Fourth practice

Distributions I.: Definition, order

1. Let  C R™ be an open and connected subset, and ¢ € D(Q2) (where D(£2) is the set of test functions,
as defined on the lecture).

a)

b)

Let ¢j(x) := %(ﬁ(x) (x € Q,j € Z*+). Show that ¢;(x) LNRY

Solution: Here supp(¢;) = supp¢ for all j (since the support does not change if I divide my
function by some number (the non-zero values remain non-zero, and the zero ones also stay
zero). Also, V o multiindex

0°,(2)] = =1070(a)| < < max o] =0

D(Q)

which means that 0%¢; — 0 uniformly on €, therefore ¢,(z) —= 0.

1

Let 2 =R", and ¢;(z) := =¢ (E) (x € Q,7 € ZT). Is it true that this sequence is convergent
J J

in the D(2)-sense?

Solution: The key observation here is the fact that as j — oo, the support of ¢ <§> gets bigger

and bigger (since if y € supp(¢p(x)), then jy € supp <gb <§>>) But because of this, there is no

such compact set which contains all of the supports (since it should be unbounded), meaning
that this sequence cannot converge.

1
Let Q = R", and ¢;(x) = =¢ (jx) (zr € Q,j € ZT). Is it true that this sequence is convergent
J

in the D(2)-sense?
Solution: Here the support of functions ¢;(x) shrinks and get smaller as j — oo, so there is
such a K C ) compact set that it contains all of them. Also,

1
6,(@)] < < max 0] = 0

meaning that ¢; — 0 uniformly.
However, if we take |a| = 1, then:

max [0%¢;| = max |9%¢|

which means that 0%¢ — 0 (which should be true in case of convergence since ¢; — 0, so
0%¢p; — 0“0) holds only if maxgn |0%¢| = 0, therefore 0%¢ = 0, so ¢ is a constant, but it should
have compact support, so it is only convergent if ¢ = 0.

2. Let Q C R" be an open, connected set and f € L} ().

loc

a) Let Ty : D(2) — R be defined as

Ty(6) = /Q 2

(This is the regular distribution.) Show that this is a 0-order distribution!

Solution: It is easy to see that this is linear (by definition). We also need that it should be
sequentially continuous, for which we will use the theorem proved on the Lecture part, meaning
that we have to find an upper bound for the value of the functional using the derivatives of ¢.
Let us suppose that supp(¢) C K, and then:

[ el =| [ el < [ 1701 <mpxier ([ 1n)

Since f € L},.(Q), we know that (fK ]f|) = cx < 00, so the theorem can be applied, and we get
a 0-order distribution.

Ty (0)] =




b)

Let Uy : D(€2) — R be defined as

Uy s(@) = /Q 0%

where 3 is a given multiindex. Prove that Uy s € D'(Q2) and it has finite order! Also, is it possible
that for two, (in the L'-sense) different f and g functions Uy g(¢) = U, () for all ¢ € D(Q)?

Solution: It is clear that this functional is linear. Then for some ¢ € D(2) for which

supp(¢) C K, we get:
[ s0%e] < [ 15001 < mxioel ([ 1)

Since f € L},.(Q), we know that (fK |f|) = ¢k < 00, S0 the theorem can be applied, and we get
an at most |f|-order distribution.
For the second part, let us choose n = 1, Q = (a,b), f € Li,.(a,b), 3 =1 and c € R arbitrary.

loc
Then for every ¢ € D(a,b):

[saw=[sove o= [ sosaom o= [ 1o

in which we used that since ¢ has compact support, then it takes zero values on the boundary,
meaning that ¢(b) = ¢(a) = 0. Consequently, Usg = Usy. 3. A similar thing can be shown in
the case |5 > 1.

Remark: Note that in the case of |3| = 0, we get a regular distribution, and by the theorem
stated on the lecture, in that case f = g a.e.

Us(6)] = ] /Q fa%‘ _

3. Let a € R", and the functional J, : D — R be defined as

0a(9) := ¢(a)

(This is the Dirac-delta distribution.)

a)

b)

Prove that this is a zero-order distribution!
Solution: It is easy to see that it is linear. Also, if we apply the theorem from the lecture:

5(0)] = [9(a)] < max |6

in which we supposed that supp(¢) C K. Then 4, is a 0-order distribution.

Remark: In this case we do not even need the aforementioned theorem, but the sequentially

continuous property can be proved directly, in the following way. Let us suppose that ¢; & 0.

Then it means that ¢; — ¢ uniformly, from which we get that ¢, — ¢ pointwise also, meaning
that ¢;(a) = ¢(a), which gives our property.

Show that 9, is not a regular distribution!
Solution: We prove the statement by contradiction: let us suppose that 3f € L} () such that

loc

¢(a) = [, f¢. Since f € L},.(Q), then there is a neighborhood of a denoted by U, for which
Ji; 1f] < 1. (Such an interval can be constructed by the approximation theorem.)
Let ¢ be such a test function for which supp(¢) C U, and max |¢| = ¢(a) (such a test function

exists, see the construction of the 7 functions on the lecture). Then we get the following:

6(a) = ] / qu} < [\l = [ 171l < maxlol [ 171 < lota)

In the last step we used the definition of U and ¢. This is clearly a contradiction, so we get our
statement.

Remark: The above statement can be also proved if we observe the support of the two functio-
nals. We know that supp(d,) = {a}, and supp(7y) = supp(f), meaning that these two can only
be equivalent if we have an L, function which has a support of just point a, but then f = 0
a.e., meaning that 6,(¢) = T¢(¢) = To(¢) = 0 which is clearly a contradiction.

4. Let Q = (0,2) and u : D(2) — R defined as

u(g) = jf;w (5)



a)

b)

Show that u € D'(Q)!
Solution: Let K C (0,2) be a compact set. Then since K has a smallest value, then there is

such an N € Z* value for which ~ € K, but ¢ K for all k € Z". Then if we have a

N+ Ek

) =0 for all k € Z", meaning that

function ¢ such that supp(¢) C K, then ¢ (N——i—k

u(¢)| =

00 N N
3 ) <l) 3 ) (1) < max o]
i=1 J j=1 J P

which means that by our theorem, u is sequentially continuous, and since it is also linear, then
u is a distribution.

* Does u have finite order?
Solution: The solution can be submitted.



