Second midterm

Partial differential equations, 2023

Solutions

1. Solve the following parabolic Cauchy-problem!

1
ou(t,x) — OPu(t,z) = 2° + 5752, on RT x R,
u(0,z) =0, (x € R).

Solution: Let us introduce the auxiliary problem
Op(t, x) — 02 (t,x) = 0, on RT x R,

1
w(0,7) = 2° + 57'2, (x € R).

The solution of this Cauchy-problem is

w(t,x):%Ae—UQ(x—zfn) )dn_
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The second and the fourth functions are odd, so the integrals are zero. Also, \/%7 fR e‘”gdn = 1and

1
ﬁf_ e~ n2dn = %, meaning that

1
w(t,z) = 2° + 62t + 572.

Then by the Duhamel principle:

t t 1 t 1
u(t,x) = / w(t — 1, x)dT = / 2?4+ 6z(t —7) + 57'2d7 = tz® + 6xt* + / —6z7 + 57‘2d7‘ =
0 0 0
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So the solution is .

t
u(z,t) = ta® + 3ot? + 5

2. Let g € C'(R) be an even function. Is it true that for the solution u of the hyperbolic
equation

Otu(t, r) — Ou(t,x) = 0, on RT x R,
u(0,z) = g(x), (z € R),
Owu(0,x) =0, (x € R),

the function =z — u(t,x) is also an even function for any fixed ¢t > 07?

Solution: According to the well-known formula,
1
u(t, ) = 59+ )+ glz — 1))
Function g is even, meaning that g(z) = g(—x). Then,
1
ult, —2) = 5(9(=2 +1) + g(-a — 1)) =

Now we use that g is even:

= (oo =) + g+ 1)) = u(t,2)

so the solution w is also even in z.



3. Let [a,b] C R be a bounded interval and p € C'([a, b]), for which p(z) > m > 0 for every
r € [a,b]. Let us define the following operator L : L%*(a,b) — L*(a,b) in the following
way :

D(L) = {u € C*(a,b) N C*([a,b]) : u(a) = 0,u(b) + u(b) = 0, Lu € L*(Q)}, Lu:=—(pu).

Show that then this L : L?(Q) — L?(Q) operator is strictly positive, meaning that
(Lu,u) () > 0 for every u € D(L), u # 0.

Solution: ,
(L, u) o) = —/ (pu)u=

Using partial integration:

= p(b)(u(®))? + / 2> /

this is positive if u’ # 0, which can only hold if u is a constant function, but then by the boundary
condition we have u = 0, which is a contradiction, so we got the statement.

4. Let Q@ C R", Q = B(0,4)\ B(0,2) (where B(0,r) is the ball centered at zero with radius r).
Then for which a € R does the following problem have a solution v € C*(Q) N C'(Q)?

{Au =1, (x € Q)

0,,u\39 = Q.

Solution: Use the first Green formula with v = 1:

/1 Au = auda

/1_/ o do
a0

167 — 47 = (87 + 4m)

a=1
So the problem has only solutions for a = 1.

5. Let 2 be the ball centered at zero with radius 1, and solve the following elliptic
boundary-value problem!

Au =z + 2y, (x € Q)
ulogn = 3y.

Solution: Let us seek the solution in the form

u(z,y) = (" +y> — D(az + by +c) + 3y =

= ax® + azy® — ax + ba’y + by® — by + ca® + cy® — ¢+ 3y

Then
A(u(z,y)) = 6az + 2azx + 2by + 6by + 2¢ + 2¢ = 8ax + 8by + 4c

1 1
For this to be equal to the right-hand side, we need a = 3’ b= 1 and ¢ = 0, so the solution is in
the form oy
u(z,y) = (22 +y* — 1) <§+§) + 3y

6. Solve the following parabolic (mixed) problem!
Owu(t, z) — Ou(t, ) = sin(t) sin(3z) ((t,x) € RT x (0,7))

u(0, ) = sin(4x), (x €[0,7])
u(t,0) = u(t,m) = 0. (t e RY).



Solution: Let us split our problem into two, easier sub-problems:

Opuy (t, x) — O%uy (t, x) = sin(t) sin(3z) ((t,z) e RT x (0,m))

uy(0,2) = 0, (x €0, |n])
uy(t,0) = uy(t,m) = 0. (t e RY).
and
Opus(t, x) — Ous(t,x) = 0 ((t,z) € R x (0,m))
us(0, ) = sin(4x), (x € [0,]|r])
’UQ(t,O) = Ug(t, 7T> =0. (t S Rar)

First we solve the equation for wu(t,z). Let us search for our solution in the form
ui(t,z) = ¢(t) sin(3z). Then from the initial value:

u1(0,z) = ¢(0) sin(3z) = 0,
we get that ¢(0) = 0. Also, from the equation:
d(t) sin(3z) + 9¢(t) sin(3z) = sin(t) sin(3z)

d(t) + 9¢(t) = sin(t)

This ordinary diff. equation can be easily solved, and we get

9 1
c(t) = ce” ™ + = sin(t) — % cos(t),
1
and because of ¢(0) =0, ¢ = 5 and
1 g9 1
c(t) = 55¢ + % sin(t) % cos(t),
SO
ui(t,z) = ! e %+ ) sin(t) ! cos(t) | sin(3z)
BT R2 82 82 '

Now we solve the second one. Let us search for our solution in the form us (¢, ) = >, | &(t) sin(kx)
(since the eigenfunctions of the laplacian operator are sin(kx)). Then from the initial value:

up(0,2) = & (0) sin(kx) = sin(4x)

which means that & = 0 if k£ # 4, and £,(0) = 1. Then
4(1) + 1664(1) = 0
from which we get that (using the initial condition) £4(t) = ¢! and then
uy(t, x) = e % sin(4x).

So the solution of the original problem is

1 9 1
e 4 —sin(t) — — cos(t)) sin(3z) + "% sin(4z).

. Let a > 0, and then compute the eigenvalues and the eigenvectors of the following
operator!

D(L) := {u € C*(0,a) N C*([0,a]) : u(0) = 0,u/(a) = 0}, Lu:=—5u" 4+ u

Solution: The eigenvalue-problem is

—5u 4+ u=\u
s, A—1

u = u

5
Depending on the sign of A — 1, we have three cases:




@)

b)

N\ —
If 5 > 0: Then the eigenfunctions are in the form

) A—1 A—1
u(z) = ¢y 8in =7 + ¢y cos T2

From the boundary conditions we have that

u(0) = o =0,

A—1 A—1
u'(a) = ¢ 5 cos( = a> =0.

If u is not the zero function, then this can only hold if

and also

(7 + 2km)?
4a?
So the eigenvalues are in this form (when k # 0), and the corresponding eigenfunctions are

in the form
T+ 2k )
T ).
2a

A=5H +1

(o) = cacos

A—1
If — = 0: Then the eigenfunctions are in the form

u(z) = 1 + o

From the boundary conditions we have that u(0) = ¢ = 0, and also u/(a) = ¢; = 0 from
which u = 0.

If % < 0: Then the eigenfunctions are in the form

1—A 1—A
u(x) = ¢y exp P2 + coexp [ — P2

From the boundary conditions we have that

U(O) =cC+c= 0,

S0 ¢; = —cy and also

B 1—A o 1—A Lo B 1—A _0
=0 3 Xp 3 a Xp 3 all =

which can only hold if ¢; =0, so u = 0.



