
Third week

Classi�cation of second order equations, canonical form

1. Categorize the following di�erential operators!

(a) Lu = ∂2
xu+ 6∂xyu+ ∂2

yu

Solution: The matrix is

A =

(
1 3
3 1

)
In this case det(A) = −8 < 0, so one of the eigenvalues is negative, and the other is positive
(since λ1λ2 = det(A)), so the operator is hyperbolic.

(b) Lu = 6∂2
xu+ 8∂xyu+ 8∂2

yu+ 2∂xzu+ 6∂yzu+ 10∂2
zu

Solution: The matrix is

A =

6 4 1
4 8 3
1 3 10


Now we can proceed further in two di�erent ways.

Method one: We can use the theorem of Gershgorin : this states that all of the eigenvalues of
a matrix lie inside the union of some circles, which have their centers located at points aii, and
the corresponding radiuses are

∑n
j=1,j ̸=i |aij|. In this case this means that all of the eigenvalues

have to be positive (since all of the circles lie on the positive side of the real number line), so
the operator is elliptic.

Method two: Since all of the principal minors are positive for the above matrix, then it is positive
de�nite, meaning that all of its eigenvalues are positive, so it is elliptic.

Alternatively one can also compute the eigenvalues of the given matrix, but that takes more
time.

(c) Lu = (x+ y)∂2
xu+ 2

√
xy∂xyu+ (x+ y)∂2

yu

Solution: The matrix is

A =

(
x+ y

√
xy√

xy x+ y

)
Here det(A) = (x + y)2 − xy = x2 + xy + y2. However, since we need the equation to be
well-de�ned, xy ≥ 0 (since we only take account real-valued coe�cients), so it means that
det(A) = x2 + xy + y2 ≥ 0. Also, the case det(A) = 0 can only hold if x = y = 0, but in this
case we get the identically zero operator, so we can omit this case. Consequently, our operator
is elliptic for (x, y) ∈ R2 \ {(0,0)}.

2. Show such a di�erential operator which is elliptic on R+ × R+, and hyperbolic on R− × R+ and on
R+ × R−. Is it true that all such operators are parabolic on R+ × {0}?
Solution: A good example is x∂2

xu+ y∂2
yu, since then the matrix has the form

A =

(
x 0
0 y

)
Then it has the required properties.
If the elements in the matrix are not continuous functions, then we can easily de�ne such functions
which take positive values for y ≥ 0 and negatives for y < 0, so it will not be parabolic on R+ ×{0}.
However, if the coe�cient functions are continuous, then the operator will be parabolic on R+×{0} :
the reason is that the function (x0, y) → min{eig(A(x0, y))} is continuous in y. (The reason is that
the roots of a polynomial depend continuously on its coe�cients - this can be proved e.g. by Rouche's
theorem.)

3. Show an operator which is elliptic on all points of Rn, but not uniformly elliptic.

Solution: Let A(x) be a diagonal matrix with all its entries as e−x1 . Then for all x ∈ Rn,
∀p ∈ Rn \ {0} :

⟨A(x)p, p⟩ = e−x1|p|2 > 0

Which means that the operator is elliptic.
However, since e−x1 |p|2 → 0 as x1 → ∞, it is not uniformly elliptic (since it is not bounded from
below).
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4. Is it possible to give a di�erential operator with continuous coe�cients which is elliptic in all inner
points of a bounded set Ω ⊂ Rn, but is not uniformly elliptic? And what if the functions are
continuous on Ω, and the operator is also elliptic on Ω?

Solution: A good example for the �rst question is for example Ω = (0,1)n and
A(x) = diag(x1, x2, . . . xn). In this case

⟨A(x)p, p⟩ = x1|p1|2 + x2|p2|2 + . . . xn|pn|2 > 0

So our operator is elliptic. However, if x → 0, then ⟨A(x)p, p⟩ → 0, so it is not uniformly elliptic (it
is not bounded from below).

Now we prove that if the operator is de�ned on Ω, then the elliptic property implies the uniform
elliptic one. Let us consider the surface of B(0,1) (the ball with radius one centered at zero), and
denote it by S. Then we know that the function (x, p) → ⟨A(x)p, p⟩ is continuous on Ω×S. Because
of the elliptic property, we know that ⟨A(x)p, p⟩ > 0. Since Ω× S is compact, we know that there is
some c0 > 0 constant for which ⟨A(x)p, p⟩ ≥ c0 for all (x, p) ∈ Ω× S.

If p is arbitrary (p ∈ Rn \ {0}), then p

|p|
∈ S, meaning that

⟨A(x)p, p⟩ = |p|2
〈
A(x)

p

|p|
,
p

|p|

〉
≥ c0|p|2

so it is uniformly elliptic. (It can be shown easily that if this inner product is bounded from below,
then it is also bounded from above, so that part can be omitted.)

5. Give a, b, c : R2 → R polynomials such that the di�erential operator

Lu = a(x, y)∂2
xu+ b(x, y)∂xyu+ c(x, y)∂2

yu

is elliptic on the upper (open) half plane, and hyperbolic on the lower (open) half plane.

Solution:

First Solution: Let e.g. a(x, y) = y2, b(x, y) = 2xy and c(x, y) = x2 + y. Then

A =

(
y2 xy
xy x2 + y

)
Here det(A) = y2x2 + y3 − x2y2 = y3. This is positive for y > 0 and negative for y < 0, so the matrix
is elliptic for y > 0 and hyperbolic for y < 0.

Second Solution: Let our matrix to be

A =

(
1 + y y
y y

)
Here det(A) = y + y2 − y2 = y. This is positive for y > 0 and negative for y < 0, so the matrix is
elliptic for y > 0 and hyperbolic for y < 0.

Of course there are several other possible con�gurations.

6. Give the a, b non-constant polynomials in a way that the di�erential operator

Lu = a(x, y)∂2
xu+ x2∂xyu+ y2∂yxu+ b(x, y)∂2

yu

is elliptic inside B(0,1) and inside R2 \B(0,2), and hyperbolic inside B(0,2) \B(0,1).

Solution: Here

A =

 a(x+ y)
1

2
(x2 + y2)

1

2
(x2 + y2) b(x, y)


Then

det(A) = a(x, y)b(x, y)− 1

4
(x2 + y2)2 (1)

Our goal is now that the determinant is negative at B(0,2) \B(0,1), and is positive in B(0,1) and in
R2 \B(0,2). Note however that the previous conditions can be easily expressed by polar-coordinates:
namely, we want our determinant to be positive for r2 < 1 and r2 > 4 and to be negative for 1 <
< r2 < 4. (Note that it is possible to do the following calculations using only r, but it is easier in
this case to use r2 instead.)
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Then (r2−1)(r2−4) is a good choice, so let us choose our determinant to be det(A) =
1

2
(r2−1)(r2−

− 4). (The reason for the constant
1

2
is that we want to have a product form a(x, y)b(x, y) in the end

- it might work with other constants as well, but does not work with 1.)

Substituting this into (1), we get

a(x, y)b(x, y) = det(A) +
1

4
(x2 + y2)2 =

1

2
(r2 − 1)(r2 − 4) +

1

4
r4 =

3

4
r4 − 5

2
r2 + 2 =

1

4
(3r4 − 10r2 + 8) =

1

4
(3r4 − 6r2 − 4r2 + 8) =

=
1

4
(r2 − 2)(3r2 − 4)

So the choices a(x, y) =
1

4
(x2 + y2 − 2) and b(x, y) = 3x2 + 3y2 − 4 are satisfactory.

7.* Solve the following equation! You can solve it by transforming it to canonical form - see Section 2.3.
in the lecture notes! 

∂2
xu(x, y)− ∂2

yu(x, y)− 2∂xu(x, y) + u(x, y) = y,

u (x,0) = ex,

∂yu (x,0) = ex + 1.

(2)

Solution: This can be submitted.

3


