
Nineth practice

Elliptic equations

1.* Show that the Laplace equation ∆u = 0 is rotation-invariant in Rn, meaning that if
we have an n × n orthogonal matrix Q, then for the function v(x) = u(Qx) (x ∈ Rn)
the equation ∆v = 0 also holds.

Solution: The solution can be submitted.

2. We seek the solutions of the equation ∆u = 0 in the form u(x) = v(|x|) (x ∈ Rn) (the
solution is radially symmetric), in which v : R+

0 → R.
Solution: For the sake of simplicity let r = |x| =

√
x2
1 + · · ·+ x2

n, and we seek the
solutions of equation ∆u = 0 in the form u(x) = v(r), in which we would like to acquire
the function v : R+

0 → R. By the di�erentiation rule of the composite functions:

∂r

∂xi

=
1

2

(
x2
1 + · · ·+ x2

n

)− 1
2 2xi =

xi

r
(x ̸= 0),

then in the case of i = 1, . . . , n :

∂iu(x) = v′(r)
∂r

∂xi

= v′(r)
xi

r
,

(in which � ′ � is the di�erentiation by r ), and then

∂2
i u(x) = v′′(r)

∂r

∂xi

xi

r
+ v′(r)

(
1

r
− xi

r2
∂r

∂xi

)
= v′′(r)

x2
i

r2
+ v′(r)

(
1

r
− x2

i

r3

)
.

Consequently,

∆u(x) =
n∑

i=1

∂2
i u(x) =

n∑
i=1

[
v′′(r)

x2
i

r2
+ v′(r)

(
1

r
− x2

i

r3

)]
=

= v′′(r)

∑n
i=1 x

2
i

r2
+

1

r
v′(r)

(
n−

∑n
i=1 x

2
i

r2

)
= v′′(r) +

n− 1

r
v′(r).

This means that equation ∆u = 0 holds if and only if

v′′(r) +
n− 1

r
v′(r) = 0.

This is a separable ordinary di�erential equation in v′, so we can get its solutions easily.
By moving its terms we get

v′′(r)

v′(r)
=

1− n

r
.

By integrating both sides, we get log |v′(r)| = (1 − n) log r + c, meaning that
v′(r) = Cr1−n, in which C is an arbitrary constant (we can get back the constant
zero solution which we lost when we divided the equation). Therefore, in the case of
r > 0 :

v(r) =

{
a log r + b, if n = 2,

a
rn−2 + b, if n ≥ 3,

in which a, b are constants. Note that if n = 2, then with the choices a = 1
2π
, b =

= 0, and in the case of n ≥ 3 with the choices a = 1
n(n−2)α(n)

, b = 0 (in which α(n)

is the volume of the n-dimensional sphere) we get the fundamental solutions of the
Laplace-equation. Note that we have also proved that in the case of radially symmetric
functions the operator ∆ can be written in the form v′′(r) + n−1

r
v′(r).
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3. Let Ω ⊂ Rn be a bounded domain with smooth boundary, and p ∈ C1(Ω), for which
p(x) ≥ m > 0 for all x ∈ Ω. Let us de�ne the second order di�erential operator

Lu := div(p∇u) =
n∑

i=1

∂i(p ∂iu). Prove that L is a uniformly elliptic operator!

Solution: From the smoothness conditions:

Lu =
n∑

i=1

∂i(p ∂iu) =
n∑

i=1

p∂2
i u+

n∑
i=1

∂ip ∂iu.

The matrix A(x) in the main term of operator L is diagonal, the elements in its main
diagonal are p(x) ≥ −m > 0, so the eigenvalues are negative, meaning that it is elliptic
in all the points of Ω. Also, since p ∈ C1(Ω), there is such a constant M > 0, for which
m ≤ p(x) ≤ M for all x ∈ Ω, meaning that

m|ξ|2 ≤ p(x)|ξ|2 = ⟨A(x)ξ, ξ⟩ = p(x)|ξ|2 ≤ M |ξ|2

for all ξ ∈ Rn, so the operator is uniformly elliptic on Ω. Note that the reason for the
negative sign is described in the next Exercise.

4. Let operator L be as de�ned in Exercise 3.

a) Let D(L) = {u ∈ C2(Ω)∩C1(Ω) : u|∂Ω = 0, Lu ∈ L2(Ω)}. Prove that in this case
the operator L : L2(Ω) ↪→ L2(Ω) is symmetric, i.e. ⟨Lu, v⟩L2(Ω) = ⟨u, Lv⟩L2(Ω) for
all u, v ∈ D(L), and L is strictly positive, i.e. ⟨Lu, u⟩L2(Ω) > 0 for all u ∈ D(L),
u ̸≡ 0.

b) Let D(L) = {u ∈ C2(Ω) ∩ C1(Ω) : ∂νu|∂Ω = 0, Lu ∈ L2(Ω)}. Prove that in this
case the operator L : L2(Ω) ↪→ L2(Ω) is symmetric, i.e. ⟨Lu, v⟩L2(Ω) = ⟨u, Lv⟩L2(Ω)

for all u, v ∈ D(L), and L is positive, i.e. ⟨Lu, u⟩L2(Ω) ≥ 0 for all u ∈ D(L), and
equality can only hold if u ≡ c ∈ R.

Solution:

a) We use the second Green theorem, which stated that for a "su�ciently nice" domain
and functions u, v ∈ D(L) (note that in this case Lu = − div(p gradu)) :∫

Ω

(vLu− uLv) = −
∫
∂Ω

p(v∂νu− u∂νv) dσ.

Since u, v ∈ D(L), then u|∂Ω = 0 and v|∂Ω = 0, so the right-hand side is zero. Therefore,
by the homogeneous boundary conditions ⟨Lu, v⟩ − ⟨u, Lv⟩ = 0 for all u, v ∈ D(L).
Also, by the choice v = u, in the case of u ∈ D(L) by using the �rst Green theorem
we get

⟨Lu, u⟩L2(Ω) =

∫
Ω

uLu =

∫
Ω

p |gradu|2 −
∫
∂Ω

pv∂νu ≥ m

∫
Ω

|gradu|2 ≥ 0.

Equality holds on the right-hand side of this inequality if and only if gradu = 0, so
u ≡ c ∈ R. By the homogeneous boundary condition inside D(L), we get c = 0, so
u ≡ 0. In this way we proved that L is a strictly positive operator on D(L).

b) We prove this one similarly as part a): by using the second Green theorem and the
boundary condition we get that∫

Ω

vLu−
∫
Ω

uLv = 0.

Also, in the case of u = v, u ̸≡ c ∈ R, by the �rst Green theorem

⟨Lu, u⟩L2(Ω) =

∫
Ω

uLu =

∫
Ω

p| gradu|2 ≥ m

∫
Ω

| gradu|2 ≥ 0.

Equality holds on the right-hand side of this inequality if and only if gradu = 0, so
u ≡ c ∈ R (and the constant functions are all in D(L)).
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5. Show that the Dirichlet problem can have at most one solution inside C2(Ω) ∩C1(Ω),
and the solutions of the Neumann-problem can only di�er from each other in a constant.

Solution: If we have two solutions in C2(Ω)∩C1(Ω), then its di�erence, which is also in
C2(Ω) ∩ C1(Ω), is also a solution of the homogeneous problem, so
L(u1−u2) = 0 and u1−u2|∂Ω, and consequently ⟨L(u1−u2), u1−u2⟩ = 0. By Exercise
4 we know that this can only hold in the case of the Dirichlet condition if u1 − u2 = 0,
or in the case of the Neumann boundary if u1 − u2 is constant. In other words, the
solution of the Dirichlet-problem is unique in C2(Ω) ∩C1(Ω), and the solutions of the
Neumann-problem in this function space can only di�er from each other in a constant,
i.e. if u1 and u2 are two di�erent solutions, then u1 = u2+const. Note that the solution
of the Dirichlet problem is also unique in u ∈ C2(Ω)∩C(Ω), which can be proved using
the maximum principle. The existence of a solution is a much harder question (it will
be discussed on the last lecture of this semester).

6. Let operator L be the same as in Exercise 3, and
D(L) = {u ∈ C2(Ω) ∩ C1(Ω) : ∂νu|∂Ω = 0, Lu ∈ L2(Ω)}. Prove that if{

Lu = f in Ω,
∂νu|∂Ω = 0,

then

∫
Ω

f = 0.

Solution: By applying the �rst Green theorem for the functions u ∈ D(L), v ∈ C1(Ω),
and then using the homogeneous boundary condition, we get that∫

Ω

vf =

∫
Ω

vLu =

∫
Ω

p⟨gradu, grad v⟩.

Choose v to be the constant 1 function, this is in C1(Ω), then by the above equality∫
Ω

f = 0.

Note that this proof lies on the symmetric property of L. Indeed, for an arbitrary
symmetric operator L : D(L) → H, Ran(L) ⊂ Ker(L)⊥ holds, since for all u ∈ D(L)
and v ∈ Ker(L), ⟨Lu, v⟩ = ⟨u, Lv⟩ = 0. Note that the above condition is also su�cient
for the existence of solutions, see the Fredholm alternative theory (possibly mentioned
in the Lecture, if we have enough time).

7. Let Ω = (0,1)2 ⊂ R2. Prove that the problem{
∆u = 1 in Ω,
u|∂Ω = 0,

has no u ∈ C2(Ω) solution.

Solution: Consider one of the angles of the domain, e.g. the origin. On both of the x
and y axis we have u = 0 because of the boundary condition. Then, since u is twice
di�erentiable on the closure of the domain, ∂xu(x,0) = ∂yu(0, y) = 0, so ∂2

xu(0,0) =
= ∂2

yu(0,0) = 0, meaning that ∆u(0,0) = ∂2
xu(0,0) + ∂2

yu(0,0) = 0. We get that if
the boundary condition holds for u (and is twice di�erentiable on the closure of the
domain), then ∆u(0,0) = 0. So for u, the equation ∆u = 1 does not hold in all of the
interior of the domain, because in this case by continuity this should also hold at the
origin, which is a contradiction.

8. Let B1(0) be an open sphere centered at the origin with radius 1. For which value of
α ∈ R does the following boundary-value problem have a solution
u ∈ C2(B1(0)) ∩ C1(B1(0))? Give the solutions!{

∆u = α B1(0)-ban,
∂νu|∂B1(0) = 1.

Solution: Apply the �rst Green formula to functions u and constant 1. Then by
grad 1 = 0, we get ∫

B1(0)

1 ·∆u =

∫
∂B1(0)

1 · ∂νu dσ.
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By substituting ∆u = α and ∂ν |∂B1(0)u = 1 into the above formula, we get∫
B1(0)

α =

∫
∂B1(0)

1 dσ.

On the left-hand side of the equation we have the integral of the constant α function on
the unit disc, which is actually the area of the unit disc times α, i.e. απ. On the right-
hand side we have the integral of the constant one function taken on the circumference
of the unit disc, which is the length of the circumference, i.e. 2π. These two are equal,
meaning that απ = 2π, so α = 2. Consequently, the problem can have a solution in
C2(B1(0)) ∩ C1(B1(0)) only if α = 2.

Observe that such a solution actually exists, since for function

u(x, y) =
1

2
(x2 + y2) =

1

2
r2

we have ∆u = 2 and ∂νu|∂B1(0)u = ∂ru|r=1 = 1. By Exercise 5 we know that the

solutions in C2(B1(0)) ∩ C1(B1(0)) of the Neumann problem di�er in a constant from
each other, so if α = 2, then all of the solutions are in the form u(x, y) = 1

2
(x2+y2)+c,

in which c ∈ R is arbitrary.

We could have also solved this problem in the following way. Consider the function
v(x, y) := u(x, y) − 1

2
r2. Then for v the homogeneous Neumann condition holds, and

also ∆v = α− 2. From Exercise 6 we know that in this case
∫
B1(0)

(α− 2) = 0 holds, so
α − 2 = 0, but then v = c, since the solutions of the homogeneous Neumann problem
are the constant functions.

9. Let B1(0) be the open unit disc centered at the origin, and
T := {(x, y) ∈ R2 : x2 + x+ 2y2 < 1} (the interior of an ellipse). Solve the following
boundary-value problems!

a)

{
∆u = x+ y in B1(0),

u|∂B1(0) = 0.

b)

{
∆u = x in B1(0),

u|∂B1(0) = y2.

c)

{
∆u = 1 in the domain T,
u|∂T = x2.

Solution:

The main idea of these exercises is to �rst search the solution in a form that su�ces
the boundary condition, and it is also a polynomial which has an order n+ 2 where n
is the order of the right-hand side of the equation (it is a polynomial in all there types:
you can also expect a polynomial in the midterm).

a) Seek solution u in the form u(x, y) = (x2+y2−1)(ax+by+c), since then the boundary
condition is satis�ed. Then ∆u(x, y) = 8ax + 8by + 4c. By the conditions, a = b = 1

8

and c = 0. Consequently, the solution of the problem is u(x, y) = x+y
8
(x2 + y2 − 1).

b) Seek solution u in the form u(x, y) = (x2 + y2 − 1)(ax+ by + c) + y2 since then the
boundary condition is satis�ed. Then ∆u(x, y) = 8ax + 8by + 4c + 2, so a = 1

8
, b = 0

and c = −1
2
. Therefore, u(x, y) = (x2 + y2 − 1)(1

8
x− 1

2
) + y2.

c) Seek solution u in the form u(x, y) = (x2+x+2y2−1)c+x2 since then the boundary
condition is satis�ed. Then ∆u(x, y) = 6c+2, so c = −1

6
. Therefore, u(x, y) = −1

6
(x2+

+ x+ 2y2 − 1) + x2.
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