
Seventh practice

Parabolic equations

1. Let a > 0 and b ∈ R be constants. Prove that∫ +∞

−∞
e−ay2 cos by dy =

√
π

a
e−

b2

4a .

Solution: First we prove that for all a > 0 and b ∈ R values the above integral exists
and it is �nite. Indeed, since |cos by| ≤ 1, then the integrant has an integrable majorant
(namely e−ay2). Also observe that in the special case of b = 0 we can compute the value
of the integral easily, since (using x = ay)∫ +∞

−∞
e−ay2dy =

1√
a

∫ +∞

−∞
e−x2

dx =

√
π

a
.

To compute our initial integral, let us consider it as a function of a ∈ R+ and b ∈ R,
and de�ne the following function I : R+ × R → R :

I(a, b) =

∫ +∞

−∞
e−ay2 cos by dy.

Di�erentiate I by its second variable! Then by the theory of parametric integrals,
if the derivative of the integrand (taken in the second variable) has an integrable
majorant (not depending on the parameter), then the di�erentiation can be done in
a way that we di�erentiate only the integrand. By simple computations we get that
∂be

−ay2 cos by = −ye−ay2 sin by. Let us restrict the domain of function I to the set [a0,+
+∞) × R, in which a0 > is �xed. Then in the case a > a0 we get∣∣∣−ye−ay2 sin by

∣∣∣ ≤ |y|e−a0y2 , which has a convergent improper integral (it can even

be computed), so the theory mentioned above can be applied. Consequently, (in which
we integrate by parts in variable y) :

∂bI(a, b) =

∫ +∞

−∞
−ye−ay2 sin by dy =

1

2a

∫ +∞

−∞
−2aye−ay2 sin by dy =

=
1

2a

([
e−ay2 sin by

]+∞

y=−∞
− b

∫ +∞

−∞
e−ay2 cos by dy

)
= − b

2a
I(a, b).

This means that function I satis�es the following initial-value problem:

∂bI(a, b)

I(a, b)
= − b

2a
, I(a,0) =

√
π

a
.

Now by integrating both sides of the above ordinary di�erential equation in variable b,

we get that log I(a, b) = − b2

4a
+ c(a), meaning that I = C(a) exp

(
− b2

4a

)
, in which C(a)

is a constant depending on a. Then by the substitution b = 0, and using the initial
value I(a,0) we get

I(a, b) =

√
π

a
exp

(
− b2

4a

)
.

Note that the above reasoning works for all a > a0 > 0 values, so it is true for any
a > 0 , which means that we proved the statement.

Remark: The exercise could have been solved by the following observation:∫ +∞

−∞
e−ay2 cos by dy = Re

∫ +∞

−∞
e−ay2eiby dy = e−

b2

4aRe

∫ +∞

−∞
e−a(y−i b

2)
2

dy =

√
π

a
e−

b2

4a ,
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in which we used that ∫ +∞

−∞
e−az2 dy =

√
π

a

for all z ∈ C, since it is true for all z ∈ R, and then by the unicity theorem it should
be also true for all complex values of z.

2. Suppose that g ∈ C(Rn) is bounded, and let u(t, x) =
1

(
√
π )n

∫
Rn

e−|η|2g(x− 2
√
tη) dη.

a) Prove that u(0, x) = g(x) holds for all x ∈ Rn.

b) Assume that g ∈ C2(Rn), for which g, ∂jg, ∂
2
j g (j = 1, . . . , n) are bounded. Show

that then ∂tu−∆u = 0 inside R+ × Rn.

Solution: a) First we note that since g is bounded, the integral exists and is �nite.
Also, by the continuity of parametric improper integrals

u(0, x) =
1

(
√
π )

n

∫
Rn

e−|η|2g(x) dη = g(x)
1

(
√
π )

n

∫
Rn

e−|η|2 dη = g(x),

in which we used that

∫
Rn

e−|η|2 dη = (
√
π )n (see Exercise 3 from Practice 6).

b) Because of the assmupltions, the di�erentiation can be moved inside the integral
(by the di�erentiability of parametric improper integrals). Then by simple calculations
we get that

∂tu(t, x) = −
n∑

j=1

1

(
√
π )

n

∫
Rn

e−|η|2∂jg(x− 2
√
tη)

ηj√
t
dηj

and

∂2
xj
u(t, x) =

1

(
√
π )

n

∫
Rn

e−|η|2∂2
j g(x− 2

√
tη) dη =

=
1

(
√
π )

n

∫
Rn−1

([
− 1

2
√
t
e−|η|2∂jg(x− 2

√
tη)

]∞
ηj=−∞

−
∫ ∞

−∞
e−|η|2∂jg(x− 2

√
tη)

ηj√
t
dηj

)
,

in which we used a partial integral. Observe that the function inside the brackets [. . . ]
tends to zero if |η| → ∞, because ∂jg is bounded, and all the other terms tend to zero,
when |η| → ∞. Consequently,

∆u(t, x) = −
n∑

j=1

1

(
√
π )

n

∫
Rn

e−|η|2∂jg(x− 2
√
tη)

ηj√
t
dηj

so ∂tu = ∆u holds inside R+ × Rn.

It is important to realize that all the above calculations hold if the derivatives of
function g do not "grow too fast" (e.g. the magnitude of their growth is ec|x|).

Note that we could have solved the problem in a di�erent way. By the transformation
ξ = x− 2

√
tη we get that

1

(
√
π )n

∫
Rn

e−|η|2g(x− 2
√
tη) dη =

∫
Rn

1

(2
√
πt )n

e−
|x−ξ|2

4t g(ξ) dξ.

We proved in Exercise 4 on Practice 6 that the function (t, x) 7→ 1
(2
√
πt )n

e−
|x−ξ|2

4t (more

precisely, its dilatation) is the solution of the heat equation, so by the assumptions its
integral is also one. In this case it is enough to assume that g ∈ C(Rn) ∩ L∞(Rn), we
don't need di�erentiability. Note that the solution u is always inside C∞(R+ ×Rn) (it
is even analytic), and this does not depend on the smoothness of g. This property of
the heat equation is sometimes called parabolic smoothing.

Another important remark is that the Cauchy problem of the heat equation has in�-
nitely many solutions, the above formula only gives us one of them. Thikhonov (1906�
1993) gave an easy construction for such in�nite set of solutions, these solutions "grow
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fast" as |x| → ∞ (with magnitude e|x|
α
). If we assume a slower growth, then the

solution is unique, and the above formula holds. Also, David Vernon Widder (1898�
1990) showed that even if we have in�nitely many solutions, there is only one, which
is non-negative, and this is the interesting one, if u means absolute temperature.

From now on, when we talk about "the solution of the Cauchy-problem", we think of
the solution described by the above formula.

3. Solve the following Cauchy-problems!

a)

{
∂tu− ∂2

xu = 0 inside R+ × R,
u(0, x) = x (x ∈ R).

b)

{
∂tu− ∂2

xu = 0 inside R+ × R,
u(0, x) = cosx (x ∈ R).

Solution: We use the formula which we proved in Exercise 2.

a)

u(t, x) =
1√
π

∫ ∞

−∞
e−|η|2(x− 2

√
tη) dη =

1√
π

∫ ∞

−∞
e−|η|2x dη− 1√

π

∫ ∞

−∞
e−|η|22tη dη = x,

using that
1√
π

∫
Rn

e−|η|2 dη = 1, and the second integrand is an odd function, so its

integral is zero on an interval which is symmetric to the origin.

b) By the formula,

u(t, x) =
1√
π

∫ ∞

−∞
e−|η|2 cos(x− 2

√
tη) dη.

Now we apply the formula cos(α− β) = cosα cos β + sinα sin β, then we get

u(t, x) =
1√
π

∫ ∞

−∞
e−|η|2 cos(x−2

√
tη) dη =

1√
π

∫ ∞

−∞
e−|η|2

(
cosx cos 2

√
tη + sinx sin 2

√
tη
)
dη =

= cosx
1√
π

∫ ∞

−∞
e−|η|2 cos 2

√
tη dη = e−t cosx,

in which we used that sin is an odd function, so its integral is zero on an interval
symmetric to the origin, and by Exercise 1 we know that∫ ∞

−∞
e−ay2 cos by dy =

√
π

a
e−

b2

4a ,

so we can use it with the choices a = 1 and b = 2
√
t. In conclusion, u(t, x) = e−t cosx.

4. Let n = 1, f = 0, and observe the parabolic Cauchy-problem.

a) Assume that g ∈ C(R) is bounded. Prove that if g(x) ≥ 0 (x ∈ R), then for the
solution u of the Cauchy-problem u(x) ≥ 0 (x ∈ R).

b) Assume that g ∈ C2(R) and g, g′, g′′ are bounded. Prove that if g is convex, then
for all t > 0 the solution u of the Cauchy-problem u(t, ·) is also convex.

Solution: a) If g(x) ≥ 0 for all x ∈ R, then

u(t, x) =
1√
π

∫ ∞

−∞
e−|η|2g(x− 2

√
tη) dη ≥ 0,

since the integral of a non-negative function is non-negative.

b) If g is convex, then g′′(x) ≥ 0 for all x ∈ R, so

∂2
xu(t, x) =

1√
π

∫ ∞

−∞
e−|η|2g′′(x− 2

√
tη) dη ≥ 0,

meaning that u(t, ·) is a convex function.
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5. Prove that the solution of the parabolic Cauchy-problem depends continuously on g in
the following sense: if g1, g2 ∈ C(Rn) are bounded, for which

|g1(x)− g2(x)| ≤ ε (x ∈ Rn),

then for the corresponding solutions u1, u2 of the Cauchy-problem

|u1(t, x)− u2(t, x)| ≤ ε ((t, x) ∈ R+
0 × R).

Solution: By the assumptions, we get from the formula that

|u1(t, x)− u2(t, x)| ≤
1

(
√
π )n

∫
Rn

e−|η|2|g1(x)− g2(x)| dη ≤ ε

(
√
π )n

∫
Rn

e−|η|2 dη = ε.

6. Let n = 1, f = 0, g ∈ C(R), and assume that supp g ⊂ [a, b], and g|[a,b] > 0. Prove that
then for the solution u of the parabolic Cauchy-problem u(t, x) > 0 for all (t, x) ∈ R+

+× R ! (Heat moves with in�nite speed.)

Solution: From the conditions g(x − 2
√
tη) > 0, if η ∈ I =

[
x− b

2
√
t
,
x− a

2
√
t

]
, and for

η-s outside of this interval g(x− 2
√
tη) = 0. Then

u(t, x) =
1√
π

∫
I

e−|η|2g(x− 2
√
tη) dη > 0,

since the integral of a positive function is positive.

7.* Let g : R2 → R continuous, for which ∂1g exists ad it is continuous on R2. Let us de�ne

function f : R → R in a way that f(x) =

∫ x

a

g(x, y) dy, in which a ∈ R is �xed. Prove

that f ′(x) = g(x, x) +

∫ x

a

∂1g(x, y) dy.

Solution: The solution can be submitted.

8. Consider the following set of problems:{
∂tv −∆v = 0 inside R+ × Rn,

v(0, x) = f(τ, x) (x ∈ Rn)
, (1)

in which τ ∈ R+
0 is a parameter. Suppose that for all τ ∈ R+

0 , for the solutions v(·, · ; τ)
of the equation, v, ∂tv, ∆v ∈ C(R+

0 × Rn × R+
0 ) holds. De�ne function u as:

u(t, x) =

∫ t

0

v(t− τ, x; τ)dτ.

Prove that ∂tu−∆u = f inside R+ × Rn and u(0, x) = 0 (x ∈ Rn), so u is a solution
of the second sub-problem. (Duhamel-principle)

Solution: It is clear that u(0, x) =

∫ 0

0

(. . . ) = 0 (x ∈ Rn). Then by applying the rule

of derivation from Exercise 7:

∂tu(t, x) = v(0, x; t) +

∫ t

0

∂tv(t− τ, x; τ) dτ = f(t, x) +

∫ t

0

∂tv(t− τ, x; τ) dτ,

since v(·, ·; τ) is the solution of problem (1) with parameter τ = t, so v(0, x; t) = f(t, x).

Moreover, ∆u(t, x) =

∫ t

0

∆v(t − τ, x; τ) dτ , since by the conditions, the derivative of

the integral is the integral of the derivative of the ingerand. Therefore,

∂tu(t, x)−∆u(t, x) = f(t, x) +

∫ t

0

(∂tv(t− τ, x; τ)−∆v(t− τ, x; τ)) dτ = f(t, x),

since ∂tv(t− τ, x; τ)−∆v(t− τ, x; τ) = 0 holds for all τ ∈ R+, because v(·, · ; τ) is the
solution of problem (1).
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Remark: Note that by Exercise 2, we can even compute functions v(·, · ; τ), namely

v(t, x; τ) = u(t, x) =
1

(
√
π )n

∫
Rn

e−|η|2f(τ, x−2
√
tη) dη =

1

(2
√
πt )n

∫
Rn

e−
|x−ξ|2

4t f(τ, ξ) dξ,

in which we used the substitution ξ = x − 2
√
tη (and we used that the Jacobian is

1
(2
√
t )n

). Then the solution of the second sub-problem is

u2(t, x) =

∫ t

0

1

(2
√

π(t− τ) )n

∫
Rn

e−
|x−ξ|2
4(t−τ)f(τ, ξ) dξ dτ.

So the solution of the parablic Cauchy-problem{
∂tv −∆v = f R+ × Rn-ben,

v(0, x) = g(x) (x ∈ Rn)

has the form

u(t, x) =

∫ t

0

1

(2
√

π(t− τ) )n

∫
Rn

e−
|x−ξ|2
4(t−τ)f(τ, ξ) dξ dτ +

1

(2
√
πt )n

∫
Rn

e−
|x−ξ|2

4t g(ξ) dξ.

Remark: The Duhamel-principle holds for more general equations in the form
∂tu − Lu = f , in which L is a di�erential operator with constant coe�cients. The
principle can even extended to hyperbolic probelms, see the next Sheet of exercises. It
even holds for ordinary di�erential equations: the solution of the initial-value problem

y(n) + an−1y
(n−1) + . . . a1y

′ + a0y = f,

y(j)(0) = 0 (j = 0, . . . , n− 1)

can be computed from the solution yτ of the problem

y(n)τ + an−1y
(n−1)
τ + . . . a1y

′
τ + a0yτ = 0,

y(j)τ (0) = 0 (j = 1, . . . , n− 1)

yτ (0) = f(τ)

by the integral

y(t) =

∫ t

0

yτ (t− τ) dτ.

In other words,

y(t) =

∫ t

0

f(τ)ỹ(t− τ) dτ,

in which ỹ is the solution of the initial-value problem

ỹ(n) + an−1ỹ
(n−1) + . . . a1ỹ

′ + a0ỹ = f

ỹ(j)(0) = 0 (j = 0, . . . , n− 1),

so ỹ (by extending it to the negative values as zero) is a fundamental solution of the
di�erential-operator (and then the solution y can be computed as the convolution of
the fundamental solution and the right-had side).

8. Solve the following Cauchy-problems!

a)

{
∂tu− ∂2

xu = x+ t inside R+ × R,
u(0, x) = ex (x ∈ R).

b)

{
∂tu− 4∂2

xu+ u = ex inside R+ × R,
u(0, x) = x2 (x ∈ R).

Solution: a) Instead of considering the whole problem, we split our equation into two
sub-problems, namely {

∂tu1 − ∂2
xu1 = 0 inside R+ × R,

u1(0, x) = ex (x ∈ R).
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and {
∂tu2 − ∂2

xu2 = x+ t inside R+ × R,
u2(0, x) = 0 (x ∈ R).

The solution of the �rst sub-problem by our formula is

u1(t, x) =
1√
π

∫ +∞

−∞
e−η2 · ex−2

√
tη dη = ex+t 1√

π

∫ +∞

−∞
e−(η+

√
t )2 dη = ex+t,

in which we used that

∫ +∞

−∞
e−η2 dη =

√
π (see Exercise 3 on Practice 6).

We seek the solution of the second sub-problem using the Duhamel-principle. Our
auxiliary problem is the following:{

∂tv −∆v = 0 inside R+ × R,
v(0, x) = x+ τ (x ∈ Rn).

The solution of the above problem is

v(t, x; τ) =
1√
π

∫ +∞

−∞
e−η2(x+ τ − 2

√
tη) dη =

=
1√
π

∫ +∞

−∞
e−η2(x+ τ) dη − 2

√
t√
π

∫ +∞

−∞
e−η2η dη = x+ τ,

since the second integral is an integral of an odd function, so it is zero, and for the �rst
we use Exercise 3 from Practice 6. Then the solution of the second sub-problem is

u2(t, x) =

∫ t

0

(x+ τ) dτ = tx+
t2

2
.

By the linearity of the problem, the solution is the sum of the solutions of the two

sub-problems so u(t, x) = u1(t, x) + u2(t, x) = ex+t + tx+
t2

2
.

b) First we transform our problem to a "regular" form. Let us substitute 2x instead of
x, and let z(t, x) = u(t,2x), then we get the following Cauchy-problem for z :{

∂tz − ∂2
xz + z = e2x inside R+ × R,
z(0, x) = 4x2 (x ∈ R).

Let us multiply the equation with et, and let w(t, x) = etz(t, x), then we get the
following Cauchy-problem for w (using that w(0, x) = z(0, x)) :{

∂tw − ∂2
xw = e2x+t inside R+ × R,

w(0, x) = 4x2 (x ∈ R).

This is now a problem we can solve. The two sub-problems in this case are{
∂tw1 − ∂2

xw1 = 0 inside R+ × R,
w1(0, x) = 4x2 (x ∈ R),

and {
∂tw2 − ∂2

xw2 = e2x+t inside R+ × R,
w2(0, x) = 0 (x ∈ R).

The solution of the �rst sub-problem from the formula is

w1(t, x) =
1√
π

∫ +∞

−∞
e−η24(x− 2

√
tη)2 dη =

= 4x2 1√
π

∫ +∞

−∞
e−η2 dη − 16

√
t
1√
π

∫ +∞

−∞
e−η2η dη + 16t

1√
π

∫ +∞

−∞
e−η2η2 dη.

Observe that since the function η 7→ e−η2η is odd, the second integral on the right-
hand side of the above equation is zero. The �rst integral equals 4x2, by using that
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∫ +∞

−∞
e−η2 dη =

√
π (see Exercise 3 on Practice 6). We can also compute the third

integral :

1√
π

∫ +∞

−∞
e−η2η2 dη =

1√
π

[
−1

2
e−η2η

]+∞

−∞
+

1

2
√
π

∫ +∞

−∞
e−η2 dη =

1

2
,

in which we used that e−η2η → 0 when |η| → +∞, since the decrease of the exponential
is faster than the growth of the polynomial. In conclusion, w1(t, x) = 4x2 + 8t.

For the solution of the 2nd sub-problem, we de�ne the following auxiliary problem:{
∂tv −∆v = 0 inside R+ × R,

v(0, x) = e2x+τ (x ∈ Rn).

The solution of this one is

v(t, x; τ) =
1√
π

∫ +∞

−∞
e−η2 · e2x−4

√
tη+τ dη =

1√
π

∫ +∞

−∞
e−(η−2

√
t )2+4t+2x+τ dη =

= e2x+τ+4t 1√
π

∫ +∞

−∞
e−ξ2dξ = e2x+τ+4t.

where we used the substitution ξ = η − 2
√
t. Then by the Duhamel-principle, the

solution of the 2nd sub-problem is

u2(t, x) =

∫ t

0

e2x+τ+4(t−τ) dτ = e2x+4t

∫ t

0

e−3τ dτ = −1

3
e2x+4t(e−3t − 1).

By linearity of the equation, the solution of the original problem is the sum of the
solutions of the sub-problems, i.e. w(t, x) = 4x2 + 8t + 1

3
e2x+4t − 1

3
e2x+t, and then

u(t, x) = x2e−t + 8te−t + 1
3
ex+3t − 1

3
ex.
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