, u)

∂u
= 0 (10)

The main idea of these exercises is observe the characteristic equation associated with (10) (since it
is also a homogeneous linear equation). Then search for two di�erent �rst integrals, and use the fact
that for two di�erent (independent) �rst integrals φ1 and φ2, the connection φ1 = Ψ(φ2) holds. From
this we can have the value of u.

3



2. Give the u ∈ C2(R3) solution to the following equations!

a) y u(x, y)∂xu(x, y) + x u(x, y)∂yu(x, y) = x2 + y2

Solution: The auxiliary equation is

y u(x, y)∂xv(x, y, u) + x u(x, y)∂yv(x, y, u) + (x2 + y2)∂uv(x, y, u) = 0. (11)

Then the characteristic equation associated with (11) is
x′(t) = y(t)û(t),

y′(t) = x(t)û(t),

û′(t) = (x(t))2 + (y(t))2,

(12)

where û(t) := u(x(t), y(t)). Note that this is the same as the characteristic equation in

exercise 1. e), so the two �rst integrals are φ1(x, y, z) = x2 − y2 and φ(x, y, z) =
û2

2
− xy.

Then because of the connection between them:

u2

2
− xy = Ψ(x2 − y2).

From which we get that
u(x, y) = ±

√
2xy +Ψ(x2 − y2).

b) y ∂xu(x, y)− x ∂yu(x, y) = 2xyu(x, y)

Solution: The auxiliary equation is

y ∂xv(x, y, u)− x ∂yv(x, y, u) + 2xyu∂uv(x, y, u) = 0. (13)

Then the characteristic equation associated to (11) is
x′(t) = y(t),

y′(t) = −x(t),

û′(t) = 2x(t)y(t)û(t),

(14)

where û(t) := u(x(t), y(t)). We don't have to solve it, just �nd two independent �rst integrals
of the equation. From the �rst two equation it is clear that φ1(x, y, u) = x2 + y2 is a �rst
integral. Also,

û′(t)

û(t)
= 2x(t)y(t) = 2x(t)x′(t).

From which
û′(t)

û(t)
− 2x(t)x′(t) = 0,(

ln |û(t)| − (x(t))2
)′
= 0.

So the other �rst integral is φ2(x, y, u) = ln |û(t)| − (x(t))2. Then because of the connection
between the two �rst integrals :

ln |û(t)| − (x(t))2 = Ψ(x2 + y2),

from which we get that
u(x, y) = ±ex

2+Ψ(x2+y2).

Note that since Φ is arbitrary, we might write

u(x, y) = ±ex
2

Ψ̃(x2 + y2).

3. Solve the following Cauchy problems!

(a) 
x∂xu(x, y)− y∂yu(x, y) = 0,

u

(
x,

1

x

)
= 1

(15)

Solution: Because of exercise 1. b), the solution is constant on the xy = c hyperbolas. By

u

(
x,

1

x

)
= 1, we give the value on one of the characteristics - however, the values on all

the others are unknown, meaning that we have in�nitely many solutions.
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(b) 
x∂xu(x, y)− y∂yu(x, y) = 0,

u

(
x,

1

x

)
= x.

(16)

Solution: Because of exercise 1. b), the solution is constant on the xy = c hyperbolas. By

u

(
x,

1

x

)
= x, we require that u = x on the curve y =

1

x
, but this is a characteristic, so it

should be constant, meaning that the equation has no solution.

(c) 
x∂xu(x, y)− y∂yu(x, y) = 0,

u (x, y) = u(−x,−y),

u
(
x, x2

)
= x.

(17)

Solution: Because of u (x, y) = u(−x,−y), it is enough to determine the solution on one of
the half-planes. We know from exercise 1. b) that u(x, y) = ϕ(xy), meaning that u(x, x2) =
= ϕ(x3) = x. If we use a new variable w := x3, then x = 3

√
w and ϕ(w) = 3

√
w, which means

that u(x, y) = 3
√
xy.

Remark: Here the line at which the initial condition is given (y = x2) intersects all of the
characteristics exactly once, so this is the reason why we have exactly one solution here.

(d) {
xu(x, y)∂xu(x, y) + xu(x, y)∂yu(x, y) = x2 + y2,

u(x,0) = x2.
(18)

Solution: From 2. (d) we know that u(x, y) = ±
√
2xy +Ψ(x2 − y2). Then

u(x,0) = ±
√
Ψ(x2) = x2,√

Ψ(x2) = x2,

Ψ(x2) = x4,

Ψ(x) = x2,

and consequently u(x, y) =
√
2xy + (x2 − y2)2.

(e) {
x∂xu(x, y) + y∂yu(x, y) = u(x, y),

u(x,1) = x2.
(19)

Solution: The auxiliary equation is

x ∂xv(x, y, u) + y ∂yv(x, y, u) + u∂uv(x, y, u) = 0. (20)

Then the characteristic equation associated with (20) is
x′(t) = x(t),

y′(t) = y(t),

û′(t) = û(t).

(21)

Then from 1. (f) we know that the two �rst integrals are ϕ1(x, y, u) =
u

y
and ϕ2(x, y, u) =

x

y
.

Then
u

y
= Ψ

(
x

y

)
, and consequently

u(x, y) = y Ψ

(
x

y

)
.

Using the condition:
u(x,1) = Φ(x) = x2,

and

u(x, y) =
x2

y
.

(f) {
x∂xu(x, y)− ∂yu(x, y) = 1,

u(x,0) = x.
(22)
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Solution: The auxiliary equation is

x ∂xv(x, y, u)− ∂yv(x, y, u) + ∂uv(x, y, u) = 0. (23)

Then the characteristic equation associated with (23) is
x′(t) = x(t),

y′(t) = −1,

û′(t) = 1.

(24)

Then it is clear that (u(t) + y(t))′ = 0, so ϕ1(x, y, u) = u + y is a �rst integral. We also
know that x(t) = c1e

t and y(t) = −t+ c2, so

x(t)ey(t) = c1e
c2 ,

which means that ϕ2(x, y, u) = xey is also a �rst integral. Consequently,

u+ y = Ψ(xey),

and u(x, y) = −y +Ψ(xey). Then using the initial condition:

u(x,0) = Φ(x) = x,

and then u(x, y) = xey − y.

4. Is there such a classical solution of the following equation, for which u(0, y) = y?

y ∂xu(x, y)− x∂yu(x, y) = y.

Solution: The auxiliary equation is

y ∂xv(x, y, u)− x ∂yv(x, y, u) + y ∂uv(x, y, u) = 0. (25)

Then the characteristic equation associated with (25) is
x′(t) = y(t),

y′(t) = −x(t),

û′(t) = y(t).

(26)

Then it is clear from the �rst two equations that ϕ1(x, y, u) = x2 + y2 is a �rst integral. Also,
u′(t)− x′(t) = 0, so ϕ2(x, y, u) = u− x is also a �rst integral. Consequently,

u− x = Ψ(x2 + y2),

u(x, y) = x+Ψ(x2 + y2).

Then u(0, y) = Ψ(y2) = y. However, if y = 1, then Ψ(1) = 1, but if y = −1, then Ψ((−1)2) =
= Ψ(1) = −1, which is a contradiction, meaning that there is no such solution.

Remark: Here there is no global solution, but there are local solutions for the cases y < 0 and
y > 0.

5. Which solution of the following equation is tangent to the y-axis?

y∂xu(x, y)− x∂yu(x, y) = x3y + xy3

Solution: The auxiliary equation is

y ∂xv(x, y, u)− x ∂yv(x, y, u) + (x3y + xy3) ∂uv(x, y, u) = 0. (27)

Then the characteristic equation associated with (27) is
x′(t) = y(t),

y′(t) = −x(t),

û′(t) = x3y + xy3.

(28)

Then it is clear from the �rst two equations that ϕ1(x, y, u) = x2 + y2 is a �rst integral. Also,

u′(t) + y′(t)(y(t))3 − x′(t)(x(t))3 = 0,
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so ϕ2(x, y, u) = u+
y4

4
− x4

4
. Consequently,

u+
y4

4
− x4

4
= Ψ(x2 + y2),

u(x, y) = −y4

4
+

x4

4
+ Ψ(x2 + y2).

Our solution is tangent to the y-axis, if u(0, y) = 0 for some y. Then

u(0, y) = −y4

4
+ Ψ(y2) = 0,

and Ψ(y) =
y2

4
. So our solution is

u(x, y) =
(x2 + y2)2

4
− y4

4
+

x4

4
=

x4

2
+

x2y2

2
.

6. Let H ∈ C1(R2), f, g ∈ C(R). Give the �rst integral of the following systems!

(a) {
x′(t) = ∂yH(x, y),

y′(t) = −∂xH(x, y).
(29)

Solution: Here H is the Hamiltonian function (or just simply Hamiltonian), and it is a
�rst integral, since

(H(x(t), y(t)))′ = ∂xH(x, y)x′(t) + ∂yH(x, y)y′(t) = −∂xH(x, y)∂y + ∂y∂x = 0.

(b) {
x′(t) = f(y),

y′(t) = g(x).
(30)

Solution: If H(x, y) = F (y) − G(x), then ∂yH(x, y) = F ′(y) = f(y) and
∂xH(x, y) = −G′(x) = −g(x), so we got back the equation of exercise (a), which means
that this is just a special case of that one.

Remark: The previous argument shows that if our equation is in the form

f(y)∂xu(x, y) + g(y)∂yu(x, y) = 0,

then the solution is u(x, y) = Φ(F (y)−G(x)).

7. * Solve the following Cauchy problem! (10 points){
xu(x, y)∂xu(x, y) + yu(x, y)∂yu(x, y) = x2 + y2 + (u(x, y))2,

u(1, y) = y2.
(31)

Solution: This is a bonus problem, the solution can be submitted.
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