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1 Linear Algebra

1.1 Operations on Matrices

1. Can we calculate the sum of a 2× 2 and a 3× 3 matrix?

2. Can we calculate the product of a 2× 2 and a 3× 3 matrix?

3. Can we calculate the sum of a 2× 3 and a 3× 2 matrix?

4. Can we calculate the product of a 2× 3 and a 3× 2 matrix?

5. For any n× n matrices A and B, A+B = B +A.

6. For any n× n matrices A and B, A ·B = B ·A.

7. For any n× n matrix A, we have A+ I = A where I is the identity matrix of size n× n.

8. For any n× n matrix A, we have A · I = A where I is the identity matrix of size n× n.

9. The transpose of an n× n matrix is an n× n matrix.

10. For any n× n matrices A and B we have (A ·B)T = AT ·BT .

11. For any n× n matrices A and B we have (A ·B)T = BT ·AT .

12. For any n× n matrices A and B we have (A+B)T = AT +BT .

13. For any n× n matrices A and B we have (A+B)T = BT +AT .

14. The product of diagonal matrices is a diagonal matrix.

15. The transpose of a diagonal matrix is a diagonal matrix.

16. The product of upper-triangular matrices is an upper-triangular matrix.

17. The sum of upper-triangular matrices is an upper-triangular matrix.

18. The product of lower-triangular matrices is a lower-triangular matrix.

19. The sum of lower-triangular matrices is a lower-triangular matrix.

20. The transpose of an upper triangular matrix is an upper triangular matrix.

21. The transpose of a lower triangular matrix is an upper triangular matrix.

22. The transpose of a lower triangular matrix is an upper triangular matrix.

23. The transpose of a lower triangular matrix is a lower triangular matrix.
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1.2 Determinants

24. The determinant of a real-valued square matrix is always a real number.

25. The determinant of a real-valued square matrix can be a non-real (complex) number.

26. The minor corresponding to a given element ai,j is the determinant of such a matrix which is
constructed from the original one by deleting the row and column of the corresponding element
ai,j .

27. For any n× n matrices A and B, we have det(A+B) = det(A) + det(B).

28. For any n× n matrices A and B, we have det(A ·B) = det(A) + det(B).

29. For any n× n matrices A and B, we have det(A+B) = det(A) · det(B).

30. For any n× n matrices A and B, we have det(A ·B) = det(A) · det(B).

31. The determinant of a matrix is not changed if we add one of the rows to another one multiplied
by some number.

32. The determinant of a matrix is changed if we add one of the rows to another one multiplied by
some number c, and the determinant is multiplied by this number c.

33. The determinant of a matrix is changed if we multiply one of the rows of the matrix by some
(non-zero) number c, and the determinant is multiplied by this number c.

34. The determinant of a matrix is not changed if we multiply one of the rows of the matrix by some
(non-zero) number c.

35. The determinant of a matrix is not changed if we change the order of two rows.

36. The determinant of a matrix is multiplied by (−1) if we change the order of two rows.

37. The determinant of a diagonal matrix is the product of its elements in its main diagonal.

38. The determinant of an upper-triangular matrix is the product of its elements in its main diagonal.

39. The determinant of an upper-triangular matrix is the product of its elements in its first row.

40. The determinant of an upper-triangular matrix is the product of its elements in its last column.

41. The determinant of a lower-triangular matrix is the product of its elements in its main diagonal.

42. The determinant of a lower-triangular matrix is the product of its elements in its first column.

43. The determinant of a lower-triangular matrix is the product of its elements in its last row.

1.3 Rank of a matrix

44. Vectors v1, v2 . . . vn are linearly independent if the equation

c1v1 + c2v2 + · · ·+ cnvn = 0

can only hold if c1 = c2 = · · · = cn = 0.

45. Vectors v1, v2 . . . vn are linearly dependent if the equation

c1v1 + c2v2 + · · ·+ cnvn = 0

can only hold if c1 = c2 = · · · = cn = 0.

46. If two vectors are linearly dependent, then they are on the same line.

47. If two vectors are linearly independent, then they are on the same line.
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48. If two vectors are linearly dependent, then they cannot be on the same line.

49. If two vectors are linearly independent, then they cannot be on the same line.

50. If three vectors are linearly dependent, then they are on the same line.

51. If three vectors are linearly dependent, then they are on the same plane.

52. If three vectors are linearly independent, then they are on the same plane.

53. The column rank of a matrix is the number of its linearly independent columns.

54. The column rank of a matrix is the number of its linearly dependent columns.

55. The row rank of a matrix is the number of its linearly dependent rows.

56. The row rank of a matrix is the number of its linearly independent rows.

57. For an n× n matrix, the row rank is always the same as the column rank.

58. For an n× n matrix, the row rank is always smaller than the column rank.

59. For an n× n matrix, the row rank is always bigger than the column rank.

60. For an n×m matrix where n < m, the row rank is always smaller than the column rank.

61. For an n×m matrix where n < m, the row rank is always bigger than the column rank.

1.4 Inverse of a matrix

62. If A is an n× n matrix, then there is always such a matrix B for which A ·B = A.

63. If A is an n× n matrix, then there is always such a matrix B for which B ·A = A.

64. If A is an n × n matrix, then there is always such a matrix B for which A · B = I (where I is
the n× n identity matrix).

65. If A is an n × n matrix, then there is always such a matrix B for which B · A = I (where I is
the n× n identity matrix).

66. If A is an n× n matrix, then there is such a matrix B for which B ·A = I (where I is the n× n
identity matrix) if and only if det(A) = 0.

67. If A is an n× n matrix, then there is such a matrix B for which B ·A = I (where I is the n× n
identity matrix) if and only if det(A) ̸= 0.

68. If A is an n× n matrix, then there is such a matrix B for which B ·A = I (where I is the n× n
identity matrix) if and only if det(A) = 1.

69. If A is an n× n matrix, then there is such a matrix B for which B ·A = I (where I is the n× n
identity matrix) if and only if det(A) ̸= 1.

70. For n×nmatrices A and B for which det(A) ̸= 0 and det(B) ̸= 0 we have (A+B)−1 = A−1+B−1.

71. For n×nmatrices A and B for which det(A) ̸= 0 and det(B) ̸= 0 we have (A+B)−1 = B−1+A−1.

72. For n×n matrices A and B for which det(A) ̸= 0 and det(B) ̸= 0 we have (A ·B)−1 = A−1 ·B−1.

73. For n×n matrices A and B for which det(A) ̸= 0 and det(B) ̸= 0 we have (A ·B)−1 = B−1 ·A−1.
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1.5 Systems of Linear Algebraic Equations (SLAE)

74. When we are doing the Gaussian elimination, the right-hand side should always be changed along
with the left-hand side.

75. When we are doing the Gaussian elimination, the right-hand side should never be changed along
with the left-hand side.

76. The extended matrix is in an echelon form when on the left-hand side we have an upper triangular
matrix.

77. The rank of a matrix is not changed if we add one of the rows to another one multiplied by some
number.

78. The rank of a matrix is changed if we add one of the rows to another one multiplied by some
number c, and the rank is multiplied by this number c.

79. The rank of a matrix is changed if we add one of the rows to another one multiplied by some
number c, and the rank is increased by one.

80. The rank of a matrix is changed if we add one of the rows to another one multiplied by some
number c, and the rank is decreased by one.

81. The rank of a matrix is changed if we multiply one of the rows of the matrix by some (non-zero)
number c, and the rank is multiplied by this number c.

82. The rank of a matrix is not changed if we multiply one of the rows of the matrix by some
(non-zero) number c.

83. The rank of a matrix is not changed if we change the order of two rows.

84. The rank of a matrix is decreased by 1 if we change the order of two rows.

85. The rank of a matrix is increased by 1 if we change the order of two rows.

86. The number of solutions is not changed if we add one of the rows to another one multiplied by
some number.

87. The number of solutions can change if we add one of the rows to another one multiplied by some
number.

88. The number of solutions is not changed if we multiply one of the rows by some (non-zero) number.

89. The number of solutions is not changed if we multiply one of the rows by some (non-zero) number.

90. The inverse of an n × n matrix A−1 can be calculated by using the Gaussian elimination in a
way that we start from the extended matrix (A|I) in the end the extended matrix should have
the form (I|B) and here A−1 = B (where I is the n× n identity matrix).

91. The inverse of an n × n matrix A−1 can be calculated by using the Gaussian elimination in a
way that we start from the extended matrix (A|I) in the end the extended matrix should have

the form (I|B) and here A−1 =
1

det(A)
B (where I is the n× n identity matrix).

item The inverse of an n×n matrix A−1 can be calculated by using the Gaussian elimination in
a way that we start from the extended matrix (A|I) in the end the extended matrix should have

the form (I|B) and here A−1 =
1

det(B)
B (where I is the n× n identity matrix).

92. The inverse of an n × n matrix A−1 can be calculated by using the Gaussian elimination in a
way that we start from the extended matrix (A|I) in the end the extended matrix should have
the form (0|B) and here A−1 = B (where 0 is the n× n all-zero matrix).

93. Let A be an n×nmatrix. Then, the SLAE Ax = b has a unique solution if and only if det(A) = 0.
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94. Let A be an n×nmatrix. Then, the SLAE Ax = b has a unique solution if and only if det(A) ̸= 0.

95. Let A be an n×nmatrix. Then, the SLAE Ax = b has a unique solution if and only if det(A) > 0.

96. Let A be an n×nmatrix. Then, the SLAE Ax = b has a unique solution if and only if det(A) < 0.

97. Let A be an n× n matrix. Then, the SLAE Ax = b has a unique solution if and only if the rank
of A is n.

98. Let A be an n × n matrix. Then, the SLAE Ax = b has a unique solution if and only if the
inverse of A exists.

99. Let A be an n × n matrix. Then, the SLAE Ax = b has a unique solution if and only if the
transpose of A exists.

100. Let us consider the SLAE Ax = b and let Â be the extended matrix (A|b). Then, if

rank(A) = rank(Â), the equation has a unique solution.

101. Let us consider the SLAE Ax = b and let Â be the extended matrix (A|b). Then, if

rank(A) = rank(Â) = n (where n is the number of variables), the equation has a unique so-
lution.

102. Let us consider the SLAE Ax = b and let Â be the extended matrix (A|b). Then, if

rank(A) = rank(Â) < n (where n is the number of variables), the equation has a unique so-
lution.

103. Let us consider the SLAE Ax = b and let Â be the extended matrix (A|b). Then, if

rank(A) = rank(Â) < n (where n is the number of variables), the equation has no solution.

104. Let us consider the SLAE Ax = b and let Â be the extended matrix (A|b). Then, if

rank(A) = rank(Â) < n (where n is the number of variables), the equation has infinitely many
solutions.

105. Let us consider the SLAE Ax = b and let Â be the extended matrix (A|b). Then, if

rank(A) = rank(Â) > n (where n is the number of variables), the equation has a unique so-
lution.

106. Let us consider the SLAE Ax = b and let Â be the extended matrix (A|b). Then, if

rank(A) < rank(Â) (where n is the number of variables), the equation has no solution.

107. Let us consider the SLAE Ax = b and let Â be the extended matrix (A|b). Then, if

rank(A) < rank(Â) (where n is the number of variables), the equation has infinitely many
solutions.

108. A homogeneous system of linear equations is such a system of linear equation Ax = b for which
b = 0 (the all-zero vector).

109. A homogeneous system of linear equations is such a system of linear equation Ax = b for which
b = 1 (the all-one vector).

110. A homogeneous system of linear equations has no solutions.

111. A homogeneous system of linear equations has always at least one solution.

112. A homogeneous system of linear equations has always a unique solution, which is the all-zero
vector.

113. A homogeneous system of linear equations has always a unique solution, which is the all-one
vector.

114. A homogeneous system of linear equations has always infinitely many solutions.

115. A homogeneous system of linear equations Ax = 0 has infinitely many solutions if det(A) = 0.

116. A homogeneous system of linear equations Ax = 0 has infinitely many solutions if det(A) ̸= 0.

117. A homogeneous system of linear equations Ax = 0 has no solutions if det(A) = 0.
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1.6 Eigenvalues and eigenvectors

118. An n× n matrix A with real elements always has n-many different real eigenvalues.

119. An n × n matrix A with real elements will always have n-many different (real or complex)
eigenvalues.

120. An n× n matrix A with real elements can have complex eigenvalues.

121. An eigenvalue with multiplicity of 1 has always one corresponding eigenvector.

122. An eigenvalue with multiplicity of 1 has infinitely many corresponding eigenvectors, and they
are linearly dependent.

123. An eigenvalue with multiplicity of 1 has infinitely many corresponding eigenvectors, and they
are linearly independent.

124. An eigenvalue with multiplicity of k has infinitely many corresponding eigenvectors, and there
are always k-many linearly independent ones among them.

125. An eigenvalue with multiplicity of k has infinitely many corresponding eigenvectors, and there
can be either 1, 2, 3, . . . or k-many linearly independent ones among them.

126. The determinant of a matrix is the product of its eigenvalues (calculated with multiplicity).

127. The determinant of a matrix is the sum of its eigenvalues (calculated with multiplicity).

128. If the determinant of a matrix is zero, then zero is its eigenvalue.

129. If the determinant of a matrix is zero, then the sum of all of its eigenvalues is zero.

130. For a diagonal matrix, its eigenvalues are in its main diagonal.

131. For an identity matrix, its one eigenvalue is 1.

132. For an n× n identity matrix, its eigenvalues are 1 and n− 1-many zeros.

133. If A is a symmetric matrix, all of its eigenvalues are real.

134. If A is a symmetric matrix, all of its eigenvalues are in the form λ1,
1
λ1
, λ2,

1
λ2
, . . . , λn,

1
λn

.

135. If A is a symmetric matrix, all of its eigenvalues are in the form λ1,−λ1, λ2,−λ2, . . . , λn,−λn.

136. If A and B are similar matrices, then all of its eigenvalues (and the corresponding multiplicities)
are the same.

137. A is called a diagonalizable matrix if it is similar to a diagonal matrix.

138. A is called a diagonalizable matrix if its inverse is a diagonal matrix.

139. If A is symmetric and real, then it is diagonalizable.

140. If A has n-many different real eigenvalues, then it is diagonalizable.

141. If A is diagonalizable and symmetric, then it can be written in the form A = V ·D · V −1 where
D is a diagonal matrix with the eigenvalues in the main diagonal and V has the eigenvectors as
its columns.

142. If A is diagonalizable and symmetric, then it can be written in the form A = D · V ·D−1 where
D is a diagonal matrix with the eigenvalues in the main diagonal and V has the eigenvectors as
its columns.
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1.7 Linear spaces (Vector spaces)

143. The set of complex numbers forms a vector space.

144. The set of continuous functions forms a vector space.

145. The set of the solutions of a given linear system of algebraic equations forms a vector space.

146. The set of the solutions of a given homogeneous linear system of algebraic equations forms a
vector space.

147. For vectors

1
0
0

 and

0
1
0

, the generated subspace has vectors in the form

a
b
0

 (a, b ∈ R).

148. For vectors v1 =

1
0
0

 and v2 =

0
1
0

, the vector

0
a
b

 (a, b ∈ R) is in the Span of v1 and v2.

149. The basis of a vector space is a set of linearly dependent vectors that generate the given set.

150. The basis of a vector space is a set of linearly independent vectors that generate the given set.

151. The orthogonal basis of a vector space is a set of vectors which are orthogonal to the all-one
vector.

152. The orthogonal basis of a vector space is a set of vectors which are orthogonal to the all-zero
vector.

153. The orthogonal basis of a vector space is a set of vectors which are orthogonal to each other.

154. The orthonormal basis of a vector space is an orthogonal basis of vectors which all have a length
of one.

155. The orthonormal basis of a vector space is an orthogonal basis of vectors which all have a length
of zero.

1.8 Linear operators

156. If L : V → W is a linear operator (and V and W are vector spaces), then L(v1 + v2) =
L(v1) + L(v2) for any vectors v1, v2 ∈ V .

157. If L : V → W is a linear operator (and V andW are vector spaces), then L(v1 ·v2) = L(v1)+L(v2)
for any vectors v1, v2 ∈ V .

158. If L : V → W is a linear operator (and V and W are vector spaces), then L(v1 ·v2) = L(v1) ·L(v2)
for any vectors v1, v2 ∈ V .

159. If L : V → W is a linear operator (and V andW are vector spaces), then L(v1+v2) = L(v1)·L(v2)
for any vectors v1, v2 ∈ V .

160. If L : V → W is a linear operator (and V and W are real vector spaces), then L(c · v) = c · L(v)
for any vector v ∈ V and any constant c ∈ R.

161. If L : V → W is a linear operator (and V and W are real vector spaces), then L(c+ v) = c ·L(v)
for any vector v ∈ V and any constant c ∈ R.

162. If L : V → W is a linear operator (and V and W are real vector spaces), then L(c+v) = c+L(v)
for any vector v ∈ V and any constant c ∈ R.

163. If L : V → W is a linear operator (and V and W are real vector spaces), then L(c · v) = c+L(v)
for any vector v ∈ V and any constant c ∈ R.

164. The matrix of a linear operator remains the same even if we change the basis of the vector space.
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165. The matrix of a linear operator might change if we change the basis of the vector space.

166. The limit is a linear operator.

167. The limit is not a linear operator.

168. Differentiation is not a linear operator.

169. Differentiation is a linear operator.

170. Integration is not a linear operator.

171. Integration is a linear operator.

172. The kernel of a transformation is the set of those vectors whose image is the zero vector.

173. The kernel of a transformation is the set of those vectors which are the images of the zero vector.

174. The kernel of a linear transformation is always the origin only.

175. The rank nullity theorem states that for any linear operator L : V → V we have
dim(Ker(L)) + dim(Im(L)) = dim(V ).

176. The rank nullity theorem states that for any linear operator L : V → V we have
dim(Ker(L)) · dim(Im(L)) = dim(V ).

177. The rank nullity theorem states that for any linear operator L : V → V we have
dim(Ker(L)) + dim(Im(L)) > dim(V ).

178. The rank nullity theorem states that for any linear operator L : V → V we have
dim(Ker(L)) + dim(Im(L)) < dim(V ).

2 Numerical Series

179. A numerical series converges if the sequence of the partial sums converges.

180. The sum of a numerical series is always the same even if we change the order of the elements.

181. The sum of a convergent numerical series is always the same even if we change the order of the
elements.

182. If

∞∑
n=0

an converges, then lim
n→∞

an = 0.

183. If

∞∑
n=0

an converges, then lim
n→∞

an = 1.

184. If lim
n→∞

an = 0, then

∞∑
n=0

an converges.

185. If lim
n→∞

an < 1, then

∞∑
n=0

an converges.

186. If lim
n→∞

an ̸= 0, then

∞∑
n=0

an diverges.

187. If lim
n→∞

an = 1, then

∞∑
n=0

an diverges.

188. If lim
n→∞

an > 1, then

∞∑
n=0

an diverges.
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189. The sequence

∞∑
n=1

1

nα
converges, if α > 1.

190. The sequence

∞∑
n=1

1

nα
converges, if α < 1.

191. The sequence

∞∑
n=1

1

nα
diverges, if α > 1.

192. The sequence

∞∑
n=1

1

nα
can be either convergent or divergent if α = 1.

193. The series

∞∑
n=1

qn converges, if |q| < 1.

194. The series

∞∑
n=1

qn converges, if −1 < q < 1.

195. The series

∞∑
n=1

qn converges, if q > 1.

196. The series

∞∑
n=1

qn converges, if q < 1.

197. If the series

∞∑
n=1

qn converges, then

∞∑
n=1

qn =
1

1− q
.

198. If the series

∞∑
n=1

qn converges, then

∞∑
n=1

qn =
1

1 + q
.

199. If the series

∞∑
n=1

qn converges, then

∞∑
n=1

qn =
1

q − 1
.

200. If for an alternating series

∞∑
n=0

(−1)nan (an ≥ 0) the sequence an is monotonically decreasing and

it tends to zero, then the series is convergent.

201. If for an alternating series
∞∑

n=0

(−1)nan (an ≥ 0) the sequence an tends to zero, then the series is

convergent.

202. If for an alternating series

∞∑
n=0

(−1)nan (an ≥ 0) the sequence an is monotonically decreasing,

then the series is convergent.

203. If for a positive series

∞∑
n=0

an (an > 0) the limit lim
n→∞

an+1

an
> 1, then the series diverges.

204. If for a positive series

∞∑
n=0

an (an > 0) the limit lim
n→∞

an+1

an
> 1, then the series converges.

205. If for a positive series

∞∑
n=0

an (an > 0) the limit lim
n→∞

an+1

an
< 1, then the series converges.
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206. If for a positive series

∞∑
n=0

an (an > 0) the limit lim
n→∞

an+1

an
< 1, then the series diverges.

207. If for a positive series

∞∑
n=0

an (an > 0) the limit lim
n→∞

n
√
an < 1, then the series diverges.

208. If for a positive series

∞∑
n=0

an (an > 0) the limit lim
n→∞

n
√
an < 1, then the series converges.

209. If for a positive series

∞∑
n=0

an (an > 0) the limit lim
n→∞

n
√
an > 1, then the series diverges.

210. If for a positive series

∞∑
n=0

an (an > 0) the limit lim
n→∞

n
√
an > 1, then the series converges.

211. If for a positive series

∞∑
n=0

an (an > 0) there is some other positive series

∞∑
n=0

bn for which bn > an

and

∞∑
n=0

bn < ∞, then

∞∑
n=0

an < ∞.

212. If for a positive series

∞∑
n=0

an (an > 0) there is some other positive series

∞∑
n=0

bn for which bn > an,

then

∞∑
n=0

an < ∞.

213. If for a positive series

∞∑
n=0

an (an > 0) there is some other positive series

∞∑
n=0

bn for which bn > an

and

∞∑
n=0

bn diverges, then

∞∑
n=0

an diverges.

214. If for a positive series

∞∑
n=0

an (an > 0) there is some other positive series

∞∑
n=0

bn for which bn < an

and

∞∑
n=0

bn diverges, then

∞∑
n=0

an diverges.

215. If for a positive series

∞∑
n=0

an (an > 0) there is some other positive series

∞∑
n=0

bn for which bn < an,

then

∞∑
n=0

an diverges.

216. If for a positive series

∞∑
n=0

an (an > 0) there is some other positive series

∞∑
n=0

bn for which bn < an

and

∞∑
n=0

bn < ∞, then

∞∑
n=0

an < ∞.

217. A series

∞∑
n=0

an is called absolutely convergent if

∞∑
n=0

|an| is convergent.

218. A series

∞∑
n=0

an is called absolutely convergent if

∣∣∣∣∣
∞∑

n=0

an

∣∣∣∣∣ is convergent.
219. If a series is absolutely convergent, then it is convergent.

10



220. If a series is convergent, then it is absolutely convergent.

221. If a series is convergent but not absolutely convergent, then it is called conditionally convergent.

222. If a series is absolutely convergent but not convergent, then it is called conditionally convergent.

223. For the error eN of the approximation

N∑
n=0

(−1)nan ≈
∞∑

n=0

(−1)nan (an > 0 for every n) we have

|eN | ≤ |aN+1|.

224. For the error eN of the approximation

N∑
n=0

(−1)nan ≈
∞∑

n=0

(−1)nan (an > 0 for every n) we have

|eN | ≤ |aN |.

225. For the error eN of the approximation

N∑
n=0

(−1)nan ≈
∞∑

n=0

(−1)nan (an > 0 for every n) we have

|eN | = |aN+1|.

226. For the error eN of the approximation

N∑
n=0

an ≈
∞∑

n=0

an (an > 0 for every n) we have |eN | ≤ |aN+1|.

3 Function series

227. For a function sequence fn converging point-wise, lim
n→∞

∫ b

a

fn(x) =

∫ b

a

lim
n→∞

fn(x) where fn(x) :

[a, b] → R continuous functions.

228. For a function sequence fn converging uniformly, lim
n→∞

∫ b

a

fn(x) =

∫ b

a

lim
n→∞

fn(x) where fn(x) :

[a, b] → R continuous functions.

229. For a function series fn converging point-wise,

∞∑
n=0

∫ b

a

fn(x) =

∫ b

a

∞∑
n=0

fn(x) where fn(x) :

[a, b] → R continuous functions.

230. For a function series fn converging uniformly,

∞∑
n=0

∫ b

a

fn(x) =

∫ b

a

∞∑
n=0

fn(x) where fn(x) : [a, b] →

R continuous functions.

3.1 Power series

231. The interval of convergence of a series

∞∑
n=1

an(x − x0)
n is in the form (x0 − R, x0 + R) where

R > 0.

232. The interval of convergence of a series

∞∑
n=1

an(x − x0)
n is in the form [x0 − R, x0 + R] where

R > 0.

233. The interval of convergence of a series

∞∑
n=1

an(x − x0)
n is in the form (x0 − an, x0 + an) where

R > 0.

234. If for a power series

∞∑
n=1

an(x − x0)
n the radius of convergence is R = 0, then the series is

convergent only at the point x0.
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235. If for a power series

∞∑
n=1

an(x−x0)
n the radius of convergence is R = 0, then the series is divergent

everywhere.

236. If for a power series

∞∑
n=1

an(x − x0)
n the radius of convergence is R = ∞, then the series is

convergent everywhere.

237. If for a power series

∞∑
n=1

an(x − x0)
n the radius of convergence is R = ∞, then the series is

convergent only at the point x0.

238. If for a power series

∞∑
n=1

an(x − x0)
n the radius of convergence is R = ∞, then the series is

divergent everywhere.

239. If for a power series

∞∑
n=1

an(x− x0)
n we have 0 < lim sup

n→∞

√
|an| < ∞, then the radius of conver-

gence is R =
1

lim supn→∞
√
|an|

.

240. If for a power series

∞∑
n=1

an(x− x0)
n we have 0 < lim sup

n→∞

√
|an| < ∞, then the radius of conver-

gence is R = lim sup
n→∞

√
|an|.

241. If for a power series

∞∑
n=1

an(x− x0)
n we have lim sup

n→∞

√
|an| = 0, then the radius of convergence

is R = ∞.

242. If for a power series

∞∑
n=1

an(x− x0)
n we have lim sup

n→∞

√
|an| = ∞, then the radius of convergence

is R = ∞.

243. If for a power series

∞∑
n=1

an(x− x0)
n we have lim sup

n→∞

√
|an| = 0, then the radius of convergence

is R = 0.

244. If for a power series

∞∑
n=1

an(x− x0)
n we have lim sup

n→∞

√
|an| = ∞, then the radius of convergence

is R = 0.

245. If for a power series

∞∑
n=1

an(x−x0)
n we have lim

n→∞

|an+1|
|an|

= α where 0 < α < ∞, then the radius

of convergence is R =
1

α
.

246. If for a power series

∞∑
n=1

an(x−x0)
n we have lim

n→∞

|an+1|
|an|

= α where 0 < α < ∞, then the radius

of convergence is R = α.

247. If for a power series

∞∑
n=1

an(x− x0)
n we have lim

n→∞

|an+1|
|an|

= 0, then the radius of convergence is

R = 0.

248. If for a power series

∞∑
n=1

an(x− x0)
n we have lim

n→∞

|an+1|
|an|

= 0, then the radius of convergence is

R = ∞.
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249. If for a power series

∞∑
n=1

an(x − x0)
n we have lim

n→∞

|an+1|
|an|

= ∞, then the radius of convergence

is R = ∞.

250. If for a power series

∞∑
n=1

an(x − x0)
n we have lim

n→∞

|an+1|
|an|

= ∞, then the radius of convergence

is R = 0.

3.2 Taylor series

251. The error of the approximation

N∑
n=1

f (n)(x0)

n!
(x − x0)

n ≈
∞∑

n=1

f (n)(x0)

n!
(x − x0)

n is given by the

formula
f (N+1)(ξ)

(N + 1)!
(x− x0)

N+1 where ξ ∈ [x0, x].

252. The error of the approximation

N∑
n=1

f (n)(x0)

n!
(x − x0)

n ≈
∞∑

n=1

f (n)(x0)

n!
(x − x0)

n is given by the

formula
f (N)(ξ)

(N)!
(x− x0)

N where ξ ∈ [x0, x].

253. The error of the approximation

N∑
n=1

f (n)(x0)

n!
(x − x0)

n ≈
∞∑

n=1

f (n)(x0)

n!
(x − x0)

n is given by the

formula
f (N+1)(x0)

(N + 1)!
(x− x0)

N+1.

3.3 Fourier series

254. The function f(x) = cos(2x) + sin(x) + 2 is a trigonometric polynomial.

255. The function f(x) = cos(2x) + sin(x) is a trigonometric polynomial.

256. The function f(x) = x2 + cos(x) + sin(x) is a trigonometric polynomial.

257. The sum of two trigonometric polynomials is a trigonometric polynomial.

258. A trigonometric polynomial multiplied by a scalar is also a trigonometric polynomial.

259. Every continuous function periodic by 2π can be written in the form

f(x) = c1f1(x) + c2f2(x) + c3f3(x) + . . .

where f1, f2, f3, · · · ∈
{

1√
2π

,

(
1√
π
sin(nx)

)
n∈N

,

(
1√
π
cos(nx)

)
n∈N

}
.

260. Every continuous function can be written in the form

f(x) = c1f1(x) + c2f2(x) + c3f3(x) + . . .

where f1, f2, f3, · · · ∈
{

1√
2π

,

(
1√
π
sin(nx)

)
n∈N

,

(
1√
π
cos(nx)

)
n∈N

}
.

261. If the Fourier series is in the form a0 +
∑∞

k=1 ak cos(kx) + bk sin(kx) and the function f is odd,
then for its Fourier series ak = 0.

262. If the Fourier series is in the form a0 +
∑∞

k=1 ak cos(kx) + bk sin(kx) and the function f is odd,
then for its Fourier series bk = 0.

263. If the Fourier series is in the form a0 +
∑∞

k=1 ak cos(kx) + bk sin(kx) and the function f is even,
then for its Fourier series ak = 0.
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264. If the Fourier series is in the form a0 +
∑∞

k=1 ak cos(kx) + bk sin(kx) and the function f is even,
then for its Fourier series bk = 0.

265. If f is continuously differentiable, then its Fourier series Ff at point x0 can be calculated as

(Ff)(x0) =
limx→x0+0 f(x) + limx→x0−0 f(x)

2

266. If f is continuously differentiable, then its Fourier series Ff at point x0 can be calculated as

(Ff)(x0) =
limx→x0+0 f(x)− limx→x0−0 f(x)

2

267. If f is continuously differentiable, then its Fourier series Ff at point x0 can be calculated as

(Ff)(x0) =
limx→x0+0 f(x) · limx→x0−0 f(x)

2

4 Multivariable analysis

4.1 Limits, continuity

268. The set x2 + y2 < 1 (unit disc without its border) is open.

269. The set x2 + y2 < 1 (unit disc without its border) is closed.

270. The set x2 + y2 ≤ 1 (unit disc with its border) is open.

271. The set x2 + y2 ≤ 1 (unit disc with its border) is closed.

272. For any sequence xk (k ∈ N) for which xk ∈ R2 (k ∈ N) and lim
k→∞

xk = x0, we have

lim
k→∞

f(xk) = f(x0).

273. For any sequence xk (k ∈ N) for which xk ∈ R2 (k ∈ N) and lim
k→∞

xk = x0, we have

lim
k→∞

f(xk) = f(x0) if and only if f is continuous at x0.

4.2 Differentiation

274. The total derivative of a function f : Rn → R is a vector containing all the partial derivatives of
f .

275. The total derivative of a function f : Rn → R is the sum of all the partial derivatives of f .

276. The gradient of a function f : Rn → R is a vector containing all the partial derivatives of f .

277. A level curves of a function f : R2 → R are the curves where f(x) = c for a given value of c ∈ R.

278. A level curves of a function f : R2 → R are the curves where f(c) = x for a given value of c ∈ R.

279. If a function f : Rn → R is totally differentiable at point a ∈ Rn, then it is continuous at a.

280. If a function f : Rn → R is continuous at point a ∈ Rn, then it is totally differentiable at a.

281. A function f : Rn → R is totally differentiable at point a if and only if f is continuous at point
a.

282. If for a function f(x, y) : R2 → R all of its second partial derivatives exist and they are continuous,

then
∂2f(x, y)

∂x∂y
=

∂2f(x, y)

∂y∂x
.

283. If for a function f(x, y) : R2 → R all of its second partial derivatives exist and they are continuous,

then
∂2f(x, y)

∂x∂x
=

∂2f(x, y)

∂y∂y
.
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284. There exists such a function f(x, y) : R2 → R for which all of its second partial derivatives exist

and they are continuous, and
∂f(x, y)

∂2x∂y
̸= ∂2f(x, y)

∂y∂x
.

285. The directional derivative of a function f : Rn → R at a given point a and in a given direction v

can be given by ∂vf = grad(f) · v

|v|
where · is a scalar product and |v| is the length of vector v.

286. The directional derivative of a function f : Rn → R at a given point a and in a given direction v

can be given by ∂vf = grad(f) · v

|v|
where · is a vector product and |v| is the length of vector v.

287. The directional derivative of a function f : Rn → R at a given point a and in a given direction v

can be given by ∂vf = grad(f) · |v|
v

where · is a scalar product and |v| is the length of vector v.

288. The directional derivative of a function f : Rn → R at a given point a and in a given direction v

can be given by ∂vf = |grad(f)| · |v|
v

where · is a scalar product and |.| denotes the length of a

vector.

4.3 Extrema

289. The Hessian (or Jacobian) of a function f : Rn → R is given by the matrix

∂2f

∂x2
1

∂2f

∂x1∂x2
. . .

∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2
2

. . .
∂2f

∂x2∂xn
...

...
. . .

...

∂2f

∂xn∂x1

∂2f

∂xn∂x2
. . .

∂2f

∂x2
n


290. The Hessian (or Jacobian) of a function f : Rn → R is given by the matrix

∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn

∂f

∂x2

∂f

∂x3
. . .

∂f

∂xn−1
...

...
. . .

...

∂f

∂xn

∂f

∂xn−1
. . .

∂f

∂x1


291. The Hessian (or Jacobian) of a function f : Rn → R is given by the matrix

∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn

∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn
...

...
. . .

...

∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn


292. The Hessian (or Jacobian) matrix of a function f : Rn → R is always symmetric.

293. If p is a local extermum of a function f : Rn → R, then p is a critical point of f (meaning that
all of its partial derivatives are zero).
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294. If p is a a critical point of function f : Rn → R (meaning that all of its partial derivatives are
zero), then p is a local extermum of f .

295. If p is a critical point of function f : R2 → R (meaning that all of its partial derivatives are zero),

and the determinant of the Hessian is positive and
∂2f(x, y)

∂x2
(p) > 0, then p is a local minimum.

296. If p is a critical point of function f : R2 → R (meaning that all of its partial derivatives are zero),

and the determinant of the Hessian is positive and
∂2f(x, y)

∂x2
(p) > 0, then p is a local maximum.

297. If p is a critical point of function f : R2 → R (meaning that all of its partial derivatives are zero),

and the determinant of the Hessian is positive and
∂2f(x, y)

∂x2
< 0, then p is a local minimum.

298. If p is a critical point of function f : R2 → R (meaning that all of its partial derivatives are zero),

and the determinant of the Hessian is positive and
∂2f(x, y)

∂x2
< 0, then p is a local maximum.

299. If p is a critical point of function f : R2 → R (meaning that all of its partial derivatives are zero),

and the determinant of the Hessian is negative and
∂2f(x, y)

∂x2
(p) < 0, then p is a local minimum.

300. If p is a critical point of function f : R2 → R (meaning that all of its partial derivatives are zero),

and the determinant of the Hessian is negative and
∂2f(x, y)

∂x2
(p) < 0, then p is a local maximum.

301. If p is a critical point of function f : R2 → R (meaning that all of its partial derivatives are zero),

and the determinant of the Hessian is negative and
∂2f(x, y)

∂x2
(p) > 0, then p is a local maximum.

302. If p is a critical point of function f : R2 → R (meaning that all of its partial derivatives are zero),

and the determinant of the Hessian is negative and
∂2f(x, y)

∂x2
(p) < 0, then p is a local minimum.

303. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and the determinant of the Hessian is negative, then p is not a local extremum.

304. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are
zero), and the determinant of the Hessian is negative, then p can be either a local maximum,
local minimum or neither.

305. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and the determinant of the Hessian is positive, then p is not a local extremum.

306. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and the determinant of the Hessian is zero, then p is not a local extremum.

307. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are
zero), and the determinant of the Hessian is zero, then p can be either a local maximum, local
minimum or neither.

308. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and all the eigenvalues of the Hessian are positive, then p is a local maximum.

309. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and all the eigenvalues of the Hessian are positive, then p is a local minimum.

310. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and all the eigenvalues of the Hessian are negative, then p is a local maximum.

311. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and all the eigenvalues of the Hessian are negative, then p is a local minimum.
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312. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and the Hessian has both positive and negative eigenvalues, then p is a local minimum.

313. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and the Hessian has both positive and negative eigenvalues, then p is a local maximum.

314. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and the Hessian has both positive and negative eigenvalues, then p is not a local extremum.

315. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are
zero), and the Hessian has both positive and negative eigenvalues, then p can be either a local
maximum, minimum or neither.

316. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are zero),
and the Hessian has at least one zero eigenvalue, then p is not a local extremum.

317. If p is a critical point of function f : Rn → R (meaning that all of its partial derivatives are
zero), and the Hessian has at least one zero eigenvalue, then p can be either a local maximum,
minimum or neither.

318. If A ⊂ Rn is a closed and bounded set, then f : A → R is a bounded function and there are such
points a, b ∈ A for which max

A
f(x) = f(a) and min

A
f(x) = f(b).

319. If A ⊂ Rn is a closed and bounded set, then if f : A → R is continuous, then it is also bounded,
and there are such points a, b ∈ A for which max

A
f(x) = f(a) and min

A
f(x) = f(b).

320. If p is a local conditional extrema of f : Rn → R on the boundary of set A, then all the partial
derivatives of funcion f should be zero at p.

321. If p is a local conditional extrema of f : Rn → R on the boundary of set A, then all the partial
derivatives of funcion L : Rn → R should be zero at p where L(x) = f(x)− λ(g(x)− b) and the
set A is described by the equation g(x) ≤ b.

322. If p is a local conditional extrema of f : Rn → R on the boundary of set A, then all the partial
derivatives of funcion L : Rn → R should be zero at p where L(x) = (g(x)− b)− λf(x) and the
set A is described by the equation g(x) ≤ b.

323. The conditional extrema of a function f : Rn → R on a bounded and closed set A are either
points on the boundary of the set or local extrema inside the set A.

324. The conditional extrema of a function f : Rn → R on a bounded and closed set A are local
extrema inside the set A.

325. The conditional extrema of a function f : Rn → R on a bounded and closed set A are always on
the boundary of set A.

4.4 Integration

326. An upper Riemann sum of a function f : A → R (A ⊂ R2, bounded, measurable) on set A is

always bigger (or equal) than the double integral

∫∫
A

f(x, y)dxdy.

327. An upper Riemann sum of a function f : A → R (A ⊂ R2, bounded, measurable) on set A is

always smaller (or equal) than the double integral

∫∫
A

f(x, y)dxdy.

328. A lower Riemann sum of a function f : A → R (A ⊂ R2, bounded, measurable) on set A is

always smaller (or equal) than the double integral

∫∫
A

f(x, y)dxdy.
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329. A lower Riemann sum of a function f : A → R (A ⊂ R2, bounded, measurable) on set A is

always bigger (or equal) than the double integral

∫∫
A

f(x, y)dxdy.

330. If

∫∫
B1

f(x, y)dxdy and

∫∫
B2

f(x, y)dxdy both exist, then

∫∫
B1∪B2

f(x, y)dx =

∫∫
B1

f(x, y)dx+

∫∫
B2

f(x, y)dx.

331. If

∫∫
B1

f(x, y)dxdy and

∫∫
B2

f(x, y)dxdy both exist and B1 and B2 have no common inner points,

then

∫∫
B1∪B2

f(x, y)dx =

∫∫
B1

f(x, y)dx+

∫∫
B2

f(x, y)dx.

332. If f is integrable on A, then |f | is also integrable on A and

∫∫
A

|f(x, y)|dx ≤

∣∣∣∣∣∣
∫∫
A

f(x, y)dx

∣∣∣∣∣∣.
333. If f is integrable on A, then |f | is also integrable on A and

∣∣∣∣∣∣
∫∫
A

f(x, y)dx

∣∣∣∣∣∣ ≤
∫∫
A

|f(x, y)|dx.

334. If f is integrable on A, then it is continuous on A.

335. If f is continuous on A, then it is integrable on A.

336. One can find such an integrable function f : D → R (D ⊂ R2) such that∫ d

c

(∫ b

a

f(x, y)dx

)
dy <

∫ b

a

(∫ d

c

f(x, y)dy

)
dx.

337. If f : D → R (D ⊂ R2) is a continuous function on Nx and Nx is a normal domain defined as
Nx = {(x, y) : a ≤ x ≤ b, c(x) ≤ y ≤ d(x)}, then∫∫

Nx

f(x, y)dxdy =

∫ b

a

(∫ d(x)

c(x)

f(x, y)dy

)
dx.

338. If f : D → R (D ⊂ R2) is a continuous function on Nx and Nx is a normal domain defined as
Nx = {(x, y) : a ≤ x ≤ b, c(x) ≤ y ≤ d(x)}, then∫∫

Nx

f(x, y)dxdy =

∫ d(x)

c(x)

(∫ b

a

f(x, y)dy

)
dx.

339. If f : D → R (D ⊂ R2) is a continuous function on Nx and Nx is a normal domain defined as
Nx = {(x, y) : a ≤ x ≤ b, c(x) ≤ y ≤ d(x)}, then∫∫

Nx

f(x, y)dxdy =

∫ b

a

(∫ d(x)

c(x)

f(x, y)dx

)
dy.

340. The Cartesian coordinates of a point with polar coordinates (r, φ) = (2, π
2 ) is (0, 2).

341. The Cartesian coordinates of a point with polar coordinates (r, φ) = (1, π
2 ) is (0, 4).

342. The Cartesian coordinates of a point with polar coordinates (r, φ) = (2, π
2 ) is (2, 0).

343. The Cartesian coordinates of a point with polar coordinates (r, φ) = (2, π
2 ) is (4, 0).
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344. The Cartesian coordinates of a point with cylindrical coordinates (r, φ, z) = (2,−π
2 , 1) is (0,−2, 1).

345. The Cartesian coordinates of a point with cylindrical coordinates (r, φ, z) = (2,−π
2 , 1) is (0,−2,−2).

346. The Cartesian coordinates of a point with cylindrical coordinates (r, φ, z) = (2,−π
2 , 1) is (0, 2, 1).

347. The Cartesian coordinates of a point with cylindrical coordinates (r, φ, z) = (2,−π
2 , 1) is (−2, 0, 1).

348. The Cartesian coordinates of a point with cylindrical coordinates (r, φ, z) = (2,−π
2 , 1) is (2, 0, 1).

349. The Cartesian coordinates of a point with spherical coordinates (r, φ, θ) = (2, π
2 ,

π
2 ) is (0, 2, 0).

350. The Cartesian coordinates of a point with spherical coordinates (r, φ, θ) = (2, π
2 ,

π
2 ) is (2, 0, 0).

351. The Cartesian coordinates of a point with spherical coordinates (r, φ, θ) = (2, π
2 ,

π
2 ) is (0, 0, 2).

352. The Cartesian coordinates of a point with spherical coordinates (r, φ, θ) = (2, π
2 , π) is (−2, 0, 0).

353. The Cartesian coordinates of a point with spherical coordinates (r, φ, θ) = (2, π
2 , π) is (0, 0,−2).

354. The Cartesian coordinates of a point with spherical coordinates (r, φ, θ) = (2, π
2 , π) is (0,−2, 0).
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