Fifth practice

Distributions II.: Derivation

1. Let $f \in C^{m}\left(\mathbb{R}^{n}\right)$. Show that for any $|\alpha| \leq m$ multiindex, $\forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
T_{\partial^{\alpha} f}(\phi)=(-1)^{|\alpha|} T_{f}\left(\partial^{\alpha} \phi\right) .
$$

(This was stated on the Lecture, but was not proved there.)
Solution: The more general statement can be proved by induction - here we only prove the special case $|\alpha|=1$ (so there is only one, first order derivative):

$$
T_{\partial_{j} f}(\phi)=-T_{f}\left(\partial_{j} \phi\right)
$$

Without loss of generality let us assume that $j=1$ (the derivative is in the first variable), and let us use the notation for $x \in \mathbb{R}^{n}: x=\left(x_{1}, \tilde{x}\right)$, where $\tilde{x} \in \mathbb{R}^{n-1}$ (so here x_{1} is the first variable, and \tilde{x} contains all the other, $n-1$-many variables).
Then for $f \in C^{1}\left(\mathbb{R}^{n}\right), f$ and $\partial_{1} f$ are in $L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, which means that the notations T_{f} and $T_{\partial_{1} f}$ make sense. Then by definition:

$$
T_{\partial_{1} f}(\phi)=\int_{\mathbb{R}^{n}}\left(\partial_{1} f\right) \phi=\int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \partial_{1} f\left(x_{1}, \tilde{x}\right) \phi\left(x_{1}, \tilde{x}\right) d x_{1} d \tilde{x}=
$$

Now we apply integration by parts to the inner integral:

$$
=\int_{\mathbb{R}^{n-1}}\left[f\left(x_{1}, \tilde{x}\right) \phi\left(x_{1}, \tilde{x}\right)\right]_{x_{1}=-\infty}^{\infty} d \tilde{x}-\int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} f\left(x_{1}, \tilde{x}\right) \partial_{1} \phi\left(x_{1}, \tilde{x}\right) d x_{1} d \tilde{x}=
$$

Now we use the fact that ϕ has compact support, so ϕ has zero values at $-\infty$ and at ∞, meaning that the first term is zero.

$$
=-\int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} f\left(x_{1}, \tilde{x}\right) \partial_{1} \phi\left(x_{1}, \tilde{x}\right) d x_{1} d \tilde{x}=-\int_{\mathbb{R}^{n}} f \partial_{1} \phi=-T_{f}\left(\partial_{1} \phi\right),
$$

which gives our statement.
2. Let $\partial^{\alpha} u(\phi):=(-1)^{|\alpha|} u\left(\partial^{\alpha} \phi\right)$. Show that $\partial^{\alpha} u$ is a distribution!
(This proposition was also stated at the Lecture, but is proved here.)
Solution: Here we only prove the statement for $|\alpha|=1$, namely that $\partial_{j} u(\phi):=-u\left(\partial_{j} \phi\right)$ is indeed a distribution. The more general case can be done by induction.
For $\partial_{j} u$ to be a distribution, we need two properties: it should be linear, and also sequentially continuous. The linearity is trivially true. For the sequentially continuous property, let us assume that $\phi_{k} \xrightarrow{\mathcal{D}(\Omega)} \phi$. This means that then $\partial_{j} \phi_{k} \rightarrow \partial_{j} \phi$, and this also holds for all the derivatives of ϕ_{k} and ϕ; also, the supports are inside a compact set (because of the definition of $\left.\phi_{k} \xrightarrow{\mathcal{D}(\Omega)} \phi\right)$. So this means that $\partial_{j} \phi_{k} \xrightarrow{\mathcal{D}(\Omega)} \partial_{j} \phi$ also holds, and since u is a distribution, it is sequentially continuous, so $u\left(\partial_{j} \phi_{k}\right) \rightarrow u\left(\partial_{j} \phi\right)$ is also true, meaning that $u\left(\partial_{j} \phi\right)$ is sequentially continuous, so it is a distribution.
3. Let $a \in \mathbb{R}^{n}$. What is $\partial^{\alpha} \delta_{a}(\phi)$?

Solution: By the definition of derivation and the definition of δ_{a},

$$
\partial^{\alpha} \delta_{a}(\phi)=(-1)^{|\alpha|} \delta_{a}\left(\partial^{\alpha} \phi\right)=(-1)^{|\alpha|} \partial^{\alpha}(\phi(a))
$$

4. Prove the following statements!
a) $T_{|.|}^{\prime}=T_{\mathrm{sgn}}$, (where $|$.$| is the absolute value function, and sgn is the signum (or sign)$ function).
Solution: Let $\phi \in \mathcal{D}(\mathbb{R})$ be a arbitrary function. Then by definition:

$$
T_{|\cdot|}^{\prime}(\phi)=-T_{|\cdot|}\left(\phi^{\prime}\right)=-\int_{-\infty}^{\infty}|x| \phi^{\prime}(x) d x=
$$

Now we split the integral into two parts (because $|x|=x$ for $x>0$ and $|x|=-x$ for $x<0$):

$$
=-\int_{0}^{\infty} x \phi^{\prime}(x) d x+\int_{-\infty}^{0} x \phi^{\prime}(x) d x=
$$

Now we use integration by parts:

$$
=-[x \phi(x)]_{x=0}^{\infty}+\int_{0}^{\infty} \phi(x) d x+[x \phi(x)]_{-\infty}^{0}-\int_{-\infty}^{0} \phi(x) d x=
$$

Now we use the fact that $\phi(x)$ has compact support, so its values at ∞ and at $-\infty$ are zero (also, $x=0$ at zero).

$$
\begin{gathered}
=\int_{0}^{\infty} \phi(x) d x-\int_{-\infty}^{0} \phi(x) d x=\int_{0}^{\infty} 1 \cdot \phi(x) d x+\int_{-\infty}^{0}(-1) \cdot \phi(x) d x= \\
=\int_{-\infty}^{\infty} \operatorname{sgn}(x) \phi(x) d x=T_{\operatorname{sgn}}(\phi)
\end{gathered}
$$

b) $T_{\mathrm{sgn}}^{\prime}=2 \delta_{0}$.

Solution: By definition:

$$
T_{\mathrm{sgn}}^{\prime}(\phi)=-T_{\mathrm{sgn}}\left(\phi^{\prime}\right)=-\int_{-\infty}^{\infty} \operatorname{sgn}(x) \phi^{\prime}(x) d x=-\int_{0}^{\infty} \phi^{\prime}(x) d x+\int_{-\infty}^{0} \phi^{\prime}(x) d x=
$$

Now by the fundamental theorem of calculus (Newton-Leibniz formula):

$$
=-[\phi(x)]_{0}^{\infty}+[\phi(x)]_{-\infty}^{0}=
$$

We know that ϕ has compact support, so its values at ∞ and at $-\infty$ are zero:

$$
=2 \phi(0)=2 \delta_{0}(\phi)
$$

c) $T_{H}^{\prime}=\delta_{0}$. (where H is the Heaviside function, which takes 0 for negative, and 1 for non-negative values)
Solution: By definition:

$$
T_{H}^{\prime}(\phi)=-T_{H}\left(\phi^{\prime}\right)=-\int_{-\infty}^{\infty} H(x) \phi^{\prime}(x) d x=-\int_{0}^{\infty} \phi^{\prime}(x) d x
$$

Now by the fundamental theorem of calculus (the Newton-Leibniz formula):

$$
=-[\phi(x)]_{0}^{\infty}=\phi(0)=\delta_{0}(\phi)
$$

where we used that ϕ has compact support, so its values at ∞ are zero.
Remark: All the previous statements are also easy corollaries of the proposition stated on the lecture about the derivative of piece-wise differentiable functions.
5. Is there such a distribution for which $u^{\prime}=\delta_{-1}+\delta_{1}$?

Solution:

First method: We are using the proposition stated on the lecture about the derivative of piece-wise differentiable functions, namely, that if $f \in C^{1}\left(a_{i}, a_{i+1}\right) \forall i$, and $\exists \lim _{a_{i}+} f(x)$ and $\exists \lim _{a_{i}-} f(x)$ for all i, then

$$
T_{f}^{\prime}=T_{f^{\prime}}+\sum_{i}\left(\lim _{a_{i}+} f(x)-\lim _{a_{i}-} f(x)\right) \delta_{a_{i}}
$$

(Here $\lim _{a_{i}+} f(x)-\lim _{a_{i}-} f(x)$ is the jump of the function f at point a_{i}.)
So if we choose such a function which has zero derivative for every point inside our small intervals, and it has a jump at $x=-1$ and one at $x=1$, then we are fine. So let

$$
f(x)= \begin{cases}0, & \text { if } x<-1 \\ 1, & \text { if }-1 \leq x<1 \\ 2, & \text { if } x \geq 1\end{cases}
$$

Second method: By exercise 4. c), if we have a Heaviside function with jump at -1 (denoted by H_{-1}), then $T_{H_{-1}}^{\prime}=\delta_{-1}$. Similarly, for a Heaviside with jump at 1 , we get $T_{H_{1}}^{\prime}=\delta_{1}$. This means that if $u=T_{H_{-1}}+T_{H_{1}}$, then $u^{\prime}=T_{H_{-1}}^{\prime}+T_{H_{1}}^{\prime}=\delta_{-1}+\delta_{1}$.
6. Show that the distribution $u(x)=H(x) \sin (x)$ is a solution of the following differential equation (in the distribution sense):

$$
u^{\prime \prime}+u=\delta_{0} .
$$

Solution: Our goal here is to prove that $T_{u}^{\prime \prime}(\phi)+T_{u}(\phi)=\delta_{0}(\phi)$, or in other words, $T_{u}^{\prime \prime}(\phi)=\delta_{0}(\phi)-T_{u}(\phi)$. By definition:

$$
T_{u}^{\prime \prime}(\phi)=\int_{-\infty}^{\infty} H(x) \sin (x) \phi^{\prime \prime}(x) d x=\int_{0}^{\infty} \sin (x) \phi^{\prime \prime}(x) d x=
$$

If we use integration by parts:

$$
=\left[\sin (x) \phi^{\prime}(x)\right]_{0}^{\infty}-\int_{0}^{\infty} \cos (x) \phi^{\prime}(x) d x=
$$

Now we use the fact that $\phi(x)$ has compact support, so its derivative at ∞ is zero, and $\sin (0)=0$, so $\left[\sin (x) \phi^{\prime}(x)\right]_{0}^{\infty}=0$.

$$
=-\int_{0}^{\infty} \cos (x) \phi^{\prime}(x) d x=
$$

If we use integration by parts:

$$
=-[\cos (x) \phi(x)]_{0}^{\infty}-\int_{0}^{\infty} \sin (x) \phi(x) d x=
$$

Now we use the fact that $\phi(x)$ has compact support, so its value at ∞ is zero, and $\cos (0)=1$, so $-[\cos (x) \phi(x)]_{0}^{\infty}=\phi(0)$.

$$
=\phi(0)-\int_{0}^{\infty} \sin (x) \phi(x) d x=\phi(0)-\int_{-\infty}^{\infty} H(x) \sin (x) \phi(x) d x=\delta_{0}(\phi)-T_{u}(\phi) .
$$

7. Let us define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as

$$
f(x, y)= \begin{cases}\frac{1}{2} & \text { if } x y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

What is $\partial_{12} T_{f}$ (where ∂_{12} means the mixed derivative)?
Solution: By definition,

$$
\partial_{12} T_{f}(\phi)=(-1)^{2} T_{f}\left(\partial_{12} \phi\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f \partial_{12} \phi=
$$

By the definition of f, it takes the values $\frac{1}{2}$ only if x and y have the same sign, which means that:

$$
=\frac{1}{2} \int_{-\infty}^{0} \int_{-\infty}^{0} \partial_{12} \phi d x d y+\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \partial_{12} \phi d x d y=
$$

From the fundamental theorem of calculus (the Newton-Leibniz formula), and from the fact that ϕ has compact support:

$$
=\frac{1}{2} \phi(0,0)+\frac{1}{2} \phi(0,0)=\phi(0,0)=\delta_{(0,0)}(\phi) .
$$

8. Let us define the multi-variable Heaviside function $\tilde{H}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as

$$
\tilde{H}(x)= \begin{cases}1 & \text { if } x_{i} \geq 0 \forall i \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

a) Show that $\partial_{1} \partial_{2} \ldots \partial_{n} \tilde{H}=\delta_{\mathbf{0}}$.

Solution: By definition:

$$
\begin{aligned}
& \partial_{1} \partial_{2} \ldots \partial_{n} \tilde{H}(\phi)=(-1)^{n} \int_{\mathbb{R}^{n}} \tilde{H}(\mathbf{x}) \partial_{1} \partial_{2} \ldots \partial_{n} \phi(\mathbf{x}) d \mathbf{x}= \\
= & (-1)^{n} \int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \partial_{1} \partial_{2} \ldots \partial_{n} \phi(\mathbf{x}) d x_{1} d x_{2} \ldots d x_{n}=
\end{aligned}
$$

Now apply the fundamental theorem of calculus (Newton-Leibniz rule) in variable x_{1} :

$$
=(-1)^{n} \int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty}\left[\partial_{2} \partial_{3} \ldots \partial_{n} \phi\left(x_{1}, x_{2}, \ldots x_{n}\right)\right]_{x_{1}=0}^{\infty} d x_{2} \ldots d x_{n}=
$$

Now we use the fact that ϕ has compact support:

$$
=(-1)^{n-1} \int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \partial_{2} \partial_{3} \ldots \partial_{n} \phi\left(0, x_{2}, \ldots x_{n}\right) d x_{2} \ldots d x_{n}=
$$

By continuing this process, we get:

$$
\begin{gathered}
=(-1)^{n-2} \int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \partial_{3} \ldots \partial_{n} \phi\left(0,0, x_{3}, \ldots x_{n}\right) d x_{3} \ldots d x_{n}= \\
=\cdots=(-1)^{0} \phi(0,0, \ldots 0)=\delta_{\mathbf{0}}(\phi)
\end{gathered}
$$

in which $\mathbf{0}$ is the all-zero vector.
b) Let us define the function $r(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ as

$$
r(x)= \begin{cases}x_{1} x_{2} \ldots x_{n}, & \text { if } x_{i} \geq 0 \forall i \tag{2}\\ 0, & \text { otherwise }\end{cases}
$$

Then show that $\partial_{1} \partial_{2} \ldots \partial_{n} T_{r}=\tilde{H}$.
Solution: By definition:

$$
\begin{gathered}
\partial_{1} \partial_{2} \ldots \partial_{n} T_{r}(\phi)=(-1)^{n} \int_{\mathbb{R}^{n}} r(\mathbf{x}) \partial_{1} \partial_{2} \ldots \partial_{n} \phi(\mathbf{x}) d \mathbf{x}= \\
=(-1)^{n} \int_{0}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} x_{1} x_{2} \ldots x_{n} \partial_{1} \partial_{2} \ldots \partial_{n} \phi(\mathbf{x}) d x_{1} d x_{2} \ldots d x_{n}=
\end{gathered}
$$

Now use integration by parts in variable x_{1} :

$$
=(-1)^{n} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(\left[x_{1} \ldots x_{n} \partial_{2} \ldots \partial_{n} \phi(\mathbf{x})\right]_{x_{1}=0}^{\infty}-\int_{0}^{\infty} x_{2} \ldots x_{n} \partial_{2} \ldots \partial_{n} \phi(\mathbf{x}) d x_{1}\right) d x_{2} \ldots d x_{n}=
$$

The first term is 0 at $x_{1}=0$, and it is also zero at ∞ because ϕ has compact support, so:

$$
=(-1)^{n-1} \int_{0}^{\infty} \cdots \int_{0}^{\infty} x_{2} \ldots x_{n} \partial_{2} \ldots \partial_{n} \phi(\mathbf{x}) d x_{1} d x_{2} \ldots d x_{n}=
$$

By continuing this same process, we get:

$$
\begin{gathered}
=(-1)^{n-2} \int_{0}^{\infty} \ldots \int_{0}^{\infty} x_{3} \ldots x_{n} \partial_{3} \ldots \partial_{n} \phi(\mathbf{x}) d x_{1} d x_{2} \ldots d x_{n}= \\
=\cdots=(-1)^{0} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \phi(\mathbf{x}) d x_{1} d x_{2} \ldots d x_{n}=\int_{\mathbb{R}^{n}} \tilde{H}(\mathbf{x}) \phi(\mathbf{x}) d \mathbf{x}=T_{\tilde{H}}(\phi)
\end{gathered}
$$

Remark: The previous statements can also be proved using a more general form of the proposition which was stated on the lecture about piece-wise differentiable functions.
9. Let us define the following functional:

$$
u(\phi):=\int_{0}^{\infty} \phi(0, y) d y
$$

a) Show that $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$!

Solution: It is easy to see that it is indeed linear. For the sequentially continuous property we are going to use the theorem proved on the Lecture. For this, let us define a compact set $K \subset \mathbb{R}^{2}$, and consider a test function $\phi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$ for which $\operatorname{supp}(\phi) \subset K$. Then there is such an $R>0$ constant, for which $K \subset B(0, R)$ (since K is bounded). Then (by transforming to polar coordinates):

$$
|u(\phi)| \leq \int_{0}^{\infty}|\phi(0, y)| d y \leq \int_{0}^{R} \int_{0}^{2 \pi} \max _{K}|\phi| r d \theta d r \leq \text { const } \cdot \max _{K}|\phi|
$$

which means that u is a zero-order distribution.
b) Show that $\partial_{2} u=\delta_{(0,0)}$.

Solution: By definition:

$$
\partial_{2} u(\phi)=-u\left(\partial_{2} \phi\right)=-\int_{0}^{\infty} \partial_{2} \phi(0, y) d y=\phi(0,0)=\delta_{(0,0)}(\phi),
$$

in which we used that ϕ has compact support.
c) Show that there is such an $f \in L_{l o c}^{1}\left(\mathbb{R}^{2}\right)$ function, for which $u=\partial_{1} T_{f}$.

Solution: First let us consider the term inside the definition of u :

$$
\phi(0, y)=-[\phi(x, y)]_{x=0}^{\infty}=-\int_{0}^{\infty} \partial_{x} \phi(x, y) d x=-\int_{-\infty}^{\infty} H(x) \partial_{x} \phi(x, y) d x
$$

in which we used that ϕ has compact support, the fundamental theorem of calculus (the Newton-Leibniz formula) and the definition of $H(x)$. Now let us consider $u(\phi)$:

$$
u(\phi)=\int_{0}^{\infty} \phi(0, y) d y=\int_{-\infty}^{\infty} H(y) \phi(0, y) d y=
$$

Now we substitute into the previous form:

$$
=-\int_{-\infty}^{\infty} H(y) \int_{-\infty}^{\infty} H(x) \partial_{x} \phi(x, y) d x d y=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(y) H(x) \partial_{x} \phi(x, y) d x d y=
$$

Let us define f as $f(x, y):=H(x) H(y)$, then:

$$
=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \partial_{x} \phi(x, y) d x d y=-T_{f}\left(\partial_{x} \phi(x, y)\right)=\partial_{x} T_{f}(\phi(x, y))
$$

So there is such an $f \in L_{l o c}^{1}\left(\mathbb{R}^{2}\right)$ function for which $u=\partial_{1} T_{f}$ holds.
10.* Let $u \in \mathcal{D}^{\prime}(\Omega)$ in a way that $u^{\prime}=0$. Is it true then that $u=c$ for some constant $c \in \mathbb{R}$?

Solution: This can be submitted.

