First midterm 2023

Partial differential equations

Solutions

1. Find the solution u € C?(R?) of the following Cauchy problem!

Ouyu(y, ©) = & + sin(y),
u(0,y) = e,
O,u(z,0) = —1.

Solution: By integrating the equation:
Ouyuly, ©) = & + sin(y)

Ozu(z,y) = xy — cos(y) + f(x)

(2 points) Now by using the second boundary condition:
Oyu(x,0) = —cos(0) + f(x) = —1
meaning that f(z) = 0. (2 points) Then, from

Opu(z,y) = xy — cos(y)
we get
2y
u(z,y) = == — zcos(y) + g(y)
(2 points) From the first boundary condition:
U(O, y) = g<y) = e,

(2 points) meaning that the final solution is

2
u(z,y) = % — zcos(y) + €Y.

(2 points)

2. Give all such u € C*(R?) functions for which both Au = 0 and A(cosh(u)) = 0 hold.
(Note that you do not need to use complex analysis.)

Solution: Let us rewrite the term on the left-hand side of the second equation! Then
A(cosh(u)) = 0 = Oyp(cosh(u)) + dyy(cosh(u)) = 0, (sinh(u)0,u) + 9y (sinh(u)d,u) =
= cosh(u)(9,u)* + sinh(u)d2u + cosh(u)(9yu)? + sinh(u)d;u =
= cosh(u) [(Oyu)* + (Oyu)?] + sinh(u)A(u) =
(6 points) Now we use the fact that Au = 0:
= cosh(u) [(8,u)* + (Oyu)?] =0

(2 points) Since cosh(u) > 0, (0,u)?* + (9yu)* = 0. So d,u = 0 and d,u = 0, which can only hold
if u= ¢, ¢ € R, so the solution is the set of constant functions. (2 points)

3. Give all the solutions of the following first order partial differential equation which
equal 2z on the r-axis:
Opu(z,y) + e’Oyu(z,y) =2

Solution: This is a quasi-linear equation, so the auxiliary equation has the form

Ov(z,y,u) + eYv(z,y,u) + 20,v(x,y,u) =0,
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and the corresponding characteristic equation is

2 (t) =1,
y'(t) = e,
@(t) = 2.

(2 points) It can be seen that x(t) + e ™¥® is a first integral, since
()’ =y (t)
2'(t) =y (t)e
(a(t) + ¢ @) =0
(2 points) Also, u(t) + 2e7¥® is also a first integral, since
u'(t)e? = 24/ (t)
(1) = 2y (H)e v
[u(t) + Ze’y(t)]/ =0
(2 points) This means that our solution is in the form
u(t) + 2¢ Y — @ (x(t) + e’y(t)) ,
u=T(z(t) + e ¥W) — 2e7v0,
(2 points) The initial condition means that u(z,0) = 2z, so by using this one:
w(z,0) =W (x(t)+1) — 2 =2z,
meaning that W(z) = 2z, so the final solution is
u(z,y) =2(z+e?) —2e".
(2 points)

. Give such a two-variable non-constant polynomial a(z,y) for which the second-order
differential operator
Lu = 0u + Opyu+ alz, y)0ou

is hyperbolic below the curve y = —4z%, it is elliptic between the curves y = —4z* and
y = 4z* and is hyperbolic above the curve y = 4x?. (Hint: search for a polynomial in
the form a(x,y) = az® + by* + c.)

Solutions: The matrix associated with this operator is

1
b
A=
5 aley
- a
B Y
(2 points) Then the determinant of this matrix is
1
det(A) = a(x,y) — T

(2 points) Our goal is that this expression is positive if —4z? < y < 42?, and is negative for
y < —4z* and y > 4z*. (2 points)

Let us choose a(z,y) in a way that (for a fixed x value) it has roots at y = —42* and y = 4z,
and it is negative for y = 0 (when x # 0). If we choose

1
a(,y) = (16x8 —y+ 1) ,

then . .
det(A) = F(z,y) = (16208 —y? + é_l) —1= 162° — o2,
for which
F(x,42%) =0,
F(x,—42") = 0.

Moreover, if y > 4z then F(x,y) = 162® —y? < 0, and it is also negative when y < 42%, and it is
positive between the two curves. (4 points)



5. For an arbitrary, fixed ¢ € D(R) function let us define
1 o ,
oj(x) = ﬁ¢(2023j — jx) (xeR,j=1,2,...).

Is this sequence convergent in the D(R) set? If yes, prove it, if not, give a countere-
xample!

1
Solution: Let us first consider the supports of these functions. It is clear that the term = does not

affect the support, and if = € supp(¢), then (2023 — z/j) € supp(¢;), meaning that the support
of the functions gets smaller and smaller as j — oo (the 2023 term only shifts it), so there is a
compact set which contains all of the supports. (4 points)

1
Since we have the term —, the functions ¢; tend to zero uniformly as j — oc. (3 points)
g!

Let us consider the nth derivative of the sequence:

o () = (—1)" ‘2—, o™ (2023] — ja)

3
It is a well known fact from analysis that the sequence j—' tends to zero as 7 — 0o, meaning that
J]°

the sequence is convergent. (3 points)

6. Let H C R? be the triangle on the plane with its vertices located at (0,0), (0,1) and
(1,1). Let us define the distribution u : D(H) — R in the following way:

u(@) = /O /0 " o(e,y)dyde (6 € D(H)

Show that
Oz u + Oyu = u.
(You don’t have to show that it is a distribution.)

Solution: Let us calculate the two derivatives!

1 x 1 1
Do = —/ / e’ 0,0(x,y)dydr = —/ / e’ Op¢(x, y)dudy =
0 Jo 0 Jy
1

—— [ ety == [ o) = wnay = [ oty

0
(4 points)

1 T
Oyu = —/ / e Oyp(x,y)dydx =
0o Jo

By integration by parts:

[ (i o= [ e otwn)) o == [ (i otor) — o001 - [ e a.0) ) o =

- _/01 e” ¢(m,x)dx+/ol /Om e’o(z,y)dydx

(5 points) By adding these things up:

1 1 1 x
Oru + Oyu = / e ¢y, y)dy — / e’ ¢(x, x)dr +/ / eYo(x,y)dydr =
0 0 0 0

_ /01 /0 Yoz, y)dydz = u.

7. Let f € C(R) and assume that its distributional derivative is a regular distribution,
e.g. there is such a function g € L}, .(R) for which (7}) = T,. Show such a function f

loc
that its distributional derivative has infinitely many jumps.

(1 point)

Solution: Let us consider the function

f(m)_{ {2}, if 2k <2 <2k+1, Vk€Z,
1—{x}, if 2k+1<2<2k+2, VkeZ
Then its derivative (according to the theorem) is
1, if 2%k <a<2k+1, VkeZ,
g(x):{—L if %k+1<xz<2%+2 VkeZ

which has infinitely many jumps. (10 points)



