
Second midterm

Partial di�erential equations, 2023

Solutions

1. Solve the following parabolic Cauchy-problem!∂tu(t, x)− ∂2
xu(t, x) = x3 +

1

2
t2, on R+ × R,

u(0, x) = 0, (x ∈ R).

Solution: Let us introduce the auxiliary problem∂tw̃(t, x)− ∂2
xw̃(t, x) = 0, on R+ × R,

w̃(0, x) = x3 +
1

2
τ 2, (x ∈ R).

The solution of this Cauchy-problem is

w̃(t, x) =
1√
π

∫
R
e−η2

(
(x− 2

√
tη)3 +

1

2
τ 2
)
dη =

=
1√
π

∫
R
e−η2

(
x3 − 6x2

√
tη + 12xtη2 − 8t

√
tη3
)
dη +

1√
π

∫
R
e−η2 1

2
τ 2dη =

=
1√
π

[
x3

∫
R
e−η2dη − 6x2

√
t

∫
R
e−η2ηdη + 12xt

∫
R
e−η2η2dη − 8t

√
t

∫
R
e−η2η3dη+

]
+

1

2
τ 2 =

The second and the fourth functions are odd, so the integrals are zero. Also, 1√
π

∫
R e

−η2dη = 1 and
1√
π

∫∞
−∞ e−η2η2dη = 1

2
, meaning that

w̃(t, x) = x3 + 6xt+
1

2
τ 2.

Then by the Duhamel principle:

u(t, x) =

∫ t

0

w̃(t− τ, x)dτ =

∫ t

0

x3 + 6x(t− τ) +
1

2
τ 2dτ = tx3 + 6xt2 +

∫ t

0

−6xτ +
1

2
τ 2dτ =

= tx3 + 6xt2 + 6x

[
−τ 2

2

]t
τ=0

+

[
τ 3

6

]t
τ=0

= tx3 + 6xt2 − 3xt2 +
t3

6

So the solution is

u(x, t) = tx3 + 3xt2 +
t3

6
.

2. Let g ∈ C1(R) be an even function. Is it true that for the solution u of the hyperbolic
equation 

∂2
t u(t, x)− ∂2

xu(t, x) = 0, on R+ × R,
u(0, x) = g(x), (x ∈ R),

∂tu(0, x) = 0, (x ∈ R),
the function x → u(t, x) is also an even function for any �xed t > 0?

Solution: According to the well-known formula,

u(t, x) =
1

2
(g(x+ t) + g(x− t)).

Function g is even, meaning that g(x) = g(−x). Then,

u(t,−x) =
1

2
(g(−x+ t) + g(−x− t)) =

Now we use that g is even:

=
1

2
(g(x− t) + g(x+ t)) = u(t, x)

so the solution u is also even in x.
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3. Let [a, b] ⊂ R be a bounded interval and p ∈ C1([a, b]), for which p(x) ≥ m > 0 for every
x ∈ [a, b]. Let us de�ne the following operator L : L2(a, b) ↪→ L2(a, b) in the following
way:

D(L) := {u ∈ C2(a, b) ∩ C1([a, b]) : u(a) = 0, u′(b) + u(b) = 0, Lu ∈ L2(Ω)}, Lu := −(p u′)′.

Show that then this L : L2(Ω) ↪→ L2(Ω) operator is strictly positive, meaning that
⟨Lu, u⟩L2(Ω) > 0 for every u ∈ D(L), u ̸= 0.

Solution:

⟨Lu, u⟩L2(Ω) = −
∫ b

a

(p u′)′u =

Using partial integration:

= −
(
p(b)u′(b)u(b)− p(a)u′(a)u(a)−

∫ b

a

pu′u′
)

=

By the boundary conditions we have u(a) = 0, and also u′(b) = −u(b) :

= p(b)(u(b))2 +

∫ b

a

p(u′)2 ≥ m

∫ b

a

(u′)2

this is positive if u′ ̸= 0, which can only hold if u is a constant function, but then by the boundary
condition we have u = 0, which is a contradiction, so we got the statement.

4. Let Ω ⊂ Rn, Ω = B(0,4)\B(0,2) (where B(0, r) is the ball centered at zero with radius r).
Then for which α ∈ R does the following problem have a solution u ∈ C2(Ω) ∩ C1(Ω)?{

∆u = 1, (x ∈ Ω)

∂νu|∂Ω = α.

Solution: Use the �rst Green formula with v ≡ 1 :∫
Ω

1 ·∆u =

∫
∂Ω

∂µu dσ∫
Ω

1 =

∫
∂Ω

α dσ

16π − 4π = α(8π + 4π)

α = 1

So the problem has only solutions for α = 1.

5. Let Ω be the ball centered at zero with radius 1, and solve the following elliptic
boundary-value problem! {

∆u = x+ 2y, (x ∈ Ω)

u|∂Ω = 3y.

Solution: Let us seek the solution in the form

u(x, y) = (x2 + y2 − 1)(ax+ by + c) + 3y =

= ax3 + axy2 − ax+ bx2y + by3 − by + cx2 + cy2 − c+ 3y

Then
∆(u(x, y)) = 6ax+ 2ax+ 2by + 6by + 2c+ 2c = 8ax+ 8by + 4c

For this to be equal to the right-hand side, we need a =
1

8
, b =

1

4
and c = 0, so the solution is in

the form
u(x, y) = (x2 + y2 − 1)

(x
8
+

y

8

)
+ 3y

6. Solve the following parabolic (mixed) problem!
∂tu(t, x)− ∂2

xu(t, x) = sin(t) sin(3x) ((t, x) ∈ R+ × (0, π))

u(0, x) = sin(4x), (x ∈ [0, π])

u(t,0) = u(t, π) = 0. (t ∈ R+
0 ).
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Solution: Let us split our problem into two, easier sub-problems:
∂tu1(t, x)− ∂2

xu1(t, x) = sin(t) sin(3x) ((t, x) ∈ R+ × (0, π))

u1(0, x) = 0, (x ∈ [0, |π])
u1(t,0) = u1(t, π) = 0. (t ∈ R+

0 ).

and 
∂tu2(t, x)− ∂2

xu2(t, x) = 0 ((t, x) ∈ R+ × (0, π))

u2(0, x) = sin(4x), (x ∈ [0, |π])
u2(t,0) = u2(t, π) = 0. (t ∈ R+

0 ).

First we solve the equation for u1(t, x). Let us search for our solution in the form
u1(t, x) = c(t) sin(3x). Then from the initial value:

u1(0, x) = c(0) sin(3x) = 0,

we get that c(0) = 0. Also, from the equation:

c′(t) sin(3x) + 9c(t) sin(3x) = sin(t) sin(3x)

c′(t) + 9c(t) = sin(t)

This ordinary di�. equation can be easily solved, and we get

c(t) = ce−9t +
9

82
sin(t)− 1

82
cos(t),

and because of c(0) = 0, c =
1

82
, and

c(t) =
1

82
e−9t +

9

82
sin(t)− 1

82
cos(t),

so

u1(t, x) =

(
1

82
e−9t +

9

82
sin(t)− 1

82
cos(t)

)
sin(3x).

Now we solve the second one. Let us search for our solution in the form u2(t, x) =
∑∞

k=1 ξk(t) sin(kx)
(since the eigenfunctions of the laplacian operator are sin(kx)). Then from the initial value:

u2(0, x) =
∞∑
k=1

ξk(0) sin(kx) = sin(4x)

which means that ξk ≡ 0 if k ̸= 4, and ξ4(0) = 1. Then

ξ′4(t) + 16ξ4(t) = 0

from which we get that (using the initial condition) ξ4(t) = e−16t, and then

u2(t, x) = e−16t sin(4x).

So the solution of the original problem is

u(t, x) = u1(t, x) + u2(t, x) =

(
1

82
e−9t +

9

82
sin(t)− 1

82
cos(t)

)
sin(3x) + e−16t sin(4x).

7. Let a > 0, and then compute the eigenvalues and the eigenvectors of the following
operator!

D(L) := {u ∈ C2(0, a) ∩ C1([0, a]) : u(0) = 0, u′(a) = 0}, Lu := −5u′′ + u

Solution: The eigenvalue-problem is

−5u′′ + u = λu

−u′′ =
λ− 1

5
u

Depending on the sign of λ− 1, we have three cases:
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a) If
λ− 1

5
> 0 : Then the eigenfunctions are in the form

u(x) = c1 sin

(√
λ− 1

5
x

)
+ c2 cos

(√
λ− 1

5
x

)

From the boundary conditions we have that

u(0) = c2 = 0,

and also

u′(a) = c1

√
λ− 1

5
cos

(√
λ− 1

5
a

)
= 0.

If u is not the zero function, then this can only hold if√
λ− 1

5
a =

π

2
+ kπ

λ = 5
(π + 2kπ)2

4a2
+ 1

So the eigenvalues are in this form (when k ̸= 0), and the corresponding eigenfunctions are
in the form

uk(x) = c2 cos

(
π + 2kπ

2a
x

)
.

b) If
λ− 1

5
= 0 : Then the eigenfunctions are in the form

u(x) = c1x+ c2

From the boundary conditions we have that u(0) = c2 = 0, and also u′(a) = c1 = 0 from
which u ≡ 0.

c) If
λ− 1

5
< 0 : Then the eigenfunctions are in the form

u(x) = c1 exp

(√
1− λ

5
x

)
+ c2 exp

(
−
√

1− λ

5
x

)

From the boundary conditions we have that

u(0) = c1 + c2 = 0,

so c1 = −c2 and also

u′(a) = c1

√
1− λ

5
exp

(√
1− λ

5
a

)
− c2

√
1− λ

5
exp

(
−
√

1− λ

5
a

)
=

= c1

√
1− λ

5

[
exp

(√
1− λ

5
a

)
+ exp

(
−
√

1− λ

5
a

)]
= 0

which can only hold if c1 = 0, so u ≡ 0.
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