
Fifth practice

Distributions II.: Derivation

1. Let f ∈ Cm(Rn). Show that for any |α| ≤ m multiindex, ∀ϕ ∈ C∞
0 (Rn),

T∂αf (ϕ) = (−1)|α| Tf (∂
αϕ).

(This was stated on the Lecture, but was not proved there.)

Solution: The more general statement can be proved by induction - here we only prove the
special case |α| = 1 (so there is only one, �rst order derivative):

T∂jf (ϕ) = −Tf (∂jϕ).

Without loss of generality let us assume that j = 1 (the derivative is in the �rst variable),
and let us use the notation for x ∈ Rn : x = (x1, x̃), where x̃ ∈ Rn−1 (so here x1 is the �rst
variable, and x̃ contains all the other, n− 1-many variables).

Then for f ∈ C1(Rn), f and ∂1f are in L1
loc(Rn), which means that the notations Tf and

T∂1f make sense. Then by de�nition:

T∂1f (ϕ) =

∫
Rn

(∂1f)ϕ =

∫
Rn−1

∫
R
∂1f(x1, x̃)ϕ(x1, x̃)dx1dx̃ =

Now we apply integration by parts to the inner integral :

=

∫
Rn−1

[f(x1, x̃)ϕ(x1, x̃)]
∞
x1=−∞ dx̃−

∫
Rn−1

∫
R
f(x1, x̃)∂1ϕ(x1, x̃)dx1dx̃ =

Now we use the fact that ϕ has compact support, so ϕ has zero values at −∞ and at ∞,
meaning that the �rst term is zero.

= −
∫
Rn−1

∫
R
f(x1, x̃)∂1ϕ(x1, x̃)dx1dx̃ = −

∫
Rn

f∂1ϕ = −Tf (∂1ϕ),

which gives our statement.

2. Let ∂αu(ϕ) := (−1)|α|u(∂αϕ). Show that ∂αu is a distribution!

(This proposition was also stated at the Lecture, but is proved here.)

Solution: Here we only prove the statement for |α| = 1, namely that
∂ju(ϕ) := −u(∂jϕ) is indeed a distribution. The more general case can be done by induction.

For ∂ju to be a distribution, we need two properties: it should be linear, and also sequentially
continuous. The linearity is trivially true. For the sequentially continuous property, let us

assume that ϕk
D(Ω)−−−→ ϕ. This means that then ∂jϕk → ∂jϕ, and this also holds for all the

derivatives of ϕk and ϕ ; also, the supports are inside a compact set (because of the de�nition

of ϕk
D(Ω)−−−→ ϕ). So this means that ∂jϕk

D(Ω)−−−→ ∂jϕ also holds, and since u is a distribution, it is
sequentially continuous, so u(∂jϕk) → u(∂jϕ) is also true, meaning that u(∂jϕ) is sequentially
continuous, so it is a distribution.

3. Let a ∈ Rn. What is ∂αδa(ϕ)?

Solution: By the de�nition of derivation and the de�nition of δa,

∂αδa(ϕ) = (−1)|α|δa(∂
αϕ) = (−1)|α|∂α(ϕ(a)).
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4. Prove the following statements!

a) T ′
|.| = Tsgn, (where |.| is the absolute value function, and sgn is the signum (or sign)

function).

Solution: Let ϕ ∈ D(R) be a arbitrary function. Then by de�nition:

T ′
|.|(ϕ) = −T|.|(ϕ

′) = −
∫ ∞

−∞
|x|ϕ′(x)dx =

Now we split the integral into two parts (because |x| = x for x > 0 and |x| = −x for
x < 0) :

= −
∫ ∞

0

xϕ′(x)dx+

∫ 0

−∞
xϕ′(x)dx =

Now we use integration by parts:

= −[xϕ(x)]∞x=0 +

∫ ∞

0

ϕ(x)dx+ [xϕ(x)]0−∞ −
∫ 0

−∞
ϕ(x)dx =

Now we use the fact that ϕ(x) has compact support, so its values at ∞ and at −∞ are
zero (also, x = 0 at zero).

=

∫ ∞

0

ϕ(x)dx−
∫ 0

−∞
ϕ(x)dx =

∫ ∞

0

1 · ϕ(x)dx+

∫ 0

−∞
(−1) · ϕ(x)dx =

=

∫ ∞

−∞
sgn(x)ϕ(x)dx = Tsgn(ϕ).

b) T ′
sgn = 2δ0.

Solution: By de�nition:

T ′
sgn(ϕ) = −Tsgn(ϕ

′) = −
∫ ∞

−∞
sgn(x)ϕ′(x)dx = −

∫ ∞

0

ϕ′(x)dx+

∫ 0

−∞
ϕ′(x)dx =

Now by the fundamental theorem of calculus (Newton-Leibniz formula):

= −[ϕ(x)]∞0 + [ϕ(x)]0−∞ =

We know that ϕ has compact support, so its values at ∞ and at −∞ are zero:

= 2ϕ(0) = 2δ0(ϕ).

c) T ′
H = δ0. (where H is the Heaviside function, which takes 0 for negative, and 1 for

non-negative values)

Solution: By de�nition:

T ′
H(ϕ) = −TH(ϕ

′) = −
∫ ∞

−∞
H(x)ϕ′(x)dx = −

∫ ∞

0

ϕ′(x)dx

Now by the fundamental theorem of calculus (the Newton-Leibniz formula):

= −[ϕ(x)]∞0 = ϕ(0) = δ0(ϕ),

where we used that ϕ has compact support, so its values at ∞ are zero.

Remark: All the previous statements are also easy corollaries of the proposition stated on
the lecture about the derivative of piece-wise di�erentiable functions.

5. Is there such a distribution for which u′ = δ−1 + δ1 ?

Solution:

First method: We are using the proposition stated on the lecture about the derivative of
piece-wise di�erentiable functions, namely, that if f ∈ C1(ai, ai+1) ∀i, and ∃ limai+ f(x) and
∃ limai− f(x) for all i, then

T ′
f = Tf ′ +

∑
i

(
lim
ai+

f(x)− lim
ai−

f(x)

)
δai
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(Here limai+ f(x)− limai− f(x) is the jump of the function f at point ai.)

So if we choose such a function which has zero derivative for every point inside our small
intervals, and it has a jump at x = −1 and one at x = 1, then we are �ne. So let

f(x) =


0, if x < −1,

1, if − 1 ≤ x < 1,

2, if x ≥ 1.

Second method: By exercise 4. c), if we have a Heaviside function with jump at −1 (denoted
by H−1), then T ′

H−1
= δ−1. Similarly, for a Heaviside with jump at 1, we get T ′

H1
= δ1. This

means that if u = TH−1 + TH1 , then u′ = T ′
H−1

+ T ′
H1

= δ−1 + δ1.

6. Show that the distribution u(x) = H(x) sin(x) is a solution of the following di�erential
equation (in the distribution sense):

u′′ + u = δ0.

Solution: Our goal here is to prove that T ′′
u (ϕ) + Tu(ϕ) = δ0(ϕ), or in other words,

T ′′
u (ϕ) = δ0(ϕ)− Tu(ϕ). By de�nition:

T ′′
u (ϕ) =

∫ ∞

−∞
H(x) sin(x)ϕ′′(x)dx =

∫ ∞

0

sin(x)ϕ′′(x)dx =

If we use integration by parts:

= [sin(x)ϕ′(x)]∞0 −
∫ ∞

0

cos(x)ϕ′(x)dx =

Now we use the fact that ϕ(x) has compact support, so its derivative at ∞ is zero, and
sin(0) = 0, so [sin(x)ϕ′(x)]∞0 = 0.

= −
∫ ∞

0

cos(x)ϕ′(x)dx =

If we use integration by parts:

= −[cos(x)ϕ(x)]∞0 −
∫ ∞

0

sin(x)ϕ(x)dx =

Now we use the fact that ϕ(x) has compact support, so its value at ∞ is zero, and cos(0) = 1,
so −[cos(x)ϕ(x)]∞0 = ϕ(0).

= ϕ(0)−
∫ ∞

0

sin(x)ϕ(x)dx = ϕ(0)−
∫ ∞

−∞
H(x) sin(x)ϕ(x)dx = δ0(ϕ)− Tu(ϕ).

7. Let us de�ne the function f : R2 → R as

f(x, y) =


1

2
if xy ≥ 0

0 otherwise.

What is ∂12Tf (where ∂12 means the mixed derivative)?

Solution: By de�nition,

∂12Tf (ϕ) = (−1)2Tf (∂12ϕ) =

∫ ∞

−∞

∫ ∞

−∞
f ∂12ϕ =

By the de�nition of f , it takes the values 1
2
only if x and y have the same sign, which means

that:

=
1

2

∫ 0

−∞

∫ 0

−∞
∂12ϕ dxdy +

1

2

∫ ∞

0

∫ ∞

0

∂12ϕ dxdy =

From the fundamental theorem of calculus (the Newton-Leibniz formula), and from the fact
that ϕ has compact support:

=
1

2
ϕ(0,0) +

1

2
ϕ(0,0) = ϕ(0,0) = δ(0,0)(ϕ).
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8. Let us de�ne the multi-variable Heaviside function H̃ : Rn → R as

H̃(x) =

{
1 if xi ≥ 0 ∀i,
0 otherwise.

(1)

a) Show that ∂1∂2 . . . ∂nH̃ = δ0.

Solution: By de�nition:

∂1∂2 . . . ∂nH̃(ϕ) = (−1)n
∫
Rn

H̃(x)∂1∂2 . . . ∂nϕ(x)dx =

= (−1)n
∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

∂1∂2 . . . ∂nϕ(x)dx1dx2 . . . dxn =

Now apply the fundamental theorem of calculus (Newton-Leibniz rule) in variable x1 :

= (−1)n
∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

[∂2∂3 . . . ∂nϕ(x1, x2, . . . xn)]
∞
x1=0 dx2 . . . dxn =

Now we use the fact that ϕ has compact support:

= (−1)n−1

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

∂2∂3 . . . ∂nϕ(0, x2, . . . xn)dx2 . . . dxn =

By continuing this process, we get:

= (−1)n−2

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

∂3 . . . ∂nϕ(0, 0, x3, . . . xn)dx3 . . . dxn =

= · · · = (−1)0ϕ(0,0, . . . 0) = δ0(ϕ).

in which 0 is the all-zero vector.

b) Let us de�ne the function r(x) : Rn → R as

r(x) =

{
x1x2 . . . xn, if xi ≥ 0 ∀i,
0, otherwise.

(2)

Then show that ∂1∂2 . . . ∂nTr = H̃.

Solution: By de�nition:

∂1∂2 . . . ∂nTr(ϕ) = (−1)n
∫
Rn

r(x) ∂1∂2 . . . ∂nϕ(x) dx =

= (−1)n
∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

x1x2 . . . xn ∂1∂2 . . . ∂nϕ(x) dx1dx2 . . . dxn =

Now use integration by parts in variable x1 :

= (−1)n
∫ ∞

0

· · ·
∫ ∞

0

(
[x1 . . . xn∂2 . . . ∂nϕ(x)]

∞
x1=0 −

∫ ∞

0

x2 . . . xn∂2 . . . ∂nϕ(x)dx1

)
dx2 . . . dxn =

The �rst term is 0 at x1 = 0, and it is also zero at ∞ because ϕ has compact support,
so:

= (−1)n−1

∫ ∞

0

· · ·
∫ ∞

0

x2 . . . xn ∂2 . . . ∂nϕ(x)dx1dx2 . . . dxn =

By continuing this same process, we get:

= (−1)n−2

∫ ∞

0

· · ·
∫ ∞

0

x3 . . . xn ∂3 . . . ∂nϕ(x)dx1dx2 . . . dxn =

= · · · = (−1)0
∫ ∞

0

· · ·
∫ ∞

0

ϕ(x)dx1dx2 . . . dxn =

∫
Rn

H̃(x)ϕ(x)dx = TH̃(ϕ).

Remark: The previous statements can also be proved using a more general form of the
proposition which was stated on the lecture about piece-wise di�erentiable functions.
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9. Let us de�ne the following functional :

u(ϕ) :=

∫ ∞

0

ϕ(0, y)dy.

a) Show that u ∈ D′(R2) !

Solution: It is easy to see that it is indeed linear. For the sequentially continuous
property we are going to use the theorem proved on the Lecture. For this, let us de�ne
a compact set K ⊂ R2, and consider a test function ϕ ∈ D(R2) for which supp(ϕ) ⊂ K.
Then there is such an R > 0 constant, for which K ⊂ B(0, R) (since K is bounded).
Then (by transforming to polar coordinates):

|u(ϕ)| ≤
∫ ∞

0

|ϕ(0, y)|dy ≤
∫ R

0

∫ 2π

0

max
K

|ϕ| r dθ dr ≤ const ·max
K

|ϕ|,

which means that u is a zero-order distribution.

b) Show that ∂2u = δ(0,0).

Solution: By de�nition:

∂2u(ϕ) = −u(∂2ϕ) = −
∫ ∞

0

∂2ϕ(0, y)dy = ϕ(0,0) = δ(0,0)(ϕ),

in which we used that ϕ has compact support.

c) Show that there is such an f ∈ L1
loc(R2) function, for which u = ∂1Tf .

Solution: First let us consider the term inside the de�nition of u :

ϕ(0, y) = − [ϕ(x, y)]∞x=0 = −
∫ ∞

0

∂xϕ(x, y)dx = −
∫ ∞

−∞
H(x)∂xϕ(x, y)dx.

in which we used that ϕ has compact support, the fundamental theorem of calculus
(the Newton-Leibniz formula) and the de�nition of H(x). Now let us consider u(ϕ) :

u(ϕ) =

∫ ∞

0

ϕ(0, y)dy =

∫ ∞

−∞
H(y)ϕ(0, y)dy =

Now we substitute into the previous form:

= −
∫ ∞

−∞
H(y)

∫ ∞

−∞
H(x)∂xϕ(x, y)dxdy = −

∫ ∞

−∞

∫ ∞

−∞
H(y)H(x)∂xϕ(x, y)dxdy =

Let us de�ne f as f(x, y) := H(x)H(y), then:

= −
∫ ∞

−∞

∫ ∞

−∞
f(x, y)∂xϕ(x, y)dxdy = −Tf (∂xϕ(x, y)) = ∂xTf (ϕ(x, y))

So there is such an f ∈ L1
loc(R2) function for which u = ∂1Tf holds.

10.* Let u ∈ D′(Ω) in a way that u′ = 0. Is it true then that u = c for some constant c ∈ R?

Solution: This can be submitted.
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