
Eighth practice

Hyperbolic equations

In this Practice we �rst prove the general form of solutions of a hyperbolic Cauchy-
problem in the form 

∂2
t u(t, x)−∆u(t, x) = f(t, x) inside R+ × Rn,

u(0, x) = g(x) (x ∈ Rn),
∂tu(0, x) = h(x) (x ∈ Rn).

(1)

For this, we split our general equation into three sub-problems. The �rst sub-problem is
∂2
t u1(t, x)−∆u1(t, x) = 0 inside R+ × Rn,

u1(0, x) = 0 (x ∈ Rn),
∂tu1(0, x) = h(x) (x ∈ Rn).

The second sub-problem is
∂2
t u2(t, x)−∆u2(t, x) = f(t, x) inside R+ × Rn,

u2(0, x) = 0 (x ∈ Rn),
∂tu2(0, x) = 0 (x ∈ Rn).

The third sub-problem is
∂2
t u3(t, x)−∆u3(t, x) = 0 inside R+ × Rn,

u3(0, x) = g(x) (x ∈ Rn),
∂tu3(0, x) = 0 (x ∈ Rn).

Then the solution of the general problem (1) is the sum of the solutions of the three sub-
problems (since (1) is linear), so u = u1 + u2 + u3.

1. Consider the following set of equations:
∂2
t v −∆v = 0 inside R+ × Rn,
v(0, x) = 0 (x ∈ Rn),

∂tv(0, x) = f(τ, x) (x ∈ Rn)
(2)

in which f ∈ C(R+ × Rn) and τ ∈ R+
0 is a parameter. Suppose that for all τ ∈ R+

0 ,
for the solution v(·, · ; τ) of the above equation, v, ∂2

t v,∆v ∈ C(R+
0 × Rn × R+

0 ) holds.
Then let us de�ne function u in the following way:

u(t, x) =

∫ t

0

v(t− τ, x; τ) dτ.

Prove that ∂2
t u−∆u = f inside R+ ×Rn, u(0, x) = 0 and ∂tu(0, x) = 0 (x ∈ Rn), i.e.

u is a solution of the second sub-problem ! (Duhamel's principle)

Solution: Indeed, u(0, x) =

∫ 0

0

(. . . ) = 0 (x ∈ Rn). Then using Exercise 6 from

Practice 7, we get that

∂tu(t, x) = v(0, x; t) +

∫ t

0

∂tv(t− τ, x; τ) dτ.

Since v is a solution of (2) with parameter τ = t, then v(0, x; t) = 0, consequently

∂tu(0, x) =

∫ 0

0

(. . . ) = 0 (x ∈ Rn), so the initial conditions are ful�lled. Also,

∂2
t u(t, x) = ∂tv(0, x; t) +

∫ t

0

∂2
t v(t− τ, x; τ) dτ.
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We know that v(·, ·; t) is the solution of (2) with parameter τ = t, meaning that
∂tv(0, x; t) = f(t, x). Furthermore (because of the smoothness conditions, the derivati-
on can be moved inside the integral),

∆u(t, x) =

∫ t

0

∆v(t− τ, x; τ) dτ.

In conclusion,

∂2
t u(t, x)−∆u(t, x) = f(t, x) +

∫ t

0

(∂2
t v(t− τ, x; τ)−∆v(t− τ, x; τ)) dτ. (3)

The integrand on the right-hand side of (3) is zero, since v(·, ·; τ) is a solution of (2),
i.e. ∂2

t v −∆v = 0. So we proved that u is a solution of the second sub-problem.

2. Let w be the solution of the following problem:
∂2
tw −∆w = 0 inside R+ × Rn,
w(0, x) = 0 (x ∈ Rn),

∂tw(0, x) = g(x) (x ∈ Rn).

Suppose that w ∈ C3(R+ × Rn) ∩ C2(R+
0 × Rn), and let us de�ne u(t, x) = ∂tw(t, x)

((t, x) ∈ R+
0 × Rn). Prove that ∂2

t u − ∆u = 0 inside R+ × Rn, u(0, x) = g(x) and
∂tu(0, x) = 0 (x ∈ Rn), i.e. u is a solution of the third sub-problem !

Solution: Indeed, u(0, x) = ∂tw(0, x) = g(x) (x ∈ Rn). Moreover, by the smoothness
conditions, if (t, x) ∈ R+

0 × Rn then

∂tu(t, x) = ∂2
tw(t, x) = ∆w(t, x),

consequently ∂tu(0, x) = ∆w(0, x) = 0 (x ∈ Rn). Also, ∂2
t u = ∂t(∂

2
tw) and

∆u = ∆∂tw = ∂t(∆w), therefore ∂2
t u − ∆u = ∂t(∂

2
tw − ∆w) = 0. In this way we

proved that u is a solution of the 3rd sub-problem.

3. Solve the �rst sub-problem in the case n = 1.

Solution: From Exercise 1 (f) from Sheet 1, the solution is in the form
u(t, x) = F (x+ t) +G(x− t) for some functions F,G ∈ C2(R). The form of functions
F,G is determined by the initial and boundary conditions. From the initial conditions:
∂tu(t, x) = F ′(x+ t)−G′(x− t), so h(x) = ∂tu(0, x) = F ′(x)−G′(x) (x ∈ Rn). Further-

more, 0 = u(0, x) = F (x)+G(x) (x ∈ Rn). Combining these two we get
1

2
h(x) = F ′(x),

so F (x) =
1

2

∫ x

0

h(ξ) dξ + c and G(x) = −1

2

∫ x

0

h(ξ) dξ − c. In conclusion,

u(t, x) =
1

2

∫ x+t

0

h(ξ) dξ + c− 1

2

∫ x−t

0

h(ξ) dξ − c =
1

2

∫ x+t

x−t

h(ξ) dξ.

4. Prove that in the case n = 1 and g ∈ C2(R), the solution of the third sub-problem is

u(t, x) =
1

2
(g(x+ t) + g(x− t)) ((t, x) ∈ R+

0 × R).

Solution: By the formulas of the solutions of the 2nd and 3rd sub-problems proved
above,

u(t, x) = ∂t

(
1

2

∫ x+t

x−t

g(ξ) dξ

)
=

1

2
(g(x+ t) + g(x− t)) .

Observe that we can now state the general form of the solutions of the hyperbolic Cauchy-
problems in the case n = 1. By Exercise 3, the solution of the �rst sub-problem is

u1 =
1

2

∫ x+t

x−t

h(ξ) dξ.

By Exercise 4, the solution of the 3rd sub-problem is

u3(t, x) =
1

2
(g(x+ t) + g(x− t)).
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Also, Exercise 1 states that the solution of the 2nd sub-problem can be computed from the
solution of (2) by integration. The solution of equation (2) (by Exercise 3) is

v(t, x; τ) =
1

2

∫ x+t

x−t

f(τ, ξ) dξ,

meaning that by Exercise 1

u2(t, x) =

∫ t

0

1

2

∫ x+(t−τ)

x−(t−τ)

f(τ, ξ) dξ dτ.

In conclusion, the solution of the hyperblic Cauchy-problem is the sum of the solutions of
the three sub-problems (because the equation is linear), i.e.

u(t, x) =
1

2

∫ t

0

∫ x+(t−τ)

x−(t−τ)

f(τ, ξ) dξ dτ +
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t

h(ξ) dξ. (4)

This is the so-called d'Alembert formula.

5. Solve the following Cauchy-problem!
∂2
t u− ∂2

xu = t− x inside R+ × R,
u(0, x) = sinx (x ∈ R),

∂tu(0, x) = cosx (x ∈ R).

Solution: The auxiliary problem corresponding to the second sub-problem is:
∂2
t v − ∂2

xv = 0 inside R+ × R,
v(0, x) = 0 (x ∈ R),

∂tv(0, x) = τ − x (x ∈ R).

The solution of this one is

v(t, x; τ) =
1

2

∫ x+t

x−t

(τ − ξ) dξ =
1

2

[
τξ − ξ2

2

]x+t

ξ=x−t

= τt− tx.

Therefore the solution of the 2nd sub-problem is

u2(t, x) =

∫ t

0

(t− τ)(τ − x) dτ =

∫ t

0

(tτ − tx− τ 2 + τx) dτ =

=

[
t
τ 2

2
− τ 3

3
− txτ +

τ 2

2
x

]t
τ=0

=
t3

6
− t2x

2
.

The auxiliary problems corresponding to the �rst and third sub-problems are:
∂2
t u1 − ∂2

xu1 = 0 inside R+ × R,
u1(0, x) = sinx (x ∈ R),

∂tu1(0, x) = 0 (x ∈ R),


∂2
t u3 − ∂2

xu3 = 0 inside R+ × R,
u3(0, x) = 0 (x ∈ R),

∂tu3(0, x) = cosx (x ∈ R).

The solutions of these are u1(t, x) =
1

2
(sin(x + t) + sin(x − t)) and

u3(t, x) =

∫ x+t

x−t

cos ξ dξ =
1

2
(sin(x + t) − sin(x − t)), respectively. In conclusion, the

solution of the Cauchy-problem is u(t, x) = t3

6
− t2x

2
+ sin(x+ t).

6. Let u be the solution of the following problem:
∂2
t u− ∂2

xu = 0 inside R+ × Rn,
u(0, x) = g(x) (x ∈ R),

∂tu(0, x) = h(x) (x ∈ R),

in which g, h ∈ C(R). Show that if supp g, supph ⊂ [a, b], then suppu(t, ·) ⊂ [a−t, b+t]
for all t > 0. (So the wave propagates with a �nite speed.)
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Solution: By Exercises 3 and 4, we know that

u(t, x) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t

h(ξ) dξ.

It is clear that for x ̸∈ [a − t, b + t], the interval [x − t, x + t] lies outside of inter-
val [a, b] (their end-points might be the same), meaning that if supp g ⊂ [a, b] and
supph ⊂ [a, b], then on the interval [x − t, x + t] both g and h equals to zero. Then
by the formula for the solution u(t, x) = 0, so suppu(t, ·) ⊂ [a − t, b + t]. This result
means that the e�ect of an initial wave concentrated on the interval [a, b] after time t
can only be seen on the interval [a − t, b + t], so the speed of the wave is �nite (here
1), contrary to the case of heat equation (in which it is in�nite).

7. Prove for the case of n = 1, the solution of the hyperbolic Cauchy-problem depends
continuously on h in the following sense: if h1, h2 ∈ C(R), for which

|h1(x)− h2(x)| ≤ ε (x ∈ R),

then for the corresponding solutions of the Cauchy-problem u1, u2 we get that

|u1(t, x)− u2(t, x)| ≤ εt ((t, x) ∈ R+
0 × R).

Solution: It is clear that

|u1(t, x)− u2(t, x)| ≤
1

2

∫ x+t

x−t

|h1(ξ)− h2(ξ)| dξ ≤ 1

2

∫ x+t

x−t

ε dξ = εt.

8. Show that in the case of n = 1, the solution u of the hyperbolic Cauchy-problem
depends continuously on f in the following sense: if f1, f2 ∈ C(R+ × R), for which

|f1(t, x)− f2(t, x)| ≤ ε ((t, x) ∈ R+ × R),

then

|u1(t, x)− u2(t, x)| ≤
εt2

2
((t, x) ∈ R+

0 × R).

Solution: From the D'Alembert formula (4) it is easy to see that

|u1(t, x)−u2(t, x)| ≤
1

2

∫ t

0

∫ x+(t−τ)

x−(t−τ)

|f1(τ, ξ)−f2(τ, ξ)| dξ dτ ≤ 1

2

∫ t

0

∫ x+(t−τ)

x−(t−τ)

ε dξ dτ =

=

∫ t

0

ε(t− τ) dτ = ε

[
−(t− τ)2

2

]t
0

=
εt2

2
.

9.* Let u ∈ C2(R+
0 × [0,1]) be such a solution of the one-dimensional wave equation

∂2
t u(t, x) − ∂2

xu(t, x) = 0 for which u(t,0) = u(t,1) = 0 for every t > 0 (this is a
rod with �xed ends). Show that then in this case the following function (mechanical
energy) does not depend on t :

E(t) =
1

2

∫ 1

0

[
(∂tu(t, x))

2 + (∂xu(t, x))
2
]
dx.

Solution: The solution can be submitted.

4


