Eighth practice

Hyperbolic equations

In this Practice we first prove the general form of solutions of a hyperbolic Cauchy-
problem in the form

Pu(t,x) — Au(t,z) = f(t,z) inside RT x R™,
u(0,2) =g(x)  (reR"), (1)
Owu(0,z) = h(z)  (x € R™).

For this, we split our general equation into three sub-problems. The first sub-problem is

OPuy(t,z) — Auy(t,z) =0 inside R™ x R,
up(0,2) =0 (x € R™),
Owur(0,2) = h(z) (x € R™).

The second sub-problem is

DPuy(t, ) — Aus(t,z) = f(t,z) inside RT x R,
ug(0,2) =0 (x € R"),
Oru(0,2) =0 (x € R™).

The third sub-problem is

DPuz(t,x) — Aug(t,x) =0 inside R x R",
u3(0,2) = g(z) (z € R"),
Ouz(0,2) =0 (x € R™).

Then the solution of the general problem is the sum of the solutions of the three sub-
problems (since (1)) is linear), so u = uy + ug + us.

1. Consider the following set of equations:

02v — Av =10 inside R™ x R",
v(0,2) =0 (x € R"), (2)
ow(0,z) = f(r,2) (z€R")

in which f € C(RT x R") and 7 € RJ is a parameter. Suppose that for all 7 € Ry,
for the solution v(-,-;7) of the above equation, v, 9?v, Av € C(R{ x R™ x R{) holds.
Then let us define function u in the following way:

¢
u(t,z) = / v(t — 7, x;7)dr.
0

Prove that 0?u — Au = f inside R™ x R", u(0,z) = 0 and 9,u(0,z) = 0 (z € R"), i.e.
u is a solution of the second sub-problem! (Duhamel’s principle)

0

Solution: Indeed, u(0,z) = / (...) = 0 (x € R™). Then using Exercise 6 from
0

Practice 7, we get that

t
Owu(t, z) = v(0,z;t) + / Ow(t — 1, 2;7) dT.
0
Since v is a solution of with parameter 7 = ¢, then v(0,z;¢) = 0, consequently
0

Owu(0,z) = / (...) =0 (z € R"), so the initial conditions are fulfilled. Also,
0

t
Ofu(t, ) = dy(0,z:t) + / Ofu(t — 7, x;7) dr.
0
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We know that ov(-,-;t) is the solution of with parameter 7 = ¢, meaning that
0w (0, z;t) = f(t,x). Furthermore (because of the smoothness conditions, the derivati-
on can be moved inside the integral),

t
Au(t,x) = / Av(t — T,2;7)dT.
0
In conclusion,
t
OPu(t, ) — Ault,x) = f(t,x) + / (O2v(t — 7, 2;7) — Av(t — 7,2, 7)) dr. (3)
0

The integrand on the right-hand side of is zero, since v(-,+;7) is a solution of (2),
i.e. 9?v — Av = 0. So we proved that u is a solution of the second sub-problem.

2. Let w be the solution of the following problem:

OPw — Aw =0 inside R* x R",
w(0,2) =0 (x € R™),
Ow(0,z) = g(z) (z€R™).

Suppose that w € C3(RT x R") N C*(R$ x R"), and let us define u(t,x) = dyw(t, )
((t,z) € Rty x R™). Prove that 9?u — Au = 0 inside R* x R", u(0,2) = g(x) and
Owu(0,z) =0 (z € R"), i.e. uis a solution of the third sub-problem!

Solution: Indeed, u(0,z) = Jyw(0,z) = g(x) (x € R™). Moreover, by the smoothness
conditions, if (£,7) € R x R™ then
ou(t,z) = Ofw(t, x) = Aw(t, ),

consequently du(0,z) = Aw(0,z) = 0 (z € R"). Also, d’u = 8;(9?w) and
Au = Adw = 0;(Aw), therefore 0?u — Au = 9;(0?w — Aw) = 0. In this way we
proved that wu is a solution of the 3rd sub-problem.

3. Solve the first sub-problem in the case n = 1.

Solution: From Exercise 1 (f) from Sheet 1, the solution is in the form
u(t,r) = F(z +t) + G(x — t) for some functions F,G € C*(R). The form of functions
F, G is determined by the initial and boundary conditions. From the initial conditions:
Owu(t,z) = F'(x+1t)—G'(z—t), so h(z) = Ou(0,z) = F'(x) —G'(x) (x € R™). Further-
1
more, 0 = u(0,z) = F(z)+G(z) (xr € R"). Combining these two we get Eh(x) = F'(z),
1

so F(x) = 5 /Ox h(€) d§ + ¢ and G(x) = —% /: h(§) d§ — c. In conclusion,

x+t r—t x4+t
wta) =3 [ h@dsre=3 [ n@a—c=g [ e

—t

4. Prove that in the case n = 1 and g € C*(R), the solution of the third sub-problem is
1
u(t,z) = 59z +1) +g(z — 1)) ((t.2) € R x R).

Solution: By the formulas of the solutions of the 2nd and 3rd sub-problems proved
above,

T+t
)= (5 [ a@0d) = 5 lata+ 0+ gt - 1),

Observe that we can now state the general form of the solutions of the hyperbolic Cauchy-
problems in the case n = 1. By Exercise 3, the solution of the first sub-problem is

T+t
T LGLS

—t

By Exercise 4, the solution of the 3rd sub-problem is

us(t,2) = 5(go+1) + gl — 1))



Also, Exercise 1 states that the solution of the 2nd sub-problem can be computed from the
solution of (2)) by integration. The solution of equation (2)) (by Exercise 3) is

v(t,x;7) / f(r,€)dg,

meaning that by Exercise 1

x4 (t— 7')
o(t, x) / / f(r, &) d¢ dr.
(t—=7)

In conclusion, the solution of the hyperblic Cauchy-problem is the sum of the solutions of
the three sub-problems (because the equation is linear), i.e.

1 1 T+t
// fn o dedr+ Lo sat)tgle—0)+3 [ M@ (@)

—t

This is the so-called d’Alembert formula.

5. Solve the following Cauchy-problem!

Pu—0*u=t—1r inside RT x R,
u(0,2) =sinz (z € R),
Owu(0,2) =cosz  (z € R).

Solution: The auxiliary problem corresponding to the second sub-problem is:

0?v— 0% =0 inside RT x R,
v(0,2) =0 (x € R),
ow(0,z)=7—2x (x€R).

The solution of this one is

=7t —tx.

-+t 2 T+t
wtain) =5 [ r-gde=g|re- 5]

—t {=x—t

Therefore the solution of the 2nd sub-problem is

us(t, x) = /Ot(t—T)(T—:E) dr = /Ot(tT—t:E—TQ—{—Tx) dr =

72 73 72 t t3 21
= |t— — — —taT + — R
{ 2 3 m+24 L, 6 2

The auxiliary problems corresponding to the first and third sub-problems are:

Otuy — O2uy =0 inside RT x R, DPuz — O2uz =0 inside R* x R,
u1(0,z) =sinz  (z € R), u3(0,2) =0 (x € R),
Orup(0,2) =0 (x € R), Owuz(0,x) = cosz  (z € R).
1
The solutions of these are wui(t,z) = é(sin(:zt + t) + sin(x — t)) and

T+t 1

ug(t,x) = / cos€ d§ = (sm(ﬂc +t) — sin(z — t)), respectively. In conclusion, the
r—t

solution of the Cauchy—problem is u(t,z) =

3

233 .
E— T 4sin(z 4 t).
6. Let u be the solution of the following problem:

0Pu—0Pu=0 inside RT x R",
u(0,2) = g(z) (v € R),
Owu(0,2) = h(z) (z € R),

in which g, h € C(R). Show that if supp g, supp h C [a, b], then supp u(t,-) C [a—t, b+1]
for all ¢ > 0. (So the wave propagates with a finite speed.)
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Solution: By Exercises 3 and 4, we know that

x4+t

u(t.o) = 5o+ 0) gl =)+ 5 [ b

—t

It is clear that for x ¢ [a — t,b + t], the interval [z — ¢,z + t] lies outside of inter-
val [a,b] (their end-points might be the same), meaning that if suppg C [a,b] and
supph C [a,b], then on the interval [z — ¢,z + t] both g and h equals to zero. Then
by the formula for the solution u(t,z) = 0, so suppu(t,-) C [a — ¢, b+ t]. This result
means that the effect of an initial wave concentrated on the interval [a, b] after time ¢
can only be seen on the interval [a — ¢, b+ t], so the speed of the wave is finite (here
1), contrary to the case of heat equation (in which it is infinite).

Prove for the case of n = 1, the solution of the hyperbolic Cauchy-problem depends
continuously on & in the following sense: if hy, hy € C'(R), for which

() — ho(z)| < € (x € R),
then for the corresponding solutions of the Cauchy-problem wuy, uy we get that
luy (t,x) —ua(t,z)| < et ((t,x) € Rty x R).

Solution: It is clear that

x4+t

1 T+t 1
) ualt o) < 5 [ () - ha@lds < 5 [ ede =t

—t

Show that in the case of n = 1, the solution u of the hyperbolic Cauchy-problem
depends continuously on f in the following sense: if fi, fo € C(R™ x R), for which

|f1(t,IL‘) - f2(t7x)| S £ ((t,l’) € R+ X R))

then
2

lun(t, ) — us(t, 2)] < % (. 2) € R x R).

Solution: From the D’Alembert formula (4] it is easy to see that

(t—7)
() —uat, )| < > //( i E)—folr. 6 dedr < / gdng:

:/0 5(75—7)(17:5[—%};:5—5.

Let u € C?(R§ x [0,1]) be such a solution of the one-dimensional wave equation
O2u(t,x) — A*u(t,z) = 0 for which u(¢,0) = u(t,1) = 0 for every ¢ > 0 (this is a
rod with fixed ends). Show that then in this case the following function (mechanical
energy) does not depend on ¢:

E(t) = %/0 [(Bpu(t, x))* + (Opult, z))?] da.

Solution: The solution can be submitted.



