Math G2

Mock Exam

\diamond Make sure that your solutions are detailed enough since in case of mistakes/errors I can grade them better.
\diamond Fill out the box below with capital letters.

```
Name and Neptun code:
```


Theoretical questions

Please write your true ('T') or false ('F') answers for the theoretical test into the box at the bottom of this page. You can get +2 points for a correct answer, 0 points for no answer and -1 points for a wrong answer.

1. (Q. 29.) For any $n \times n$ matrices A and B, we have $\operatorname{det}(A+B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.
2. (Q. 52.) If three vectors are linearly independent, then they are on the same plane.
3. (Q. 72.) For $n \times n$ matrices A and B for which $\operatorname{det}(A) \neq 0$ and $\operatorname{det}(B) \neq 0$ we have $(A \cdot B)^{-1}=$ $A^{-1} \cdot B^{-1}$.
4. (Q. 165.) The matrix of a linear operator might change if we change the basis of the vector space.
5. (Q. 196.) The series $\sum_{n=1}^{\infty} q^{n}$ converges, if $q<1$.
6. (Q. 239.) If for a power series $\sum_{n=1}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ we have $0<\limsup _{n \rightarrow \infty} \sqrt{\left|a_{n}\right|}<\infty$, then the radius of convergence is $R=\frac{1}{\lim \sup _{n \rightarrow \infty} \sqrt{\left|a_{n}\right|}}$.
7. (Q. 271.) The set $x^{2}+y^{2} \leq 1$ (unit disc with its border) is closed.
8. (Q. 278.) Level curves of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are the curves where $f(c)=x$ for a given value of $c \in \mathbb{R}$.
9. (Q. 292.) The Hessian (or Jacobian) matrix of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is always symmetric.
10. (Q. 352) The Cartesian coordinates of a point with spherical coordinates $(r, \varphi, \theta)=\left(2, \frac{\pi}{2}, \pi\right)$ is $(-2,0,0)$.

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.

Exercises

1. (Pr. 3. Ex. 1.) Does the following system of equations have a unique solution? If yes, solve it! (8 points)

$$
\left\{\begin{aligned}
2 x_{1}-x_{2}-x_{3} & =4, \\
3 x_{1}+4 x_{2}-2 x_{3} & =11, \\
3 x_{1}-2 x_{2}+4 x_{3} & =11 .
\end{aligned}\right.
$$

2. (Pr. 5. Ex. 23.) Consider the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}
$$

(a) Prove that it is a convergent series! (4 points)
(b) How many elements should we add up of this series such that our error is smaller than $\varepsilon=10^{-2}$? (4 points)
3. (Midterm 2 Ex. 3.) Let us consider function $f:[0, \pi] \rightarrow \mathbb{R}$ which is defined as $f(x)=1$. Define the extension of this function f in a way that its extension is defined for every $x \in \mathbb{R}$ and the Fourier series of the extension is a sine Fourier series. Calculate the coefficients of this series! (8 points)
4. (Pr. 11. Ex. 2.) Search for the maximum or minimum of the function

$$
f(x, y)=x^{2}-2 x+y^{2}
$$

inside set A where $A=B \cap C$, in which B is the disc with radius 2 centered at the origin, and C is the union of the first, third and fourth quadrants of the coordinate system. (8 points)
5. (Pr. 12. Ex. 9.) Calculate the integral of the function $f(x, y)=\sin \left(\sqrt{x^{2}+y^{2}}\right)$ on the domain T given by the equations $1 \leq x^{2}+y^{2} \leq 4$ and $x \geq 0$. (8 points)

