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Preface

The following lecture notes were written by Bálint Takács, but most of the
material is a translation of the Hungarian work of Ádám Besenyei, Vilmos Ko-
mornik and László Simon, which can be dowloaded from http://etananyag.

ttk.elte.hu/download.php?view.71.

The document consists of two types of fonts:

� The lines written in normal sized letters are materials which would be
discussed on the lectures, and they are part of the exam material.

� Lines written in smaller size are not part of the topics of the final exam, but can give

an insight into the proofs which are skipped during the semester.

Since this is a 3rd year BSc (or MSc) course, there are some topics which
are assumed to be known by the student - these are the following:

� Basic concepts of topology: open, closed, connected, bounded, compact
sets, closure of a set, interior of a set, open ball B(a, r), dense subset,
distance of sets.

� Vectors and matrices: basic definitions, linear dependence, determinant,
eigenvalues, scalar product, orthonormal basis, symmetric matrix, posi-
tive definite matrix, transpose, orthogonal matrix, vector space.

� Real analysis: uniformly continuous function, theorem of Heine, uniform
convergence of functions.

� Differentiation of one- and multi-variable functions: partial derivatives,
left and right derivatives, existence of derivatives, the set C2(Ω), nor-
mal, gradient, divergence, Laplace operator, Young’s theorem, properties
of parametric integrals, Gauss-Ostrogradsky theorem, Fubini’s theorem,
Hölder’s inequality.

� Ordinary differential equations: basic definitions, initial value, equilib-
rium point.

� Functional analysis: normed spaces, Lp-spaces (1 ≤ p ≤ ∞), almost
everywhere convergence, convergence in norm, Lp

loc-spaces, linear and
bounded functionals, Lebesgue’s theorem, Cauchy-Schwartz inequality,
operators: bounded, linear and compact, Riesz representation theorem.

If there are some of these which the student is not familiar with, we encourage
him/her to refresh them from a 1st or 2nd year textbook, since the topics
above will not be discussed in the lecture notes (but some of the theorems
are stated).
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Chapter 1

Introduction

In this course we explore the field of partial differential equations (or PDEs
for short).

In the case of ordinary differential equations (or ODEs for short), the
unknown function has only one variable, and is usually denoted by x(t) (or
y(x), but we will stick to the former one). This type of equations can be
used when we have only one variable, meaning that our unknown quantity
denoted by x(t) depends only on one physical variable, usually on time (this
is the reason for the t notation). However, the usual processes in real life
depend on not only one, but in most cases several parameters.

One of the easiest examples for this is the problem of temperature: if we
ask ”What is the temperature tomorrow?”, it is not a good question, since we
also need to specify the location. Since we already have one variable as time
t (”tomorrow”), we also need another one for the location, which is usually
denoted by x (e.g. Budapest). Then our function u(t, x) can describe the
temperature at time t and at location x. In most cases, variable t is used to
describe time, and x is for space (if the process takes place in a 2 dimensional
space, we can use x and y, for 3 dimensions x, y and z, and for more, e.g.
n dimensions x1, x2, . . . xn). Note that in some cases the variable x might
mean not only one, but all spatial variables, meaning that x = (x1, x2, . . . xn)
- however, in applications the most common cases are n = 2 and n = 3.

Most physical processes are described by multivariable functions, and if
we would like to examine the rate of their change, we will need partial
derivatives - this is the reason for the word ”partial” in the name of PDEs.

Another difference between ODEs and PDEs is the role of initial condi-
tions. In the case of the former ones, for a sufficiently smooth right-hand
side of the equation (usually the Lipschitz property is assumed) the existence
of an initial condition guarantees the existence of a unique solution of the
equation. However, in the case of PDEs this is not the case, but this should
be no surprise, since now we have not only one, but two or three (or even
more) variables, so it is not enough to just give the value of our unknown
function at t = 0, but we would also need some constraints for the other
(spatial) variables also - the condition when the value of the function is given
at some given spatial point is usually called boundary condition, since these
point are usually on the boundary of our spatial set (e.g. if we examine the
heat distribution in a tank, then we might know the temperature at the walls
of the tank, since we can measure it there).

In the following parts of this chapter, we define some notations and basic
concepts of PDEs, and then show some physical examples.

4



CHAPTER 1. INTRODUCTION 5

1.1 Basic concepts

1.1.1 Multiindex notation

We are going to use the notation ∂1, ∂2, . . . for partial derivatives in the first,
second, etc. variable. When we have only two (or three) variables, i.e. time t
and space x (and y), then the corresponding partial derivatives are denoted
by ∂t, ∂x, and ∂y, respectively. Sometimes, when there are several variables in
space, then the notation ∂0 is used for the derivative in time, and ∂1, ∂2, . . . ∂n
are used for the derivatives in space variables x1, x2, . . . xn, respectively. We
can also use higher order partial derivatives, e.g. ∂x∂y or ∂x∂x, which are
usually written in a shorter form as ∂xy and ∂2x, respectively.

In this course we are going to use the multiindex notation, which is
defined as follows. Let αj ≥ 0, and αj ∈ Z for all j = 1, . . . n. Then we
call the vector α := (α1, α2, . . . αn) a multiindex, and the ”absolute value”
of such multiindex is defined as |α| := α1 + α2 + . . . αn (if you are familiar
with l1-spaces, then this is the l1-norm of vector α, since the values αj are
positive).

If we have a function f : Rn → R, then

∂αf := ∂α1
1 ∂

α2
2 . . . ∂αn

n f,

where α is defined as above, and |α| is the order of the derivative. This
basically means that the orders of the different partial derivatives are stored
in the vector α.

Example: If we have a function f : R4 → R and take its partial derivative
∂21∂

3
2∂4f , then α = (2, 3, 0, 1) (α3 = 0, since we do not take the derivative in

that variable) and |α| = 6, so this is a sixth order derivative.

If |α| = 0, then our vector is in the form (0, 0, . . . 0), so in this case ∂αf = f

(since we take no derivatives).

1.1.2 The ”definition” of PDEs

Let Ω ⊂ Rn (n ∈ N+) be a connected, open set. (Note that in the case when
we have time t ∈ [0, T ] (so our process starts at t = 0 and ends at t = T ∈ R+)
and also some space variable x ∈ Ωx ⊂ Rn−1, then Ω = Ωx × [0, T ]. Later we
usually use Ω for the domain of our space variable, and omit the x from its
lower-right corner, and n will be the dimension of the Ω set, not the dimension
of the Ω× [0, T ] set.)

Let N be the number of (α1, α2 . . . αn) multiindices for a givenm, for which
|α| ≤ m (so the number of different possible types of partial derivatives is N
- an upper bound for this number can be given of course, but for the sake of
simplicity we are going to use this notation instead).

Let F : Ω×G → R be an (n +N)-variable function (here G ⊂ RN), and
the smoothness of F is often defined for a given equation.

Then a partial differential equation is an equation in the form

F (x, u(x), ∂1u(x), ∂2u(x), . . . , ∂nu(x), . . . , ∂
m
n u(x)) = 0, (x ∈ Ω) (1.1)

or, in operator form

F ◦ (id, u, ∂1u, ∂2u, . . . , ∂nu, . . . , ∂mn u) = 0, (1.2)
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in which u ∈ Cm(Ω) is the unknown function we would like to find. Here u is
called a classical solution of the equation, and m is the order of the PDE.

The condition u ∈ Cm(Ω) means that u is at least m times continuously
differentiable, which is a natural requirement, since the equation has ∂mn u in it
- however, usually the existence of all derivatives is not required (in equation
(1.1) the non-present terms can be thought of as being multiplied by zero),
and in these cases less strict conditions are given. Also, later in the semester
we will define weak solutions of the equations, for which the existence of
derivatives is not required, but other conditions are needed (which result in
a less smooth function).

1.1.3 Initial and boundary conditions, well-posedness

Just like in the case of ODEs, the solution of a PDE usually means a set of
functions. However, while in the case of the former these solutions usually
differ from each other only by a constant, the solutions of a PDE can be
totally different depending on the initial and the boundary conditions. Here
we are going to suppose that we have a time variable t ∈ R (usually t ∈ [0, T ],
T ∈ R+) and a space variable x ∈ Ω ⊂ Rn (usually Ω is a bounded, connected
and open set).

I. Boundary conditions: These mean that the value of u or the value of
∂u (or the directional derivative of u - more on this later) is given on the
boundary of our domain Ω. These problems are called boundary-value
problems (or BVPs for short).

For example, if our domain is Ω = [0, 1] ⊂ R (so this is a one-dimensional
problem), then a boundary condition means that the value of u(0, t) or
u(1, t) (or ∂xu(0, t)) is given.

If we do not have a time variable (this means that our solution is constant
in time), then we only need boundary conditions.

II. Initial condition: This means that the value of u or ∂u is given at
some time t, in most cases t = 0. These problems are called initial-
value problems (IVPs) or Cauchy-problems.

For example, the value of u(x, 0) (or ∂tu(x, 0)) is given.

Usually initial-value problems arise when the partial differential equa-
tions are thought of as ordinary differential equations defined on some
abstract space (usually Hilbert spaces), and then they are called ab-
stract Cauchy-problems (ACP). These concepts are used in the theory
of operator semigroups.

III. Initial-boundary value problems In most cases, both initial and
boundary conditions are needed to ensure that our equation has a unique
solution. These problems are called initial-boundary value problems
(or IBVPs for short).

In applications, it is important that the equation we write up has some
nice properties: an equation having two solutions is usually not a physically
reasonable one (an object will not move in two different ways). The next
definition collects the most important required properties.
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Definition 1.1. A PDE is said to be well-posed, if the following three
conditions hold:

(i) Existence: A solution exists in the observed class of functions (in the
case of classical solutions, this class is Cm(Ω)).

(ii) Uniqueness: There is at most one solution in that class of functions.

(iii) Stability/continuous dependence on parameters: Depending on
the textbooks, this condition might mean two different things:

– If we modify the initial or boundary conditions a little, then the
solution of this new equation should be close to the original one.

– A small change of the equation (e.g. the change of a constant or a
given function) results in a small change of the solution.

Requirements (i) and (ii) seem to be rather natural, but condition (iii) is
also very important in applications: usually the given parameters or the ini-
tial/boundary conditions come from physical measurements, which are only
precise up to some extent. Then, it is a natural requirement that if our mea-
surements are precise up to e.g. 4 digits, then our solution should also be
precise up to 4 digits.

It is also a natural requirement that a small change in parameters should
result in a slightly different solution and not a totally different one. This is
important because of the aforementioned problem of precision: if one of the
constants is measured to be 1.000 but the equation has two totally different
solutions in the cases 0.9999 and 1.0001, then this is an issue since we do not
know which of these two different solutions is the ’real one’. Unfortunately, in
the second half of the 20th century several systems were discovered in which
this property does not hold - these are then said to be sensitive to the initial
conditions. Such systems include not only large, complex systems like the
weather, but also rather simple ones, like the double pendulum. The branch
of mathematics which deals with such systems is called chaos theory, but it
is not discussed in this course.

1.2 Physical examples

In this section some physical examples are presented which can be modeled
by using PDEs.

1.2.1 Thermal conductivity

Thermal conductivity means the passing of heat through some material. The
main physical idea here is called Fourier’s law, which basically means that
”the warm air flows to the places where it is cold”. (So when grandma says
”Please close the window because the cold air comes in!”, she is wrong, since
it is the warm air that goes out of the window.)

If we would like to be more precise, Fourier’s law states that if we fix a
piece of a plane at some point x with area δA, then the amount of heat δQ
passing through this piece of plane in δt time is

δQ = −k(x) ∂νu(x, t) δA δt. (1.3)
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Figure 1.1: The law of Fourier1.

(See Figure 1.1.) Here:

� ν is the normal of the plane, and

∂νu(x, t) = (grad(u)) · ν,

which is called the directional derivative in that direction of the normal,
or normal derivative in short. (Here ·means scalar product of vectors.)

� k(x) is the termal conductivity (a physical constant which comes from
the properties of the material the heat moves in).

� u(t, x) is the temperature at time t and at (spatial) point x.

� The negative sign in front of the right-hand side comes from the physical
meaning of the expression: if ∂νu > 0, then it means that the heat moves
out of the domain, but then the amount of heat should decrease, so since
all of the constants are positive, δQ < 0.

In the next pages we will try to get a PDE from the physical law above
- first, we do it in one dimension (i.e. when x ∈ Ω ⊂ R), and then only
mention the main ideas of the multidimensional case.

a) One dimensional case: Let us suppose that we have a thin rod with
length L ∈ R+, and its surface is insulated meaning that no heat can
escape from it. Since it is very thin, its points can be modeled as
x ∈ [0, L], since it is assumed that there is no difference in its tem-
perature at points at a given length. Then let us denote by u(x, t) the
temperature of the rod at time t and at point x .

Let us consider a small part of the rod, namely the section [x, x+δx] (where δx ∈ R+ is
a small value). Then this is a cylinder with height δx, and let us suppose that the base
of this cylinder has the area δA. Then by Fourier’s law, the amount of heat passing
through in time δt at the base at point x is (k∂νu)|(x,t)δA δt, and the heat escaping at
the other end is −(k∂νu)|(x+δx,t)δA δt (see Figure 1.2).

Then the difference of heat in the rod is

δQ1 = [k(x+ δx)∂xu(x+ δx, t)− k(x)∂xu(x, t)] δA δt ≈

≈ ∂x (k(x)∂xu(x, t)) δx δA δt

(Here the term δx comes from the definition of partial derivatives.)

1Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
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Figure 1.2: Heat conductivity in a small section of the thin rod2.

Let F (x, t) be some outer source or sink of heat (we warm up, or cool down our rod at
some points). Then, the difference of heat coming from this procedure on this small
section in time δt is

δQ2 = F (x, t) δx δA δt.

Also, the change of temperature in time δt at point x can be approximated by the
derivative of u in variable t:

u(x, t+ δt)− u(x, t) ≈ ∂tu(x, t)δt

We know from physics that the amount of heat needed for such warming/cooling is

δQ3 ≈ c(x) ρ(x) δx δA ∂tu(x, t) δt

in which c(x) is the heat capacity, and ρ(x) is the density of the material (both are
physical constants).

Since the total amount of change of heat is δQ3, and this change can only come from
either the move of the heat (which was described by δQ1) or from the outer heat-
ing/cooling (denoted by δQ2), then

δQ3 = δQ1 + δQ2

c(x) ρ(x) δx δA ∂tu(x, t) δt = ∂x (k(x)∂xu(x, t)) δxδAδt+ F (x, t)δxδAδt

If we divide this by δt, δA and δx, we get:

c(x) ρ(x) ∂tu(x, t)− ∂x (k(x)∂xu(x, t)) + F (x, t)

When c(x), ρ(x) and k(x) are constants (meaning that they do not depend on x), then
we get

∂tu(x, t)−
k

cρ
∂2xu(x, t) =

F (x, t)

cρ
,

We can also introduce a new constant a =
k

cρ
(which is sometimes called the thermal

diffusivity constant), and also define f(x, t) =
F (x, t)

cρ
.

(Note that all of the arguments above can be made rigorous, but here we only wanted

to show the main ideas of the proof.)

In the end, we get the following equation:

∂tu(x, t)− a ∂2xu(x, t) = f(x, t) (1.4)

which is the inhomogeneous one dimensional heat equation (here
a is a positive constant and f(x, t) is a given function). The term f(x, t)
is usually called the source term, since it describes the effect of an
outer source or sink of heat - when f(x, t) ≡ 0, then the equation is
called the homogeneous heat equation.

As mentioned before, for our equation to have a unique solution, we will
need some constraints.

2Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
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1. Initial condition: Let us suppose that we know the initial tem-
perature of our rod at all points, i.e.

u(x, 0) = T0(x), x ∈ [0, L],

in which T0(x) is a known function.

For our boundary condition, we have three choices:

2. First-type boundary condition: In this case the value of function
u(x, t) is known at the endpoints of our domain [0, L]:

u(0, t) = T1(t), (t ≥ 0)

u(L, t) = T2(t). (t ≥ 0)

in which T1(t) and T2(t) are known functions (e.g. we have a ther-
mometer installed at both ends of the rod). This type of boundary
condition is called first-type or Dirichlet boundary condition.

3. Second-type boundary condition: In this case the value of
∂xu(x, t) is known at the endpoints of our domain [0, L]:

k(0)∂xu(0, t) = u1(t), (t ≥ 0)

k(L)∂xu(L, t) = u2(t). (t ≥ 0)

in which u1(t) and u2(t) are known functions. This type of boundary
condition is called second-type or Neumann3 boundary condi-
tion. Note that since x ∈ [0, L], the partial derivatives taken at
points x = 0 and x = L are meant to be the right and left deriva-
tives of the function taken at those points, respectively.

4. Third-type boundary condition: In this case the values of both
u(x, t) and ∂xu(x, t) are known at the endpoints of our domain [0, L]:

k(0)∂xu(0, t)− λu(0, t) = −λTk(t), (t ≥ 0)

k(L)∂xu(L, t) + λu(L, t) = λTk(t). (t ≥ 0)

in which λ is a constant, and Tk(t) is a known function. This type
of boundary condition is called third-type or Robin boundary
condition.

Our PDE is defined on the set Q := (0, L)×R+ (see Figure 1.3). If our
rod is infinite (x ∈ R), then only the initial condition is needed, and
then we have an initial-value problem.

Another question is the function space in which we would like to search
for our solution: this could either be C2(Q), C2(Q) × C1(Q) or just
C1(Q) × C(Q) in which case we also assume that ∂2xu ∈ C(Q). This
decision will be made later.

3This is named after Carl Neumann, who is famous for the Neumann series (see your Functional Analysis
class for those), and not after the ”other” famous Neumann, John von Neumann.
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Figure 1.3: The set the heat equation is defined on with the initial and boundary conditions5.

b) More dimensions: By similar arguments as before, we can consider
a plane (a very thin iron plate) and a small rectangle on it (see Figure
1.4).

Figure 1.4: Heat conductivity in a small rectangle6.

After a proof similar to the one presented in the one-dimensional case,
we get the equation

∂tu(x, y, t)−
k

cρ
∆u(x, y, t) =

F (x, y, t)

cρ
(1.5)

or
∂tu(x, y, t)− a∆u(x, y, t) = f(x, y, t)

with notations a =
k

cρ
and f(x, y, t) =

F (x, y, t)

cρ
. When k is not a

constant function, we get

∂tu(x, y, t)−
1

cρ
div (k(x, y)grad(u(x, y, t))) =

F (x, y, t)

cρ
. (1.6)

5Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
6Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
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Note that the Laplace, the div and the grad operators present in the
previous formulas are acting only on the space variables, and not on the
time one, i.e.

∆u(x, y, t) = ∂2xu(x, y, t) + ∂2yu(x, y, t),

and in the three dimensional case (where x = (x1, x2, x3))

∆u(x, t) =
3∑

j=1

∂2ju(x, t).

We can also define an initial condition for this problem, namely

u(x, y, 0) = φ(x, y), ((x, y) ∈ Ω)

in which φ : Ω → R is a given function (Ω ⊂ R2).

The boundary conditions are similar to the one dimensional case:

– First-type (or Dirichlet) boundary condition: The value of u is given at
the boundary of the domain.

u|∂Ω = χ

in which χ : ∂Ω × R+
0 → R is a given function (here ∂Ω means the boundary of

the set Ω).

– Second-type (or Neumann) boundary condition: The normal derivative of
u(x, y, t) is given at the boundary of the domain.

∂νu|∂Ω = χ

in which χ : ∂Ω× R+
0 → R is a given function.

– Third-type (or Robin) boundary condition: A linear combination of the
value and the normal derivative of u(x, y, t) is given at the boundary of the domain.

α ∂νu|∂Ω + β u|∂Ω = χ

in which α, β, χ : ∂Ω× R+
0 → R are a given functions.

In this case our equation is defined on the set Q := Ω × R+ (since
x ∈ Ω ⊂ R2 and t ∈ R+). When Ω ⊂ R2, this domain looks like a
cylinder (see Figure 1.5), while it is a bit more difficult to visualize it
when Ω ⊂ Rn, n > 2. Note that when n = 1, we get back the same
picture as in the one dimensional case (see Figure 1.3).

Remark 1.1. When we consider some other physical processes, e.g. the
diffusion of gases, we get a similar equation as (1.4) or (1.5). In this
case u denotes the density of the material, and instead of Fourier’s law,
we use Fick’s law, which is very similar to the former one: the gas
moves to those places where the density is lower. This is the reason why
equation (1.4) or (1.5) is sometimes called diffusion equation.

Remark 1.2. Note that if we use the physical concept of Brownian motion
and the tools of stochastic analysis, we will get the same equation as (1.4)
or (1.5).

c) Stationary conductivity: In some cases we would like to observe the
states of the heating process which do not change in time, which means
that ∂tu = 0. Such solutions are important since they are usually the
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Figure 1.5: The set our equation is defined on7.

limits of other solutions: this is a similar concept as equilibrium points
in the case of ordinary differential equations - in the case of PDEs, these
are called equilibrium solutions.

When ∂tu = 0, then equation (1.6) has the form

− div (k(x, y)grad(u(x, y, t))) = F (x, y, t). ((x, y) ∈ Ω) (1.7)

When k(x, y) ≡ 1, we get
−∆u = F. (1.8)

Equation (1.8) is usually called Poisson equation. A special case of
this one is when F = 0, which results in

−∆u = 0. (1.9)

Equation (1.9) is usually referred to as the Laplace equation. Bound-
ary conditions can be defined similarly as in the previous cases.

1.2.2 Wave equation

On the following pages we introduce the wave equation, which can be used
to model the movement of a string, or the top of a drum. It is important
to emphasize that it cannot be used to model the movement of waves of the
ocean: for that other kind of equations (shallow-water equations) are needed.

a) One dimension: Let us consider a rope with constant length L, and
assume that it moves only vertically. Let us model the rope in a two-
dimensional coordinate system: let us use choose a given height to be
y = 0, and use variable x for the horizontal distance from the origin of
this coordinate system. Then, let us denote by u(x, t) the distance of a
given point of the rope from the x-axis at time t: u(x, t) > 0 when the
rope is above this axis, and u(x, t) < 0 when the rope is below it (see
Figure 1.6).

Let the tangential force acting on the rope be denoted by T , and µ be the linear density
of the rope (which means that its mass m can be calculated as m = µ · L).

7Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.



CHAPTER 1. INTRODUCTION 14

The outer force acting on a small segment [x, x+ δx] is F · δx (e.g. there is a wind that
moves the rope). Let us consider this small segment and observe the forces that act
on it. There is Fδx which comes from outer effects, and T comes from the rope itself
(the force that tries to hold the rope together). They can be seen on Figure 1.6.

Figure 1.6: The forces acting on a small segment of the rope8.

Now we use the second law of Newton, which states that the sum of all forces
∑
F

acting on an object equals to the product of its mass m and the acceleration a that
was caused by the forces: ∑

F = m · a. (1.10)

The force on the left end of the segment is −T sin(θ), while the one on the right
is T sin(θ + δθ) (the reason for the sin is that we are going to consider the vertical
component of force T , since this is the direction the rope moves, so the vector of
acceleration points into this direction). Then, if we substitute into equation (1.10), we
get

T sin(θ + δθ)− T sin(θ) + F (x, t) δx = (µ δx) ay, (1.11)

in which the term µ δx is the mass of the rope, and ay is the acceleration taken in the
vertical (y) direction (since all the forces are taken in that one).

Then, we can use some approximations: for small values of δθ, sin(δθ) ≈ δθ and
cos(δθ) ≈ 1, which means that

sin(θ + δθ) = sin(θ) cos(δθ) + cos(θ) sin(δθ) ≈ sin(θ) + cos(θ)(δθ).

When θ is small, sin(θ) ≈ 0 and cos(θ) ≈ 1, so (1.11) becomes (for small values of θ
and δθ)

T (δθ) + F (x, t) δx = (µ δx) ∂2t u(x, t), (1.12)

in which we used that ay = ∂2t u(x, t), since acceleration is the second derivative taken
with respect to the time variable.

Now we use the approximation

tan(θ) ≈ δu

δx
≈ ∂xu.

If we differentiate the expression above with respect to variable x, we get

1

cos2 θ
∂xθ = ∂2xu.

For small values of θ, cos2 θ ≈ 1, and ∂xθ ≈
δθ

δx
, meaning that

δθ ≈ ∂2xu · δx.
8Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
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If we use this approximation in equation (1.12), we get

(Tδx)∂2xu+ F (x, t) δx = (µ δx) ∂2t u(x, t). (1.13)

Then, by dividing it by δx and then by µ, we get

∂2t u(x, t)−
T

µ
∂2xu(x, t) =

F (x, t)

µ
. (1.14)

Let us use the notation f :=
F

µ
and c2 = T

µ
.

Then, after some calculations we get the equation

∂2t u(x, t)− c2∂2xu(x, t) = f(x, t), (1.15)

in which c is a positive constant and f(x, t) is a given function (usually
called the source term). (1.15) is called the one dimensional wave
equation. When f(x, t) = 0, we call it homogeneous, while the case
f(x, t) ̸= 0 is called inhomogeneous.

As in the case of the heat equation, we would also need some constraints
that guarantee the existence of a unique solution.

1. Initial conditions: Since we have second derivatives in time, we
would need two conditions for our solution to be unique (similarly
as in the case of second order ordinary differential equations):

u(x, 0) = φ(x),

∂tu(x, 0) = ψ(x),

in which φ(x) and ψ(x) are two given functions. Here ∂tu(x, 0)
means the initial velocity distribution of the rope.

We have several choices for the boundary conditions depending on the
movement of the endpoints of the rope:

2. Ends with given motion: Let us suppose that we know the mo-
tion of our endpoints during the process, e.g. we are the ones moving
them. Then the boundary conditions are:

u(0, t) = χ1(t),

u(L, t) = χ2(t).

Here χ1(t) and χ2(t) are given functions, and L is the length of the
rope. In this case this is a Dirichlet condition (since the value of
the unknown function is given). Note that when χ1 = χ2 = 0 (or
when they are constant), the endpoints are fixed.

3. Free endpoints: Let us suppose that the endpoints are free to
move, e.g. they are tied to a pole, and can move up or down with-
out any friction (see Figure 1.7). Then it can be shown that the
boundary conditions in this case have the form

∂xu(0, t) = 0,

−∂xu(L, t) = 0.
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Figure 1.7: The case when the endpoint of the rope can move freely9.

As we can see, this is a Neumann boundary condition. Here
∂xu(0, t) is the right, while ∂xu(L, t) is the left derivative of the
function calculated at points x = 0 and x = L, respectively.

4. Endpoints connected to a string: In this case the endpoint of
the rope is connected to a pair of strings, so it can move, but the
movement is slowed down by the strings (see Figure 1.8). It can be
shown that the boundary conditions have the form

α1∂xu(0, t) + β1u(0, t) = χ1(t),

α2∂xu(L, t) + β2u(L, t) = χ2(t),

where α1, α2, β1, β2 are known constants, and χ1, χ2 are given func-
tions. Also, this is a Robin-type boundary condition.

Figure 1.8: The case when the endpoint of the rope is connected to a pair of strings10.

In the case of the wave equation, the space our equation is defined on
is Q := (0, L) × R+ (since x ∈ (0, L) and t ∈ R+). In some cases it is
assumed that the rope is infinitely long, so then we do not need boundary
conditions, and our space is Q := R× R+ (x ∈ R).

9Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
10Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
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b) Multidimensional case: Let us assume that we have a flexible thin
plane (e.g. a blanket), and we would like to model its movement - in this
case x ∈ Ω ⊂ R2, or if we consider more than two-dimensional waves,
Ω ⊂ Rn. If we use the same ideas as in the one dimensional case, we get
a similar equation:

∂2t u− c2∆u = f. (1.16)

Here the Laplace operator acts only on the space variables x1, x2, . . . xn,
namely

∆u(x, t) =
n∑

j=1

∂2ju(x, t).

The initial and boundary conditions are also similar to the ones in the
one dimensional case.

1.2.3 Other examples

In this section we show some further, widely used physical processes which
can be modeled using PDEs.

1. Transport equation: Suppose that we have a pipe in which some fluid
is moving, containing some material. Then let us denote by u(x, t) the
density of the transported material at position x in the pipe at time t,
and let v(x, t) be the speed of the current at point x and at time t. It is
also possible to model the movement of fluids in 2 dimensions, e.g. the
movement of some pollution in the ocean transported by the currents.

The equation describing this movement is

∂tu(x, t) + v(x, t) · grad(u(x, t)) = 0 (1.17)

in which · is a scalar product, and the gradient operator only acts on
the space variables. Equation (1.17) is called the transport equation.
It is also possible to add a source term f to the right-hand side of the
equation, meaning a source or sink of the material.

2. Biharmonic equation: In most applications, we consider second or-
der equations, because we would like to model something that moves
because of diffusion (Laplace operator), or in a wave-like motion (sec-
ond derivative in time). An interesting exception is the biharmonic
equation, which is used to model linear elasticity, and has the form

∆2u = 0, (1.18)

in which the biharmonic operator ∆2 is defined as

∆2u =
n∑

i=1

n∑
j=1

∂2i ∂
2
ju.

Remark 1.3. An interesting fact is that in recent years the non-integer
”powers” of the Laplace operator were also defined to model diffusion
more accurately, but the definition of such operators is far beyond the
scope of this course.
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3. Systems of PDEs: In most applications we do not have only one
unknown function, but several ones, meaning that we need multiple
equations to model them. Here we mention only two examples of such
systems:

� Maxwell equations, which are used in electro-magnetic processes.

� Navier Stokes equations, which are used to model currents and
hydrodinamics - these are the ones which can be used to model
the movement of waves of the ocean. Although they are widely
used, there are still some open questions regarding them - you
can even get a million dollars if you can answer these questions
(see https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_

existence_and_smoothness for details).

In the next chapter we start to examine second order linear equations,
which will be the main topic of the further parts of the course.

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_existence_and_smoothness
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_existence_and_smoothness


Chapter 2

Second order linear PDEs

In this chapter we discuss the classification of second order linear partial
differential equations, and then show a useful transformation which can be
used to transform a wide class of such equations into a more simple form
(called the canonical form).

2.1 General form of second order linear PDEs

Definition 2.1. We say that a second order partial differential equation is
linear in its main term, if it is in the form

n∑
j,k=1

aj,k∂j∂ku = g ◦ (id, u, ∂1u, . . . ∂nu) , (2.1)

in which aj,k : Ω → R and g : Ω×G→ R are fixed functions, while G ⊂ Rn+1

is a fixed interval1.

This basically means that the second order terms (the ones in the form
∂j∂ku) form a linear combination, so that part of the equation (the main part)
is linear, while the right-hand side might contain any nonlinear function.

Definition 2.2. We say that an equation is a second order linear partial
differential equation, if it is in the form

n∑
j,k=1

aj,k∂j∂ku+
n∑

j=1

bj∂ju+ cu = f, (2.2)

in which aj,k, bj, c, f : Ω → R are given functions.

If we would like to get a classical solution of our problem, we would need
that u ∈ C2(Ω). However, by the theorem of Young, we know that in this case
∂j∂ku = ∂k∂ju for all j, k indices. Because of this, we can regroup the terms
aj,k∂j∂ku and ak,j∂k∂ju in a way that aj,k = ak,j. Because of this, we can
make the following assumption.

Assumption 1. For all j, k indices, aj,k = ak,j.

Remark 2.1. In the case of third order equations, a similar assumption can
be made, since in that case aj,k,l = aj,l,k = ak,j,l = . . . , which comes from an
extended form of Young’s theorem (which can be proved using the original
Young theorem and induction).

1In this context interval means an open subset of Rn+1 in the form [a1, b1]× [a2, b2]× · · · × [an+1, bn+1]
where ai, bi ∈ R and ai < bi for all i = 1, 2, . . . n, n+ 1.

19
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2.2 Classification

In this section we classify the second order linear equations depending on
their main term.

Let x0 ∈ Ω ⊂ Rn be a fixed point in our domain (which now might also
contain the time variable), and let A(x0) be the matrix constructed from the
coefficients of the main terms in equations (2.1) and (2.2), meaning that:

A = A(x0) := [aj,k(x0)]
n
j,k=1 =


a1,1(x0) a1,2(x0) . . . a1,n(x0)
a2,1(x0) a2,2(x0) . . . a2,n(x0)

...
... . . . ...

an,1(x0) an,2(x0) . . . an,n(x0)

 . (2.3)

Since aj,k(x0) = ak,j(x0) by Assumption 1, we get that the matrix A(x0)
is symmetric. Now we are going to use the following theorem coming from
Linear Algebra (which is not proved here, but its proof can be found in many
Linear Algebra textbooks):

Theorem 2.1. Let us consider a matrix A with real entries, and suppose that
the matrix is symmetric. Then all of the eigenvalues of the matrix are real,
and the eigenvectors form an orthonormal basis in Rn.

By Theorem 2.1, we know that our matrix A defined in (2.3) has real
eigenvalues, and its vectors form an orthonormal basis.

Let us introduce the following notations:

� n+ : the number of positive eigenvalues of A (counted with (algebraic)
multiplicity, meaning that if we have only one positive eigenvalue but
with (algebraic) multiplicity 2, then n+ = 2).

� n− : the number of negative eigenvalues of A (counted with (algebraic)
multiplicity).

� n0 : the number of zero eigenvalues of A (counted with (algebraic) mul-
tiplicity).

Note that n+ + n− + n0 = n.
Now we state the main definition of this section:

Definition 2.3. Equation (2.1) and (2.2) at point x0 is called:

� elliptic, if n+ = n or n− = n, so all of the eigenvalues have the same
sign.

� hyperbolic, if n+ = 1 and n− = n − 1, or n− = 1 and n+ = n − 1, so
all of the eigenvalues have the same sign except one.

If n0 = 0 and n+ > 0 and n− > 0, the equation is sometimes called
ultrahyperbolic.

� parabolic, if n0 = 1 and n+ = n− 1, or n0 = 1 and n− = n− 1, so all
of the eigenvalues have the same sign except one, which is zero.

Sometimes the equation which has at least one zero eigenvalue is called
parabolic in the broader sense.



CHAPTER 2. SECOND ORDER LINEAR PDES 21

We say that an equation is elliptic/hyperbolic/parabolic, if it is ellip-
tic/hyperbolic/parabolic at all of the points x0 ∈ Ω.

Remark 2.2. Note that the above names correspond to the definitions of
hyperbolic, parabolic and elliptic curves in geometry (the distribution of the
signs of the eigenvalues are the same in the corresponding matrices). For
example, a second order curve given in the form xTMx = 0 is called elliptic,
if the eigenvalues of the matrix M have the same sign.

The definition of an elliptic equation can be reformulated in the following
way: if all of the eigenvalues are positive, then the matrix is positive definite,
which means that

⟨A(x0)p, p⟩ ≥ min
j=1,...n

(λj(x0)) |p|2,

for all p ∈ Rn vectors, in which λj(x0) denotes the eigenvalue of A(x0). (Here
⟨ . , . ⟩ is the usual scalar product defined for vectors.) However, the right-
hand side can be an arbitrary small positive number: we are introducing a
more strict definition which requires a positive lower bound.

Definition 2.4. We say that our equation is uniformly elliptic at some
set Ω ⊂ Rn, if there exists c0 > 0 and c1 > 0 constants for which

c1|p|2 ≥ ⟨A(x0)p, p⟩ ≥ c0|p|2

for all p ∈ Rn and for all x0 ∈ Ω.

Corollary 2.2. If an equation is uniformly elliptic inside a set Ω, then it is
also elliptic inside that set.

Proof. If an equation is uniformly elliptic inside set Ω, then
⟨A(x0)p, p⟩ ≥ c0|p|2 > 0 for every x0 ∈ Ω, which means that A is positive definite by
definition, so all of its eigenvalues are positive, meaning that it is elliptic at every point
x0 ∈ Ω.

Remark 2.3. It is not hard to see (using spectral theorem) that the uniform
elliptic property means that the eigenvalues of the matrix are positive, but
are bounded from below (and also from above) by a positive constant. If an
operator is elliptic but not uniformly, it means that its eigenvalues might get
arbitrary close to zero (see the lines before the previous definition).

Now we consider some equations, and categorize them based on the pre-
vious definitions.

Examples:

1. n-dimensional Laplace equation: It has the form

∆u =
n∑

j=1

∂2ju = 0.
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Then, the matrix which can be constructed from its second order terms
(which means all of the terms in this case) has the form of an identity
matrix:

A =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1


Its eigenvalues are positive (+1), so the equation is elliptic (since
n+ = n).

Also, since

⟨Ap, p⟩ = ⟨p, p⟩ =
n∑

j=1

p2j ≤ |p|2

and
⟨Ap, p⟩ ≥ min

j=1,...n
(λj(x0)) |p|2 = |p|2,

then it is also uniformly elliptic (with c0 = c1 = 1).

2. n-dimensional wave equation: It has the form

∂2t u−∆u = ∂2t u−
n∑

j=1

∂2ju = 0.

Then the matrix which can be constructed from its second order terms
(which means all of the terms in this case) has the following form:

A =


1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1

 ,

so all of its eigenvalues are +1 except one, which is −1: this means that
the equation is hyperbolic (n+ = 1, n− = n− 1).

3. n-dimensional heat equation: It has the form

∂tu−∆u = ∂tu−
n∑

j=1

∂2ju = 0.

Since it does not contain any second order derivatives with respect to
variable t, the coefficient corresponding to that term is zero: thus, the
matrix we get is

A =


0 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1

 ,

which has one zero eigenvalue, all of the others are −1, so it is parabolic
(n0 = 1, n− = n− 1).
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2.3 Canonical form (skipped in 2024)

The following subsections are skipped in 2024.
In this section we introduce a transformation which can be used to simplify our second

order equations into a form which is easier to handle.

2.3.1 Semilinear equation with constant coefficients

Let us suppose that our equation is in the form

n∑
j,k=1

aj,k ∂j∂ku = g ◦ (id, u, ∂1u, . . . , ∂nu) , (2.4)

which is defined on the set Ω ⊂ Rn, aj,k ∈ R are constants, and
Assumption 1 holds, namely aj,k = ak,j for all j, k indexes.

Let λ1, . . . λn be the eigenvalues of A (which is constructed as in the previous section),
and the corresponding eigenvectors are s1, . . . sn.

Since A is a symmetric matrix, it has n (orthonormal) eigenvectors, so we can use the
following theorem from linear algebra (the proof is not presented here, but can be found in
several Linear Algebra textbooks).

Theorem 2.3 (Theorem of Sturm2). Let A be an n × n real matrix with n-many linearly
independent eigenvectors. Then if we define a matrix B in a way that B := (s1, . . . , sn) (so
its columns are the eigenvectors of A) which is an ortogonal matrix (BT = B−1), then

BTAB =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

 .

Let us define the following matrix:

D :=


d11 0 0 · · · 0
0 d22 0 · · · 0
0 0 d33 · · · 0
...

...
...

. . .
...

0 0 0 · · · dnn

 ,

in which

djj =


1√
|λj|

, if λj ̸= 0

1, if λj = 0.

Then, if we define a new matrix C := BD, the following holds:

CTAC = (BD)TA (BD) = DTBTA BD =

now we use the fact that D is a diagonal matrix, so DT = D:

= D(BTAB)D =

by Theorem 2.3,

= D


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

D

2This is usually called ”the eigendecomposition of matrices”, or ”főtengelytétel” in Hungarian.
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Now let us calculate the (diagonal) elements of this matrix, which are in the form

1√
|λj|

λj
1√
|λj|

=
λj√
λ2j

=
λj
|λj|

= sgn(λj).

Here sgn is the signum (or sign) function, defined as:

sgn(x) :=


1, if x > 0,

0, if x = 0,

−1, if x < 0.

Finally, the thing we get is:

CTAC =


sgn(λ1) 0 0 · · · 0

0 sgn(λ2) 0 · · · 0
0 0 sgn(λ3) · · · 0
...

...
...

. . .
...

0 0 0 · · · sgn(λn)

 .

So our main goal is to somehow introduce the matrix CTAC into our equation, since it has
a very nice form (it is a diagonal matrix, and only have ±1 and 0 elements in its diagonal).

The main idea here is to define a new variable y := CTx, and a new unknown function
v(y) := u(x) (also, v(y) = v(CTx)). This means that

yp =
n∑
l=1

Clpxl for p = 1, . . . n, (2.5)

(since the elements in a row of CT are the elements in a column in C).
Then we can rewrite the derivatives of u using this new function v:

∂ju(x) =
n∑
p=1

∂pv(y)∂jyp =
n∑
p=1

∂pv(y)Cjp. (2.6)

At the first step, we used the chain rule of multivariable functions, namely

df(x(t), y(t))

dt
=
∂f

∂x

dx(t)

dt
+
∂f

∂y

dy(t)

dt
,

and then equation (2.5).
If we apply another partial derivative to equation (2.6), we get the following:

∂j∂ku(x) =
n∑

p,q=1

∂p∂qv(y)CjpCkq, (j = 1, . . . n). (2.7)

Now we can substitute (2.7) into the left-hand side of our original equation (2.4):

n∑
j,k=1

aj,k ∂j∂ku =
n∑

j,k=1

aj,k

n∑
p,q=1

∂p∂qv(y)CjpCkq =

=
n∑

p,q=1

∂p∂qv(y)
n∑

j,k=1

aj,k CjpCkq =
n∑

p,q=1

∂p∂qv(y)
n∑

j,k=1

Cjp aj,k Ckq

Now we have to realize that the term Cjp aj,k Ckq is actually the qth element in the pth row
in the matrix CTAC, which was proved to be sgn(λp) if p = q and is zero otherwise.

To sum it up, we have transformed (2.4) using the new function v into the following
equation (in domain (CT )−1(Ω)):

n∑
p=1

(sgn(λp)) ∂
2
pv = G ◦ (id, v, ∂1v, . . . , ∂nv) (2.8)

Then equation (2.8) is called the canonical form of equation (2.4). It is easy to see that
this form has only ±1 coefficients on its left side, so it is easier to handle.
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Depending on the type of our equation, the transformation described before can result
in three different canonical forms:

Corollary 2.4. The canonical form of equation (2.4) can have the three following forms:

1. If the equation is elliptic (here we mean that λi > 0 for all i: although the equations
with all negative eigenvalues are also called elliptic, we can multiply those with −1 and
then get this case), then the canonical form is:

n∑
p=1

∂2pv = G ◦ (id, v, ∂1v, . . . ∂nv) . (2.9)

Note that the left-hand side of (2.9) is the same as the left-hand side of the Poisson
equation.

2. If the equation is hyperbolic (here let us assume that λ1 > 0 and all of the other
eigenvalues are negative - in the other case we can multiply the equation with −1) the
canonical form is

∂21v −
n∑
p=2

∂2pv = G ◦ (id, v, ∂1v, . . . ∂nv) . (2.10)

Note that the left-hand side of (2.10) is the same as the left-hand side of the wave
equation with c = 1 (here the first variable is time).

3. If the equation is parabolic (here let us assume that λ1 = 0 and all of the other
eigenvalues are positive - in the other case we can multiply the equation with −1) the
canonical form is

n∑
p=2

∂2pv = G ◦ (id, v, ∂1v, . . . ∂nv) . (2.11)

Note that the left-hand side of (2.11) is the same as the left-hand side of the stationary
(when ∂tv = 0) heat equation.

2.3.2 Linear equation with constant coefficients

Let us assume that our equation is in the form

n∑
j,k=1

aj,k ∂j∂ku+
∑
j=1

bj∂ju+ cu = f, (2.12)

in which aj,k, bj, c ∈ R are constants and f : Ω → R is a given function (source term).
Similarly as in the semilinear case discussed in the previous section, the high order (i.e.

second order) terms can be transformed with the choice v(y) = u(x), and then we get

n∑
j,k=1

(sgn(λp)) ∂
2
pv +

∑
p=1

βp∂pv + γu = F. (2.13)

Note that the remaining terms we have to deal with are the constants βp and γ: our goal
here is to make most of them disappear.

The key idea here is the introduction of the function

V (y) := v(y) exp

(
n∑
l=1

αlyl

)
, (2.14)

in which the parameters αl will be chosen in a way that most of the terms in (2.13) will
disappear. Note that we can easily get v(y) from (2.14) if we multiply both sides by
exp (−

∑n
l=1 αlyl).

By using the chain rule on the first order derivative in (2.13), we get

∂pv(y) = [∂pV (y)− αpV (y)] exp

(
−

n∑
l=1

αlyl

)
.
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The second order terms can be calculated similarly:

∂2pv(y) =
[
∂2pV (y)− 2 αp ∂pV (y) + α2

p V (y)
]
exp

(
−

n∑
l=1

αlyl

)
.

If we substitute these into (2.13), we get

n∑
j,k=1

(sgnλp) ∂
2
pv +

∑
p=1

[βp − 2αp(sgnλp)] ∂pV (y)+

+

[
γ −

n∑
p=1

βpαp +
n∑
p=1

(sgnλp)α
2
p

]
V (y) = F exp

(
n∑
l=1

αlyl

)
.

(2.15)

Now let us use the following choices for αp:

� If λp ̸= 0, then let αp =
βp

2 sgn(λp)
: in this way the terms ∂pV disappear when λp ̸= 0.

� If λp = 0 but βp ̸= 0, then the term V can be made disappear.

Then, by appropriate choice of the parameters αp, equation (2.12) can be transformed to
the following form when all the eigenvalues are non-zero:

n∑
j,k=1

(sgn(λp)) ∂
2
pV + dV = G, (2.16)

(here d is a new constant, and G is a new, given function). When there are some eigenvalues
which are zero, the equation has the form

n∑
j,k=1

(sgnλp) ∂
2
pV +

∑
p, if λp=0

βp∂pV = G. (2.17)

We say that equations (2.16) and (2.17) are the canonical forms of (2.12).

So the process of choosing the parameters αp is as follows:

1. First let us calculate those αp values which correspond to non-zero eigenvalues. Then
the coefficient of the ∂pV is zero.

2. Then determine the remaining ones in a way that the coefficient of V is zero.

Depending on the type of our equation, the transformation described before can result
in three different canonical forms:

Corollary 2.5. The canonical form of equation (2.12) can have the three following forms:

1. If the equation is elliptic (here we mean that λi > 0 for all i: although the equations
with all negative eigenvalues are also called elliptic, we can multiply those by −1 and
then get this case), then the canonical form is:

n∑
p=1

∂2pV + dV = G, (2.18)

or, in short form:
∆V + dV = G. (2.19)

If G = 0, then this equation is called the Helmholtz equation.

2. If the equation is hyperbolic (here let us assume that λ1 > 0 and all of the other
eigenvalues are negative - in the other case we can multiply the equation with −1) the
canonical form is

∂21V −
n∑
p=2

∂2pV + dV = G, (2.20)

or, in short form,
∂21V −∆V + dV = G, (2.21)

(Note that the Laplace operator is not taken in the first variable.)
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3. If the equation is parabolic (here let us assume that λ1 = 0 and all of the other
eigenvalues are negative - in the other case we can multiply the equation with −1) the
canonical form is

β1∂1V −
n∑
p=2

∂2pV = G. (2.22)

If β1 = 0, then we get an elliptic equation. When β1 ̸= 0, then we can transform the
equation again, and in the end we get the following form:

∂1Ṽ −
n∑
p=2

∂2p Ṽ = G̃. (2.23)

or, in short form,
∂1Ṽ −∆Ṽ = G̃. (2.24)

Note that equation (2.24) is the same as the heat equation, meaning that we could
transform a general parabolic equation to the heat equation, so it is enough to examine
the latter one, since the general properties of the equation do not change during the
transformation.

In the next chapter we define a useful set of functions, which will be used
extensively in the following chapters involving distributions.



Chapter 3

The set C∞
0 (Ω)

In this chapter we define a useful set of functions, which will be widely used
in Chapter 4, and then prove some useful results about their properties.

3.1 Introduction

First we refresh the notation of multiindex, and then define the set of con-
tinuously differentiable functions.

3.1.1 Notation

As it was defined in Section 1.1.1, a multiindex is a vector in the form (α1, α2, . . . αN) which
collects all the orders of different partial derivatives, namely

∂αf := ∂α1
1 ∂α2

2 . . . ∂αN
n f,

in which f : RN → R is a (sufficiently smooth) function. We have also defined the ”absolute
value” of multiindices in the following way:

|α| = α1 + · · ·+ αN .

We can also define the sum of multiindices: if α = (α1, α2, . . . αN) and β = (β1, . . . , βN),
then

α + β := (α1 + β1, . . . , αN + βN).

Also, an ordering of multiindices can also be defined: we say that α ≥ β, if αj ≥ βj
for every j index. Then, if α ≥ β, then we can also compute the difference of two such
multiindices:

α− β = (α1 − β1, . . . , αN − βN).

Then, the last definition in this section is the factorial of multiindices:

α! = (α1!, α2!, . . . , αN !)

3.1.2 The space of smooth functions

In this section we suppose that Ω ⊂ Rn (n ≥ 1) is an arbitrary, non-empty
open set.

Definition 3.1. Let us denote by Ck(Ω) the set of k-times (0 ≤ k ≤ ∞)
continuously differentiable, real-valued functions defined on Ω.

It is a well known fact that the set Ck(Ω) is a vector space with the usual
function addition and product taken with a scalar.

28
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If k = ∞, then we can define the set C∞(Ω) which consist of all of those
Ω → R functions which can be continuously differentiated any number of
times. In other words,

C∞(Ω) =
∞⋂
k=0

Ck(Ω).

When k = 0, then we get the set of continuous functions C(Ω) (and we will
use this notation instead of C0(Ω)).

We can also define the previous sets on closed domains:

Definition 3.2. Let C(Ω) be the set of continuous Ω → R functions.
Then Ck(Ω) is the vector space of those f : Ω → R functions, for which:

� f is in Ck(Ω) (so they are k times continuously differentiable in the
interior of the set), and

� for every |α| ≤ k multiindex ∂αf ∈ C(Ω) in the sense that there exists
a continuous extension1 of this function onto the set Ω.

The next one is a useful tool used in the calculation of partial derivatives.

Theorem 3.1 (Leibniz rule). Let f, g ∈ Ck(Ω) functions and α multiindex for which |α| ≤ k.
Then

∂α(fg) =
∑
β≤α

(
α

β

)(
∂βf

) (
∂α−βg

)
,

in which
(
α
β

)
=

α!

β!(α− β)!
(the division and multiplication is meant to be computed element-

wise).

3.2 The set of smooth functions with compact support

Before our main definition, we have to define what a support of a function is:

Definition 3.3. The support2 of an f ∈ C(Ω) function is defined as:

supp(f) := Ω \ {x ∈ Ω : ∃ Ux ⊂ Ω neighborhood of x, in which f = 0 on Ux} .

So the support is the collection of those points which do not have a neigh-
borhood around them in which the function is zero. This usually means that
the support is those points at which the function is not zero, and the closure
of these sets.

(Note that the support of measurable function can be defined too, in this
case we need ”f = 0 almost everywhere on Ux” in the definition.)

Definition 3.4. For 0 ≤ k ≤ ∞, let Ck
0 (Ω) be the vector space of those

f ∈ Ck(Ω) functions, for which supp(f) is compact in Rn.

In distribution theory, the case k = ∞ is widely used, as we will see in
Chapter 4. A natural question is whether such f ∈ C∞

0 (Ω) functions exist or
not. The next proposition answers this question, and also shows an important
set of such functions.

1Here continuous extension means that the values of the function at the boundary points are defined as
the limit of the function.

2”Tartó” in Hungarian.
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Proposition 3.2. Let a ∈ Rn, r > 0 and we define the function ηa,r : Rn → R
as:

ηa,r(x) :=


exp

(
−1

r2 − |x− a|2

)
, if |x− a| < r,

0, if |x− a| ≥ r.

Then ηa,r ∈ C∞
0 (Rn).

Proof. (Only main ideas)
Let us define the function

h(t) :=

exp

(
−1

t

)
, if t ≥ 0

0, if t < 0

and g(x) := r2 − |x − a|2 (x ∈ Rn, and a and r are parameters). Then
ηa,r = h ◦ g.

It can be shown that g ∈ C∞(Rn), and also h ∈ C∞(Rn), which means
that ηa,r = h ◦ g ∈ C∞(Rn).

Also, supp(ηa,r) = B(a, r) (the r-radius open ball with center at a), mean-
ing that ηa,r ∈ C∞

0 (Rn).

The plot of function ηa,r can be seen on Figure 3.1.

Figure 3.1: Function ηa,r. The maximum of the function is at point x = a, and it is nonzero
on the interval (a− r, a+ r).

Remark 3.1. An interesting property of the function defined above is that it
is non-negative.

Now we define a useful set of functions which will be extensively used in
the theory of distributions.
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Definition 3.5. Let us suppose that for a set of functions fε (indexed by the
parameter ε ∈ I ⊂ R+), the following conditions hold:

1. fε ∈ C∞
0 (Rn) for every value of ε,

2. fε ≥ 0 for every value of ε,

3. supp(fε) = B(0, ε) for every value of ε,

4.

∫
Rn

fε = 1 for every value of ε.

Then this set of functions is called a set of mollifiers3.

Remark 3.2. The name ”mollifiers” comes from the mathematician Kurt Otto
Friedrichs (1901-1982), who named them in 1944 after his colleague Donald
Alexander Flanders (1900-1958), who had the nickname Moll after the novel
Moll Flanders written by Daniel Defoe. Also, the verb ”mollify” means to
pacify, relieve, temper or lessen, which is also usually the effect of these
functions when some other function is multiplied by them. However, such
functions were also used before by Sobolev in his 1938 paper, so it was not
Friedrichs who first defined them, but the first who named them.

Remark 3.3. Let us consider the functions ηa,r defined in Proposition 3.2 with
a = 0 and r = 1. If we use the transformation

η ε(x) := η 0,1

(x
ε

) C
εn

in which C is a constant chosen in a way that

∫
Rn

η ε = 1, then η ε is a set of

mollifiers.

Remark 3.4. Sometimes the elements in a set of mollifiers are called the
approximations of the identity. The reason for this name is the following.

Let us examine the behavior of the mollifiers when ε→ 0:

lim
ε→0

η ε(x) =

{
0, if x ̸= 0,

∞, if x = 0.

However, we know that the integral of all of the mollifiers is one, meaning
that the ”limit” of the mollifiers is a weird mathematical object: it is zero
everywhere except at zero where it is infinity, and it has an integral of one. If
the reader is familiar with the physical concept of the point mass, this would
the ”density function” of such object. Usually this object is called the Dirac
delta, which is of course not a function in the classical sense, but in Chapter
4 we will see that it can be defined in a way that it can be well-defined in
the mathematical sense too. It will be discussed it Section 4.6 that in the
algebraic structure of the set of distributions with the convolution operation,
the Dirac delta mentioned above is an identity element, so since mollifiers
”approximate” this mathematical object, they are the approximations of the
identity in this sense.

Also, the same object can be thought of as the ”density function” of a
discrete distribution, hence the name ”distribution”, which will be given to
them in the next chapter.

3”Egységapproximációt generáló függvények” in Hungarian.
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Finally, we mention a useful result from functional analysis.

Theorem 3.3. If 1 ≤ p <∞, then C(Ω) is a dense subset of Lp(Ω)

Remark 3.5. Note that the theorem above is not true when p = ∞, i.e. for L∞ spaces (the
set of bounded functions): one can easily construct a function which belongs to L∞, e.g.

f(x) =

{
0, if x < 0,

1, if x ≥ 0.

(f ∈ L∞ since it is bounded), but we cannot approximate f with continuous functions.

In the next sections we present three different applications of mollifiers,
which will be useful in the next chapter.

3.3 Applications of mollifiers I: C∞
0 is dense in Lp

The aim of this section is to prove the following useful result.

Theorem 3.4 (Approximation theorem). Let f ∈ L1(Ω), and ε > 0 be an
arbitrary value.

Let fε : Ω → R be the following function:

fε(x) :=

∫
Ω

f(y)ηε(x− y)dy (x ∈ Ω),

in which ηε are a set of mollifiers. (This is actually the convolution f ∗ ηε,
see Section 4.6.1.)

Then, the following statements are true:

a) For every value of ε > 0, fε is well-defined (the integral exists),
fε ∈ C∞(Ω), and if supp(f) ⊂ Ω is a compact set, then fε ∈ C∞

0 (Ω)
for small values of ε.

b) If ε→ 0+, then fε → f almost everywhere on Ω.

c) If f ∈ C(Ω), then fε → f uniformly on all compact subsets of Ω.

d) If f ∈ Lp
loc(Ω) (1 ≤ p < ∞), then for all K ⊂ Ω compact sets fε → f if

ε→ 0+ in the norm of Lp(K).

Proof. We prove the four statements separately.
a) Since |f(y)ηε(x− y)| ≤ const|f(y)| (since ηε is bounded) and f ∈ L1(Ω), the integral

in the definition of fε exists.
Since the function y → ηε(x − y) is in C∞(Ω) and f ∈ L1(Ω), then from the theory of

parametric integrals we get that fε ∈ C∞.
For the last part (fε has compact support), assume that supp(f) = K is a compact set

in Ω, and let ε < dist(K, ∂Ω) be an arbitrary value, and

Kε := {x ∈ Rn : dist(x,K) ≤ ε} .

(So Kε is a neighborhood around K, with a boundary not further from the boundary of K
than ε.)

Our goal now is to show that if x ∈ Ω \Kε, then y → f(y)ηε(x− y) = 0. If we can prove
this, then we are finished with this part, since then fε = 0 at those points, meaning that
fε ∈ C∞

0 (Ω).
We know that f(y)ηε(x − y) ̸= 0 only if y ∈ supp(f) = K and y ∈ supp(z → ε(x − z))

holds at the same time - the last one means that y ∈ B(x, ε). However, if x ∈ Ω \Kε, then
K ∩ B(x, ε) = ∅ (since x is outside of Kε, meaning that its distance is at least ε from K),
but that means that f(y)ηε(x− y) = 0, so the statement is proved.
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b) In this part we use the theorem of Lebesgue points:

Theorem 3.5 (Theorem of Lebesgue points). Let f ∈ L1
loc(Rn), then for almost every

x ∈ Rn, we get that

lim
r→0+

1

vol(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dy = 0.

(Here the term vol(B(x, r)) is sometimes replaced by r2.)

(The proof is not presented here.)
Let x ∈ Ω be a fixed point. Then since

∫
Rn ηε = 1, we get that∫

Rn

ηε(x− y)dy = 1

and by multiplying both sides by f(x),

f(x) = f(x)

∫
Rn

ηε(x− y)dy =

∫
Rn

f(x)ηε(x− y)dy =

∫
B(x,ε)

f(x)ηε(x− y)dy

in the last step we used that the integral is zero outside of the support of the function.
Then if we consider the difference between f and fε:

|fε(x)− f(x)| =
∣∣∣∣∫
B(x,ε)

(f(y)− f(x)) ηε(x− y)dy

∣∣∣∣ ≤
≤ C

εn

∫
B(x,ε)

|f(y)− f(x)| η 0,1

(
x− y

ε

)
dy ≤

in which we used the definition of ηε (see Remark 3.3.) Now we use the fact that the function
η 0,1 is bounded from above:

≤ C̃

εn

∫
B(x,ε)

|f(y)− f(x)|dy → 0, as ε→ 0,

in which we used the statement of the theorem of Lebesgue points. Thus, fε converges to f
almost everywhere as ε→ 0.

c) Assume that f ∈ C(Ω) and K ⊂ U is a compact set. Then by the proof of part b):

|fε(x)− f(x)| =
∣∣∣∣∫
B(x,ε)

(f(y)− f(x)) ηε(x− y)dy

∣∣∣∣ ≤
≤
∫
B(x,ε)

|f(y)− f(x)| ηε(x− y)dy

Since f ∈ C(Ω), then by the theorem of Heine, f is uniformly continuous on K. This means
that for all ν > 0 values there exists a δ > 0 value such that if |x − y| < δ (for x, y ∈ K),
then |f(x)− f(y)| < ν.

So if we fix ν, then with the choice of δ = 2ε,

|fε(x)− f(x)| =
∫
B(x,ε)

|f(y)− f(x)| ηε(x− y)dy ≤

≤ ν

∫
B(x,ε)

ηε(x− y)dy = ν,

where we used that ηε is a mollifier. By definition, this means that fε converges uniformly
to f .

d) We prove this part in six steps.

1. Step 1: Let us assume that f ∈ Lploc(Ω) (1 ≤ p < ∞), and let V ⊂ Ω be an arbitrary
bounded open set for which V ⊂ Ω. Now we state the following theorem coming from
set theory.



CHAPTER 3. THE SET C∞
0 (Ω) 34

Proposition 3.6. Let U be open, and V be an open and bounded set in a way that
V ⊂ U . Then there is an open and bounded set W for which

V ⊂ W ⊂ W ⊂ U.

Proof. (Proposition 3.6)

Let d := dist(V , ∂U) (here ∂U is the boundary of U). Now d > 0 since V is closed,
and ∂U is bounded since it is closed and bounded.

Let us consider the set W := V d/2, which is the open neighborhood of V with a
boundary which is at the distance d/2 from the boundary of V . Then the setW fulfills
the statement of the proposition, since W is bounded (since V is bounded), it is open,
and V ⊂ W . Also,

W =
{
x ∈ R : dist(x, V ) ≤ dist(V , U)/2

}
⊂ U,

which proves the statement.

(Continuation of the proof of Theorem 3.4.)

Now we show it in Steps 2 and 3 that

∥fε∥Lp(V ) ≤ ∥f∥Lp(W ). (3.1)

2. Step 2: This is the proof of the inequality (3.1) for p = 1.

∥fε∥L1(V ) =

∣∣∣∣∫
V

∫
Ω

f(y)ηε(x− y)dydx

∣∣∣∣ ≤
By the theorem of Fubini:

≤
∫
V

∫
Ω

|f(y)|ηε(x− y)dydx =

∫
V

|f(y)|
(∫

Ω

ηε(x− y)dx

)
dy =

=

∫
V

|f(y)|dy = ∥f∥L1(V ) ≤ ∥f∥L1(W ).

3. Step 3: This is the proof of the inequality (3.1) for p > 1.

|fε| =
∣∣∣∣∫

Ω

f(y)ηε(x− y)dy

∣∣∣∣ ≤
By the theorem of Fubini:

≤
∫
Ω

|f(y)|ηε(x− y)dy =

∫
Ω

|f(y)|η1/pε (x− y)η1/qε (x− y)dy ≤

By the inequality of Hölder:

≤
(∫

Ω

|f(y)|pηε(x− y)dy

)1/p(∫
Ω

ηε(x− y)dy

)1/q

.

in which 1/p+ 1/q = 1.

Then by definition:

∥fε∥pLp(V ) =

∫
V

|fε(x)|pdx ≤
∫
V

(∫
Ω

|f(y)|pηε(x− y)dy

)
dx ≤

in which we used the previous bound and the fact that
∫
Ω
ηε(x−y)dy = 1. By Fubini’s

theorem:

=

∫
V

|f(y)|p
∫
Ω

ηε(x− y)dydx =

=

∫
V

|f(y)|pdy ≤
∫
W

|f(y)|pdy,

from which we get (3.1).
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4. Step 4: By Theorem 3.3 we know that C(Ω) is dense in Lp(Ω), meaning that for all
values of µ > 0 there is such a function g ∈ C(W ) for which

∥f − g∥Lp(W ) < ν. (3.2)

5. Step 5: Let us define functions gε similarly as fε. From part b) we know that gε → g
uniformly on V , and we have also proved that ∥gε∥Lp(V ) ≤ ∥g∥Lp(W ), so functions gε
can be bounded form above, meaning that by the theorem of Lebesgue gε → g holds
also in the norm of Lp(W ).

6. Step 6: Now we prove the statement of part d).

∥fε − f∥Lp(V ) = ∥(fε − gε) + (gε − g) + (g − f)∥Lp(V ) ≤

≤ ∥fε − gε∥Lp(V ) + ∥gε − g∥Lp(V ) + ∥g − f∥Lp(V ) (3.3)

Now we bound these terms separately.

� First term: By (3.1):

∥fε − gε∥Lp(V ) = ∥(f − g)ε∥Lp(V ) ≤ ∥f − g∥Lp(W ) ≤ ν

� Second term: Since gε → g holds uniformly,

∥gε − g∥Lp(V ) ≤ ν

when ε is small enough.

� Third term: By (3.2) and V ⊂ W ,

∥g − f∥Lp(V ) ≤ ∥g − f∥Lp(W ) ≤ ν.

So this means that the terms in (3.3) are smaller than 3ν when ε is small enough. Since
ν can be arbitrary small, then fε → f in the norm of Lp(V ), but it is the same as the
norm of Lp(V ), in which V is an arbitrary compact set, so our statement is proved.

The following theorem can be proved using the previous result:

Theorem 3.7. If 1 ≤ p <∞, then C∞
0 (Ω) is dense in Lp(Ω)

Proof. Let f ∈ Lp(Ω) be a given function. We prove the statement in four parts.

1. Step 1: Let us consider the sets

Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ} ∩B(0, 1/δ),

which are non-empty for a sufficiently small δ value (by the proof of Theorem 3.4).
Let χδ be the characteristic function of Ωδ, meaning that χδ(x) = 1 if x ∈ Ωδ and 0
otherwise.

2. Step 2: fχδ → f a.e. on the set Ω as δ → 0+. Also, ∥fχδ∥Lp(Ω) ≤ ∥f∥Lp(Ω), so by the
theorem of Lebesgue fχδ → f also in the norm of Lp(Ω). Then we can choose a small
number δ > 0 for which ∥fχδ − f∥Lp(Ω) < ν holds for some given ν > 0 value.

3. Step 3: Since g := fχδ is a function with compact support (its support is part of the
ball B(0, 1/δ)), so by Theorem 3.4 for functions gε we have gε ∈ C∞

0 (Ω) and gε → g
as ε→ 0+ in the norm of Lp(Ω).

4. Step 4: For a sufficiently small ε value we have ∥gε − g∥Lp(Ω) < ν, and then

∥f − gε∥Lp(Ω) ≤ ∥f − g∥Lp(Ω) + ∥g − gε∥Lp(Ω) < 2ν,

in which ν > 0 was arbitrary, meaning that f can be approximated by functions from
C∞

0 (Ω), which proves our theorem.
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3.4 Application of mollifiers II: construction of some

special functions

In this section we prove a result which will be used in the proof of the theorem
of Section 3.5.

Theorem 3.8. Let K ⊂ Ω be compact.
Then, there exists a φ ∈ C∞

0 (Ω) function such that 0 ≤ φ ≤ 1, and φ = 1
in a neighborhood of K.

Proof. Let d := dist(K,Rn \ Ω). This value is positive (not zero), since
K ⊂ Ω = Int(Ω).

Let us fix a value 0 < ε <
d

3
and the set K3ε := {x ∈ Ω : dist(x,K) ≤ 3ε}

(so a neighborhood of K which has a boundary at an 3ε distance from K).
Then, K3ε ⊂ Ω (by the definition of ε), and let us define the function

f(x) :=

{
1, if x ∈ K2ε,

0, if x ∈ Ω \K2ε.

Now we show that the function fε (the modification of the function f
defined above in the way described in the Approximation Theorem (Theorem
3.4)) is a proper choice for φ (the function of the statement).

By the Approximation Theorem, fε ∈ C∞
0 (Ω). Moreover, if x ∈ Kε, then

B(x, ε) ⊂ K2ε, meaning that

fε(x) =

∫
B(x,ε)

f(y)ηε(x− y)dy =

Now we use the definition of function f :

=

∫
B(x,ε)

1 · ηε(x− y)dy = 1,

by the definition of ηε. This means that fε = 1 on Kε (a neighborhood of K).
Moreover, since 0 ≤ f ≤ 1 and ηε ≥ 0,

0 ≤ fε(x) ≤
∫
Rn

ηε(x− y)dy = 1.

Then, φ := fε is a proper choice.

3.5 Smooth partition of unity

In this section we state a useful theorem which will be used later in one of
our proofs.

Theorem 3.9 (Smooth partition of unity4). Let K ⊂ Rn be a compact set,
and Ωj ⊂ Rn open sets in a way that K ⊂

⋃m
j=1Ωj (such sets exist since K

is compact).
Then there exists a set of φj ∈ C∞

0 (Ωj) (j = 1, . . . , n) functions, for which∑m
j=1 φj = 1 in a neighborhood of K.
4”Egységosztás tétele” in Hungarian.
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Proof. (of Theorem 3.9) The proof consists of three parts: first, we construct
a cover ofK in which all of the sets are bounded. Then we apply Theorem 3.8
on the closure of these sets which results in the existence of a set of functions
ψj, and then construct the functions φj from the functions ψj.

1. Step 1: Our goal in this part is to prove the following lemma:

Lemma 3.10. There exists a collection of bounded open sets Gj in a
way that Gj ⊂ Ωj and K ⊂

⋃m
j=1Gj.

Proof. (of Lemma 3.10)

For the proof, we are using the following result of set theory.

Proposition 3.11. Let U be open, and V be an open and bounded set in
a way that V ⊂ U . Then there is an open and bounded set W for which

V ⊂ W ⊂ W ⊂ U.

(The proof of this result is not presented here, but can be found in the
proof of part d) of Theorem 3.4. It is not part of the exam materials.)

Then, if we take K \
⋃m

j=2Ωj and Ω1, then we can apply Proposition
3.11 with U = Ω1 and V = K \

⋃m
j=2Ωj, which means that there exists

a set G1, for which

K \
m⋃
j=2

Ωj ⊂ G1 ⊂ G1 ⊂ Ω1.

In the next step, let us make the choice U = Ω2 and

V = K \
(⋃m

j=3Ωj ∪G1

)
. Then Proposition 3.11 can applied again

(since V is bounded), meaning that there exists a bounded set G2, for
which

K \

(
m⋃
j=3

Ωj ∪G1

)
⊂ G2 ⊂ G2 ⊂ Ω2.

Then by induction we get a list of sets G1, . . . Gm, and these fulfill the
statement of Lemma 3.10, since Gj ⊂ Ωj, and ∄ x ∈ K for which
x /∈ Gj for some j, since the last step in the induction is

K \

(
m−1⋃
j=1

Gj

)
⊂ Gm ⊂ Gm ⊂ Ωm,

meaning that if x ∈ K but x /∈ Gm, then

x ∈ (K \Gm) ⊂ K \

K \

(
m−1⋃
j=1

Gj

) = K ∩

(
m−1⋃
j=1

Gj

)

Then this means that x ∈
(⋃m−1

j=1 Gj

)
, so there is an index j for which

x ∈ Gj.

So we have proved Lemma 3.10.
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2. Step 2: We apply Theorem 3.8 to the sets Gj ⊂ Ωj. This can be done,
since the sets Gj are compact: the reason for this is that since we are in
Rn, the bounded and closed properties imply compactness.

Then, by Theorem 3.8 we know that there exist some functions
ψj ∈ C∞

0 (Ωj) in a way that ψj = 1 in a neighborhood of Gj.

3. Step 3: In this step we construct the functions φj.

Let us define the following functions:

φ1 : = ψ1,

φ2 : = ψ2(1− ψ1),

φ3 : = ψ3(1− ψ2)(1− ψ1),
...

φm : = ψm(1− ψ1)(1− ψ2) . . . (1− ψm−1).

Now we show that these fulfill the statement of the theorem.

It is easy to see that φj ∈ C∞
0 (Ωj) for every j index, and if we substitute

the identity
ψj = 1− (1− ψj)

into the definition of φj, we get:

φj = (1− (1− ψj))(1− ψ1)(1− ψ2) . . . (1− ψj−1),

φj = (1−ψ1)(1−ψ2) . . . (1−ψj−1)−(1−ψ1)(1−ψ2) . . . (1−ψj−1)(1−ψj).

Then, if we add all of the φj terms up, we get a telescoping sum in which
all of the terms vanish except for the first and the last one:

m∑
j=1

φj = ψ1 + (1− ψ1)− (1− ψ1)(1− ψ2)+

+ (1− ψ1)(1− ψ2)− · · · − (1− ψ1)(1− ψ2) . . . (1− ψm) =

= 1− (1− ψ1)(1− ψ2) . . . (1− ψm)

Now we have to show that the second term is zero on
∑m

j=1Gj (and then
since K ⊂

∑m
j=1Gj, then it is also zero on K).

Let us examine a point x0 ∈
⋃m

j=1Gj - then it means that x ∈ Gk for
some index k. By Step 2 of this proof we know that ψk(x0) = 1 on a
neighborhood of Gk, which means that

(1− ψ1)(1− ψ2) . . . (1− ψk) . . . (1− ψm) = 0,

and therefore
∑m

j=1 φj = 1.

Consequently, we have proved the statement of our theorem.

Remark 3.6. Theorem 3.9 is also true in a much more general context, namely
in topological spaces.



Chapter 4

Distribution theory

In this chapter we introduce a new mathematical notion called distribution.
Note that although these distributions and probability distributions are not
the same, they are not that far either: one can construct a distribution from a
probability one. Another important remark is that professor Miklós Horváth
has a course called ”Distribution theory and Green functions”1, in which the
topics of this chapter are discussed in much more detail (but the course is
usually given in Hungarian).

The physical problem which was the beginning of the theory of distribu-
tions was the problem of units of impulse. Paul Dirac (1902-1984) in 1927
proposed the following ”function”:

δ(x) =

{
∞, if x = 0,

0, if x ̸= 0.
(4.1)

and he also stated that for this function∫ ∞

−∞
δ(x)dx = 1

holds. One can think of such ”function” as the density of a point mass: it
has only density at the point at which it is concentrated (in this case this is
x = 0), and then the integral of the density function should give its mass,
which is one.

Of course, the mathematical object (4.1) is not a function in the classical
sense: the object ∞ is not a number, so the value of a function cannot be
that one - also, this is not integrable, so its integral cannot be 1. One can say
that then Dirac was talking nonsense - however, in applications that function
usually makes an appearance in the form∫ ∞

−∞
f(x)δ(x)dx = f(0) ∀f ∈ L1,

in which case the object δ(x) can be defined.
Another interesting statement Dirac made was that object δ(x) is the

derivative of the Heaviside function:

H(x) =

{
0, if x < 0,

1, if x ≥ 0,
(4.2)

which is, of course, not differentiable in the classical sense, although one can
argue that the function needs to move vertically at x = 0 to be continuous,

1”Disztribúcióelmélet és Green függvények” in Hungarian.
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so its derivative is infinity there (which is, of course, does not make sense in
the theory of real functions). His famous sentence regarding these problems
was ”Why should I refuse to eat a nice lunch, if I cannot understand what
happens in my stomach?”

Later, the ideas of Dirac were made into a strict mathematical theory
by Sergei Sobolev (1908-1989), and also Laurent Swartz (1915-2002), who
supposedly came up with the theory of distributions in one night in November
1944.

4.1 Definition of distributions

From now on Ω ⊂ Rn is an open set.

Definition 4.1. Consider the vector space C∞
0 (Ω) with the usual addition

and the product with scalar.

Let us say that the convergence φj
D(Ω)−−−→ φ holds, if

(i) there exists a K ⊂ Ω compact set such that

supp(φj) ⊂ K ∀j,

and

(ii) for every α multiindex,

∂αφj → ∂αφ uniformly on Ω.

Then the space C∞
0 (Ω) equipped with this convergence is called the space of

test functions2 (the reason for this name will be made clear later in Chapter
11), and is denoted by D(Ω).

Now we can define distributions.

Definition 4.2. A functional u : D(Ω) → R is called a distribution, if the
following hold:

(i) u is linear, and

(ii) u is sequentially continuous3, meaning that if φj
D(Ω)−−−→ φ, then

u(φj) → u(φ).

Remark 4.1. In general the continuity of an operator implies the sequential continuous prop-
erty, but the contrary is only true in a special class of spaces called sequential spaces.

The problem with Definition 4.2 is that condition (ii) is hard to check -
instead of considering the images of the convergent sequences (in the sense
defined above), we can use the following theorem.

2”Próbafüggvények tere” in Hungarian.
3”Sorozatfolytonos” in Hungarian.
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Theorem 4.1. Let u : D(Ω) → R be a linear functional. Then the following
two properties imply each other.

(i) u is sequentially continuous.

(ii) For every compact set K ⊂ Ω there exists corresponding constants
cK ∈ R+ and mK ∈ Z+ such that

|u(φ)| ≤ cK
∑

|α|≤mK

sup
K

|∂αφ|

for such φ ∈ D(Ω) functions for which supp(φ) ⊂ K.

Proof. We prove the two implications separately.

A) The case (ii) ⇒ (i).

Suppose that (ii) holds, and our goal is that (i) holds, meaning that if

φj
D(Ω)−−−→ φ, then u(φj) → u(φ). So let us assume that (ii) and φj

D(Ω)−−−→ φ

holds. φj
D(Ω)−−−→ φ means that there is a compact set K ⊂ Ω for which

supp(φj) ⊂ K for every index j and for every α multiindex ∂αφj → ∂αφ
uniformly on Ω.

Then, if we apply property (ii) on the set K defined above and for the
function φj − φ, we get:

|u(φj)− u(φ)| = |u(φj − φ)| ≤ cK
∑

|α|≤mK

sup
K

|∂αφj − ∂αφ| (4.3)

The first equality holds since u is linear. Then the right-hand side of
(4.3) tends to zero by the assumption, which means that the left-hand
side should also tend to zero, meaning that u(φj) → u(φ), which finishes
this part of the proof.

B) The case (i) ⇒ (ii).

Let us suppose that (i) holds, meaning that if φj
D(Ω)−−−→ φ, then

u(φj) → u(φ). Our goal is to prove that (ii) holds.

We prove this property in the indirect way. Let us assume proceeding
towards contradiction that there is such a compact set K ⊂ Ω such that
for every C ∈ R+, m ∈ Z+ constants there is such a function φ ∈ D(Ω)
for which supp(φ) ⊂ K, and

|u(φ)| > C
∑
|α|≤m

sup
K

|∂αφ|. (4.4)

Now we get a contradiction in four steps.

1. Step 1. Let us consider a sequence C = m = j ∈ Z+. Then if
we apply the previous assumption, we get a sequence of functions
φj ∈ D(Ω) for which supp(φj) ⊂ K, and inequality (4.4) holds for
all of them:

|u(φj)| > j
∑
|α|≤j

sup
K

|∂αφj|.
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2. Step 2. Let us define another sequence of functions:

ψj(x) =
φj(x)

j
∑

|α|≤j supK |∂αφj|
for every x ∈ Ω.

In Step 3 we show that u(ψj) → 0, but in Step 4 we get that
u(ψj) > 1, which will be a contradiction.

3. Step 3. It is easy to see that ψj ∈ D(K), and

sup
K

|∂αψj| ≤
∑
|β|≤j

sup
K

|∂βψj| =
∑
|β|≤j

supK |∂βφj|
j
∑

|α|≤j supK |∂αφj|
=

1

j
,

and if j → ∞, then ∂αψj → 0 uniformly on K. Since supp(ψj) ⊂ K,

then the previous argument means that ψj
D(Ω)−−−→ 0. Then, if property

(i) holds, it means that u(ψj) → 0.

4. Step 4. By the definition of ψj and assumption (4.4),

u(ψj) =
u(φj)

j
∑

|α|≤j supK |∂αφj|
> 1,

so it cannot tend to zero, which gives the contradiction.

Thus, the theorem is proved.

Since (ii) is easier to check than the definition of sequential continuity, we
usually use the former when we prove that a given functional is a distribution.

Remark 4.2. Sometimes there exists a universal constant m ∈ Z+ for which

|u(φ)| ≤ cK
∑
|α|≤m

sup
K

|∂αφ|

on any compact set. Then the smallest one of such m values is called the
order of the distribution.

Examples of distributions

A) Regular distributions: Sometimes these are called generalized func-
tions, and these are the ones which are usually used in the theory of
PDEs.

Definition 4.3. Let f ∈ L1
loc(Ω). Then the regular distribution cor-

responding to function f , denoted by Tf : D(Ω) → R is defined
as

Tf(φ) :=

∫
Ω

fφ, φ ∈ D(Ω). (4.5)

A natural question is whether the functional defined as (4.5) is a distri-
bution. It is easy to see that it is linear (since integration is linear), but
for the sequential continuous property we state the following proposition.

Proposition 4.2. The functional Tf : D(Ω) → R is sequentially contin-
uous.
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Proof. (The same as the solution of Exercise 2. (a) from Practice 4.)

We will use Theorem 4.1, meaning that we have to find an upper bound
for the value of the functional using the derivatives of φ. Let us suppose
that supp(φ) ⊂ K, and then:

|Tf(φ)| =
∣∣∣∣∫

Ω

fφ

∣∣∣∣ = ∣∣∣∣∫
K

fφ

∣∣∣∣ ≤ ∫
Ω

|fφ| ≤ max
K

|φ|
(∫

K

|f |
)

Since f ∈ L1
loc(Ω), we know that

(∫
K |f |

)
= cK <∞, so the theorem can

be applied.

A natural question is that if f ̸= g, then is it possible that Tf = Tg?
The next proposition answers this one.

Proposition 4.3. Let f, g ∈ L1
loc(Ω) and suppose that Tf = Tg, meaning

that Tf(φ) = Tg(φ) for every φ ∈ D(Ω). Then f = g almost everywhere.

Proof. Let h = f − g, so Th = Tf − Tg = 0. We prove the statement in 5 steps.

1. Step 1. Our goal in this proof is to prove that h = 0 almost everywhere on Ω.
However, in this step we show that it is enough to prove h = 0 on an arbitrary
compact set K ⊂ Ω.

It is known from set theory that since Ω is an open set, it is a union of countably
many compact sets, so if h = 0 on all of them, then h might be nonzero on a
union of countably many zero measure sets, but this union has also zero measure,
so if h = 0 almost everywhere on an arbitrary compact set K, then it is also zero
almost everywhere on Ω.

2. Step 2. Let us define d = dist(K, ∂Ω) (in which K is a fixed compact set). We
know that d > 0, since Ω is open. Then let us define

h̃(x) :=

{
h(x), if x ∈ Kd/2,

0, if x ∈ Ω \Kd/2,
(4.6)

in which Kd/2 :=

{
x ∈ Ω : dist(x,K) ≤ d

2

}
(as in the proof of Theorem 3.8).

Then h̃ ∈ L1(Ω) and it is zero outside of a compact set (which is Kd/2).

3. Step 3. If we use part (d) of the Approximation Theorem (Theorem 3.4), then
we can construct such h̃ε ∈ L1(Ω) functions, for which h̃ε → h̃ if ε → 0+ in L1

norm.

4. Step 4. We show in the next step that h̃ε(x) = 0 if x ∈ K and ε < d/2, since if
it holds, then when ε→ 0 we get h(x) = 0 for all x ∈ K.

5. Step 5. Now we prove the claim of Step 4.

Let x ∈ K. If ε < d/2, then B(x, ε) ⊂ Kd/2, so since the definition of h̃ε:

h̃ε(x) =

∫
Ω

h̃(y)ηε(x− y)dy =

by the definition of h̃:

=

∫
Kd/2

h(y)ηε(x− y)dy =

since supp(ηε) ⊂ B(0, ε) (so if y ̸= Kd/2, then ηε(x− y) = 0):

=

∫
Ω

h(y)ηε(x− y)dy = Th(y → ηε(x− y)) = 0,

since by assumption Th(φ) = 0 for all φ ∈ D(Ω).
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This completes the proof.

Corollary 4.4. The following two are equivalent:

(i) f = g almost everywhere,

(ii) Tf = Tg.

B) The Dirac-delta function

Definition 4.4. Let a ∈ Rn be a fixed point. Then we define the
operator δa : D(Rn) → Rn as

δa(φ) = φ(a).

This is called the Dirac-delta concentrated at point a.

This is also a distribution (see Exercise 3 (a) on Practice 4) but not
regular (see Exercise 3 (b) on Practice 4).

4.2 Equivalence and support of distributions

In the previous section we said that two distributions were equal, i.e.
u(φ) = v(φ) if and only if u(φ) = v(φ) for all φ ∈ D(Ω) test functions.
In this section we show another equivalence, and then state a theorem which
clears the connection between these two notions. The new notion will be
used in the case of the examination of the supports of distributions, which is
defined in the second half of this section.

Definition 4.5. Let u and v be two distributions on Ω, and let G ⊂ Ω be an
open set. Then we say that u = v on G, or they are globally equivalent
on G, if for all φ ∈ D(G) test functions u(φ) = v(φ) holds.

Now we introduce the other notion.

Definition 4.6. Let u and v be two distributions on Ω, and let G ⊂ Ω be an
open set. Then we say that u and v are locally equivalent on G, if for all
x ∈ G points there is a Ux ⊂ G neighborhood of x, for which u = v globally
on Ux.

It is evident that if u = v globally on G, then u = v locally. The next
theorem states the interesting fact that the other implication is also true,
meaning that these two notions are basically the same.

Theorem 4.5. Let us consider two distributions u and v defined on Ω, and
an open set G ⊂ Ω. Then if u = v locally on G, then u = v globally on G.

Proof. Let us suppose that G = Ω (the G ⊊ Ω case is also similar). Our
goal is now to prove that if u = v locally on Ω, then ∀ φ ∈ D(Ω) we have
u(φ) = v(φ).

Let us fix a φ ∈ D(Ω) function, and let us use the notation K := supp(φ)
(here K ⊂ Ω is a compact set).

Since u = v locally, we know that for every point x ∈ Ω there is a neigh-
borhood Ux ⊂ Ω in which u = v globally. Then K ⊂

⋃
x∈Ω

Ux, but since K is
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compact, every one of its open covers have a finite cover, so there are finitely
many xj points for which

K ⊂
m⋃
j=1

Uxj
.

Now we can apply the theorem of smooth partition of unity (Theorem 3.9),
which means that there are some functions φj ∈ C∞

0 (Ω) such that
supp(φj) ⊂ Uxj

, and

m∑
j=1

φj(x) = 1 ∀x in a neighborhood of K.

Then

φ = φ
m∑
j=1

φj =
m∑
j=1

φφj,

and supp(φφj) ⊂ Uxj
.

Therefore, if we write up the equivalence we would like to prove:

u(φ) = u

(
m∑
j=1

φφj

)
=

m∑
j=1

u(φφj) =

where we used that u is linear. Then since supp(φφj) ⊂ Uxj
, we can apply

the local equivalence property:

=
m∑
j=1

v(φφj) = v

(
m∑
j=1

φφj

)
= v(φ),

which means that u = v globally.

An easy consequence of this theorem is that if u = 0 locally, then u = 0
globally, which is used in the next definition.

Definition 4.7. Let u be a distribution defined on Ω. Then its support4 is
defined as

supp(u) := Ω\{x ∈ Ω : ∃ Ux ⊂ Ω open neighborhood of x, s. t. u = 0 on Ux} .

Note that in the definition the equivalence u = 0 is similar to a local one,
but by the previous theorem it does not really matter since it is the same as
the global equivalence.

Examples:

� supp(δa) = {a}.

Proof. If a /∈ supp(φ) (or a ∈ supp(φ) but φ(a) = 0), then
δa(φ) = φ(a) = 0 (such φ functions are not that interesting).

In the case of a ∈ supp(φ) and φ(a) = c ̸= 0, we have δa(φ) = φ(a) = c,
meaning that point a does not have a neighborhood around itself where
the distribution is zero, so a ∈ supp(δa).

4”Tartó” in Hungarian
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If we consider some other point b ̸= a, then there is a neighborhood
around itself Ub for which a /∈ Ub. Then δa(φ) = 0 for all φ ∈ D(Ub)
functions (since φ(a) = 0 for every φ ∈ D(Ub) since their support is
inside Ub), meaning that b /∈ supp(δa). Consequently, supp(δa) = a.

� supp(Tf) = supp(f).

Proof. We prove the equality of these sets by showing that they are
subsets of each other.

1. supp(Tf) ⊂ supp(f), or, in other words

x ∈ supp(Tf) ⇒ x ∈ supp(f),

which is the same as

x /∈ supp(f) ⇒ x /∈ supp(Tf).

If x /∈ suppf , then ∃ Ux, such that f |Ux
= 0, and then

∀φ : supp(φ) ⊂ Ux we have Tf(φ) =
∫
Ux
φf = 0, meaning that

x /∈ supp(Tf).

2. supp(f) ⊂ supp(Tf), or, in other words

x ∈ supp(f) ⇒ x ∈ supp(Tf),

which is the same as

x /∈ supp(Tf) ⇒ x /∈ supp(f).

If x /∈ supp(Tf), then ∃ Ux in a way that in the case of
supp(φ) ⊂ Ux we have

∫
Ux
φf = 0 for all φ ∈ D(Ux), meaning

that Tf = T0 on Ux, and therefore f |Ux
= 0 and then x /∈ supp(f).

Thus, the statement is proved.

4.3 Algebraic operations on distributions

In this section we define some algebraic operations on the set of distributions.

Definition 4.8. Let u and v be distributions, and λ ∈ R. Then we define
the following operations on them:

(u+ v)(φ) := u(φ) + v(φ) (φ ∈ D(Ω))

(λu)(φ) := λu(φ) (φ ∈ D(Ω))

Proposition 4.6. The set of distributions is a vector space, and this vector
space is usually denoted by D′(Ω).

The following is a definition which corresponds to the one used in probability theory.

Definition 4.9. We say that the sequence uj ∈ D′(Ω) converges weakly to u ∈ D′(Ω),
if for all φ ∈ D(Ω) test functions uj(φ) → u(φ) (as a real sequence). The notation for this

convergence is usually uj
D′(Ω)−−−→ u.
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Note that this notion is similar to the weak convergence defined in other fields of math-
ematics:

� In Banach spaces: A sequence xn is said to converge weakly to an element x if
f(xn) → f(x) for any bounded linear functional f .

� In probability theory: Let us consider random variables X1, X2, . . . , and let their
cumulative distribution functions be F1, F2, . . . , respectively. Then it is said that this
sequence of variables converges weakly (or converges in distribution) to another random
variableX (with cumulative distribution function F ), if limn→∞ Fn(x) = F (x) for every
number x ∈ R at which F is continuous.

Another operation is the multiplication of a distribution with a function.

Definition 4.10. Let ψ ∈ C∞(Ω) and u ∈ D′(Ω). Then

(ψu)(φ) := u(ψφ).

Remark 4.3. If u = Tf (f ∈ L1
loc(Ω)) and ψ ∈ C∞, then ∀φ ∈ D(Ω):

(ψTf )(φ) = Tf (ψφ) =

∫
Ω

fψφ =

∫
Ω

(fψ)φ = Tfψ(φ),

meaning that the multiplication defined above can be thought of as a generalization of the
multiplication of functions.

4.4 Differentiation of distributions

The goal of the introduction of distributions is to somehow generalize L1
loc

functions (using regular distributions) in a way that their derivatives can be
computed. Since generalizations should not change the notion we started
from, our main goal here is to have an operator ∂ which acts similarly as the
well-known derivative operator, namely we would like to have something like
”∂αTf = T∂αf” (here f is sufficiently smooth) - this basically means the move
of the derivative operator inside the integral.

Proposition 4.7. Let f ∈ C1(Rn). Then

T∂jf(φ) = −Tf(∂jφ), ∀φ ∈ C1
0(Rn).

Proof. (The same as the solution of Exercise 1 from Practice 5.)
Without loss of generality let us assume that j = 1 (the derivative is in the

first variable), and let us use the following notation for x ∈ Rn: x = (x1, x̃),
where x̃ ∈ Rn−1 (so here x1 is the first variable, and x̃ contains all the other,
(n− 1)-many variables).

Then, for f ∈ C1(Rn), f and ∂1f are in L1
loc(Rn), which means that the

notations Tf and T∂1f make sense. Then, by definition:

T∂1f(φ) =

∫
Rn

(∂1f)φ =

∫
Rn−1

∫
R
∂1f(x1, x̃)φ(x1, x̃)dx1dx̃ =

Now we apply the integration by parts formula for the inner integral:

=

∫
Rn−1

[f(x1, x̃)φ(x1, x̃)]
∞
x1=−∞ dx̃−

∫
Rn−1

∫
R
f(x1, x̃)∂1φ(x1, x̃)dx1dx̃ =

Now we use the fact that φ has compact support, so φ has zero values at
−∞ and at ∞, meaning that the first term is zero.

= −
∫
Rn−1

∫
R
f(x1, x̃)∂1φ(x1, x̃)dx1dx̃ = −

∫
Rn

f∂1φ = −Tf(∂1φ),

which gives our statement.
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Remark 4.4. A similar result can be stated on an arbitrary Ω domain (in
that case, the Gauss-Ostrogradsky theorem should be used instead of partial
integration).

Corollary 4.8. Let f ∈ Cm(Rn) (m ∈ N), and let α be a multiindex, |α| ≤ m.
Then

T∂αf(φ) = (−1)|α|Tf(∂
αφ).

Note that the term on the right-hand side does not have derivatives of f
inside, meaning that this expression can also be used as a derivative of a not
that smooth function (or more precisely, the derivative of the corresponding
regular distribution).

Definition 4.11. Let u ∈ D′(Ω). Then the ∂ju : D(Ω) → R partial deriva-
tive of u is defined as

∂ju(φ) := −u(∂jφ), φ ∈ D(Ω). (4.7)

Proposition 4.9. The functional ∂ju defined in (4.7) is a distribution.

Proof. (The same as the solution of Exercise 2. from Practice 5.)
For ∂ju to be a distribution, we need two properties: it should be linear,

and also sequentially continuous. The linearity is trivially true.

For the sequentially continuous property, let us assume that φk
D(Ω)−−−→ φ.

This means that then ∂jφk → ∂jφ, and this also holds for all the derivatives of
φk and φ; also, the supports are inside a compact set (because of the definition

of φk
D(Ω)−−−→ φ). So this means that ∂jφk

D(Ω)−−−→ ∂jφ also holds, and since u is a
distribution, it is sequentially continuous, so u(∂jφk) → u(∂jφ) is also true,
meaning that u(∂jφ) is sequentially continuous, so it is a distribution.

Now we define the general derivatives of a distribution:

Definition 4.12. Let u ∈ D′(Ω) and let α be a multiindex. Then

∂αu(φ) := (−1)|α|u(∂αφ), φ ∈ D(Ω).

Examples:

1. Let us consider the Heaviside function:

H(x) =

{
0, if x < 0,

1, if x ≥ 0.

Then, it can be shown that T ′
H(φ) = δ0(φ), or, if we use a shorter

notation, H ′ = δ0. In this case H ′ means the derivative of this function
in the distributional (or weak) sense.

Proof. (The same as the solution of Exercise 4. (c) from Practice 5.)

By definition:

T ′
H(φ) = −TH(φ′) = −

∫ ∞

−∞
H(x)φ′(x)dx = −

∫ ∞

0

φ′(x)dx
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Now by the Newton-Leibniz formula (or the fundamental theorem of
calculus):

= −[φ(x)]∞0 = φ(0) = δ0(φ),

where we used that φ has compact support, so its values at ∞ are
zero.

Remark 4.5. This statement is an easy corollary of the proposition stated
in the next example.

2. The derivative of a piecewise smooth functions:

Proposition 4.10. Let (a, b) ⊂ R be an interval (can be infinite), with

a = a0 < a1 < a2 < · · · < am < am+1 = b.

Suppose that we have a function f : (a, b) → R which is continu-
ously differentiable on the inside of these smaller intervals, meaning that
f ∈ C1(ak, ak+1) holds for k = 0, 1, . . . ,m, and also f has left (f(ak+0))
and right (f(ak − 0)) limits at points a1, a2, . . . am. Also, suppose that
f ′ ∈ L1

loc(a, b), where f
′ means the classical derivative of f taken on the

inside of these small segments. Then

(Tf)
′ = Tf ′ +

m∑
k=1

(f(ak + 0)− f(ak − 0))δak,

in which f(ak + 0)− f(ak − 0) means the jump at point ak.

Proof. By the assumptions we know that f ∈ L1
loc(a, b), meaning that Tf exists. Then

T ′
f (φ) = −Tf (φ′) = −

∫ b

a

fφ′ = −
m∑
k=0

∫ ak+1

ak

fφ′ =

By partial integration:

= −
m∑
k=0

(
[fφ]ak+1

ak
−
∫ ak+1

ak

f ′φ

)
=

= (fφ)|a+0 +
m∑
k=0

(f(ak + 0)φ(ak)− f(ak − 0)φ(ak))− (fφ)|b−0 +

∫ b

a

f ′φ =

Since φ has compact support, we know that (fφ)|a+0 = (fφ)|b−0 = 0, meaning that

=
m∑
k=0

(f(ak + 0)− f(ak − 0))φ(ak) +

∫ b

a

f ′φ =

=
m∑
k=0

(f(ak + 0)− f(ak − 0)) δak + Tf (φ),

which was the statement we wanted to prove.

3. The solution of the wave equation in one dimension.

Let us define the function

E(x0, x1) :=
1

2
H(x0 − |x1|),

in which H is the Heaviside function. It is easy to see that E ∈ L1
loc(R).
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Proposition 4.11. The function E is a fundamental solution of the wave equation,
meaning that

∂20TE − ∂21TE = δ0

For details, see Chapters 5 and 6.

4. The solution of the heat equation in n dimensions.

Let us define the function

E(x0, x) :=


1

(2
√
πx0)n

exp

(
−|x|2

4x0

)
if x0 > 0

0 if x0 ≤ 0.

Proposition 4.12. E ∈ L1
loc(Rn+1), and it is a fundamental solution of the heat equa-

tion, meaning that
∂20TE − ∂21TE = δ0

For details, see Chapters 5 and 7.

4.5 Cartesian product of distributions

As we will see in Chapter 5, the solutions of several PDEs can be written in
the form uf ∗ f , where uf is the fundamental solution of the equation (this
will be defined later), f is the right-hand side of the equation (the ’source
term’), and ∗ denotes the convolution of these distributions. To be able to
define convolutions, we will need the definition of Cartesian products.

4.5.1 Definition

Before we define the Cartesian product of distributions, let us first consider
functions.

Definition 4.13. Let f ∈ L1
loc(Rn), g ∈ L1

loc(Rm). Then the Cartesian
product of functions f and g is defined as

(f × g)(x, y) = f(x)g(y), x ∈ Rn, y ∈ Rm.

Remark 4.6. By Fubini’s theorem, f × g ∈ L1
loc(Rn+m).

Remark 4.7. Note that usually functions are defined (using set theory) as
special relations, which means that they are actually just a collection of
(usually infinitely many) ordered pairs (collecting the values x and f(x)). It
is also possible to take the Cartesian products of such sets, but that would
result in a different form than the one defined above, so we do not take that
route.

Similarly as in the case of the derivatives of distributions, we will try to
extend this definition (which only works for functions) to distributions using
regular distributions. So let us consider Tf×g, and see what happens!

Proposition 4.13. Let f ∈ L1
loc(Rn), g ∈ L1

loc(Rm). Then

Tf×g(φ) = Tf {x −→ Tg [y −→ φ(x, y)]} , φ ∈ D(Rn+m).

(Here the notation y −→ φ(x, y) means that we think of φ(x, y) as a
one-variable function in y, and think of x as a parameter.)
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Proof. By the definition of regular distributions:

Tf×g(φ) =

∫
Rn+m

(f × g)φ =

Now we use the definition of (f × g):

=

∫
Rn+m

f(x)g(y)φ(x, y) dx dy =

=

∫
Rn

f(x)

[∫
Rm

g(y)φ(x, y) dy

]
dx = Tf {x −→ Tg [y −→ φ(x, y)]} .

Using the previous statement, our goal is to define the Cartesian product
of distributions as

(u× v)(φ) = u{x −→ v[y −→ φ(x, y)]}, φ ∈ D(Rn+m). (4.8)

The question is whether this definition makes sense. First of all, it is clear
that y −→ φ(x, y) ∈ D(Rm), meaning that v[y −→ φ(x, y)] is well defined.
The one remaining question is whether x −→ v[y −→ φ(x, y)] is inside D(Rn)
or not. The next theorem answers this question.

Theorem 4.14. Let u ∈ D′(Rn), φ ∈ D(Rn+m), and Ψ : Rn → R is defined
as

Ψ(x) = v[y −→ φ(x, y)], (x ∈ Rn).

Then Ψ ∈ C∞
0 (Rn), and the A : D(Rn+m) → D(Rn) operator defined as

A(φ) = Ψ = v[y −→ φ(x, y)]

is linear and sequentially continuous (in the convergence defined on D(Rn+m)
and D(Rn)).

Proof. We prove the theorem in four steps: in Step 1, we show that Ψ has compact support
and it is continuous, then in Step 2 we prove its differentiability, and in Step 3 that it can
be differentiated any number of times. In Step 4 it is proved that A is a distribution.

1. Step 1: By the definition of Ψ, it is easy to see that its support is a map of the compact
set supp(φ) onto Rn, so supp(Ψ) is compact. Now we prove that Ψ is continuous.

Let us assume that for a sequence (xk) ∈ Rn we have xk → x. We show that
Ψ(xk) → Ψ(x).

For the sake of simplicity let us use the notation χk(y) = φ(xk, y) and χ(y) = φ(x, y)

(here x is fixed). It is enough to show that χk
D(Ω)−−−→ χ, since then by the definition of

Ψ and the (sequential) continuity of v we have

Ψ(xk) = v[y −→ χk] → v[y −→ χ] = Ψ(x).

It is evident that the supports of functions χk are part of the map of supp(φ) onto Rn.
Also, for any α multiindex ∂αy χk(y) → ∂αy χ(y) uniformly on Rn, since by the theorem
of Heine, a function φ with compact support is uniformly continuous, so

|∂αy χk(y) → ∂αy χ(y)| = |∂αy φ(xk, y)− ∂αy φ(xk, y)| < ε

when |xk − x| is small enough. This means that we have proved that Ψ ∈ C0(Rn).
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2. Step 2: In this step we show that for j = 1, . . . , n we have

∂jΨ(x) = v[y −→ ∂αxjφ(x, y)],

from which we get that Ψ ∈ C1(Rn).

Let x ∈ Rn be a fixed point, and let us choose an arbitrary real sequence (hk) in a way

that hk → 0 and hk ̸= 0. Let h
(j)
k ∈ Rn be such a vector which has zeros as all of its

elements, except for the jth element which is hk. Then

Ψ(x+ h
(j)
k )−Ψ(x)

hk
=

1

hk

(
v[y −→ φ(x+ h

(j)
k , y)]− [y −→ φ(x, y)]

)
=

= v

[
y → φ(x+ h

(j)
k , y)− φ(x, y)

hk

]
.

(4.9)

By the Lagrange intermediate value theorem, there exists a real number 0 < θk < 1 in
a way that

φ(x+ h
(j)
k , y)− φ(x, y) = hk∂xjφ(x+ θkh

(j)
k , y),

which means that by (4.9) we have

Ψ(x+ h
(j)
k )−Ψ(x)

hk
= v

[
y → ∂xjφ(x+ θkh

(j)
k , y)

]
= v [y → κk(y)] , (4.10)

in which κk(y) = ∂xjφ(x + θkh
(j)
k , y). Then similarly as in Step 1, we can prove that

κk
D(Ω)−−−→ κ, where κ = ∂xjφ(x, y). Then by the (sequential) continuous property of v

and by (4.10), we have

lim
k→∞

Ψ(x+ h
(j)
k )−Ψ(x)

hk
= v[y −→ ∂αxjφ(x, y)],

which was the statement we wanted to prove.

3. Step 3: By induction it can be proved using the results of Step 2 that

∂αΨ(x) = v [y → ∂αxφ(x, y)] ,

where α is an arbitrary multiindex. Then Ψ ∈ C∞
0 (Rn).

4. Step 4: We show here that A is sequentially continuous (the linear property is trivial).

Our goal here is to show that if there is a sequence for which φk
D(Rn+m)−−−−−→ φ, then we

have A(φk)
D(Rn)−−−→ A(φ). By the convergence of the functions φk we know that there

is a compact set K0 ⊂ Rn+m in a way that supp(φk) ⊂ K0. Let K be the image of the
set K0 on Rn: then K is compact and supp(ψk) ⊂ K0, in which ψk(y) = φk(x, y) (x is
fixed). Since

A(φk) = v(ψk) = v[y → φ(x, y)],

then supp(Aφk) ⊂ K0.

We also have to show that for all α multiindexes ∂α(Aφk) → ∂α(Aφ) uniformly. Then
by Step 3, we have

∂α(Aφk)(x) = v [y → ∂αxφk(x, y)] ,

then
|∂α(Aφk)(x)− ∂α(Aφ)(x)| = |v [y → ∂αxφk(x, y)− ∂αxφ(x, y)] | ≤

Now we use Theorem 4.1:

≤ CK0

∑
|β|≤mK0

sup
y∈K0

∣∣∂αx∂βyφk(x, y)− ∂αx∂
β
yφ(x, y)

∣∣ ≤
≤ CK0

∑
|β|≤mK0

sup
(x,y)∈K

∣∣∂αx∂βyφk(x, y)− ∂αx∂
β
yφ(x, y)

∣∣→ 0

where we used that the sequence φk converges in the D(Rn)-sense. Then it means that
(∂α(Aφk)− ∂α(Aφ)) → 0 uniformly.
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This concludes the proof.

Theorem 4.14. states that the term (4.8) makes sense, since the function
x −→ v[y −→ φ(x, y)] is inside D(Rn), and the functional
u{x −→ v[y −→ φ(x, y)]} is indeed a distribution. Thus, the Cartesian
product of distributions can be formulated in the following way.

Definition 4.14. Let u ∈ D′(Rn), v ∈ D′(Rm). Then the Cartesian prod-
uct of distributions u and v is defined as

(u× v)(φ) := u{x −→ v[y −→ φ(x, y)]}, φ ∈ D(Rn+m).

Remark 4.8. By Proposition 4.13, Tf×g = Tf × Tg.

4.5.2 Properties of the Cartesian product

Proposition 4.15 (Commutativity). Let u ∈ D′(Rn), v ∈ D′(Rm). Then

(u× v)(φ) = (v × u)(φ). (4.11)

The proof was skipped in 2024.

Proof. For the proof, we are going to use the following lemma:

Lemma 4.16. Let us define a set of functions the following way:

φ(x, y) :=
N∑
j=1

ψj(x)χj(y) (4.12)

in which ψj ∈ D(Rn), χj ∈ D(Rm), and N is arbitrary. Then the set of functions in the
form (4.12) are dense in D(Rn+m) (in the convergence defined before).

Proof. (Lemma 4.16) The thing we have to prove here is that there is a sequence φk for

which all of its elements are in the form (4.12) and φk
D(Rn+m)−−−−−→ φ.

Let us assume that

supp(φ) ⊂ Kn+m
a (0) =

{
(x, y) ∈ Rn+m : |xj| < a, |yl| < a

}
.

Then the Fourier series of function φ converges uniformly on Kn+m
2a (0) to function φ in the

set of functions defined as

(x, y) → (4a)−
n+m

2 exp
( π
2a
i [⟨β, x⟩+ ⟨γ, x⟩]

)
,

in which β = (β1, . . . , βn) and γ = (γ1, . . . , γn) are vectors with elements as whole numbers.
Also, by differentiating partially the Fourier series, the sequence of the derivatives also
converges to ∂αφ. This means that

φ(x, y) =
∞∑
l=0

∑
|β|+|γ|=1

cβ,γ(4a)
−n+m

2 exp
( π
2a
i [⟨β, x⟩+ ⟨γ, x⟩]

)
Let us consider the partial sums of this infinite series:

φ̃k(x, y) =
k∑
l=0

∑
|β|+|γ|=1

cβ,γ(4a)
−n+m

2 exp
( π
2a
i [⟨β, x⟩+ ⟨γ, x⟩]

)
=

=
k∑
l=0

∑
|β|+|γ|=1

cβ,γ(4a)
−n+m

2 exp
( π
2a
i ⟨β, x⟩

)
· exp

( π
2a
i ⟨γ, x⟩

)
=

N∑
j=1

ψ̃j(x)χ̃j(y)

Functions φ̃k are in the form (4.12), but we only have ψ̃j ∈ C∞(Rn) and χ̃j ∈ C∞(Rm). We
also know that for the sequence φ̃k it derivatives are also uniformly convergent.
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Now we construct the sequence φk. Let f ∈ C∞
0 (Kn

2a(0)) and g ∈ C∞
0 (Km

2a(0)) such func-
tions which equal to zero on a neighborhood of the squares Kn

a (0) and K
m
a (0), respectively.

Then we define functions φk as

φk(x, y) = f(x)g(y)φ̃k(x, y) =
N∑
j=1

[
f(x)ψ̃j(x)

]
[g(y)χ̃j(y)] .

Then it is clear that these functions are in the form (4.12). We then show that

(φk)
D(Rn+m)−−−−−→ φ. Since supp(φ) ⊂ Kn+m

2a (0), it is enough to prove that lim(∂αφk) = ∂αφ
uniformly.

If (x, y) ∈ Kn+m
a (0), then

|∂αφk(x, y)− ∂αφ(x, y)| = |∂α[fgφ̃k](x, y)− ∂αφ(x, y)| = |∂αφ̃k(x, y)− ∂αφ(x, y)|.

If (x, y) /∈ Kn+m
a (0), then by the Leibniz rule (Theorem 3.1) we have

|∂αφk(x, y)− ∂αφ(x, y)| = |∂αφk(x, y)| = |∂α[fgφ̃k](x, y)| =

=

∣∣∣∣∣∑
α̃≤α

dα̃∂
α−α̃(fg)(x, y)∂α̃φ̃k(x, y)

∣∣∣∣∣ ≤ c
∑
α̃≤α

∣∣∂α̃φ̃k(x, y)∣∣ = c
∑
α̃≤α

∣∣∂α̃φ̃k(x, y)− ∂α̃φ(x, y)
∣∣ .

Since lim(∂αφ̃k) = ∂αφ uniformly, then we have the uniform convergence of ∂αφk too, which
concludes this proof.

(Continuation of the proof of Proposition 4.15.)
We prove Proposition 4.15 in two steps: first we prove property (4.11) for functions in

the form (4.12), then in step 2 (using the fact that functions in the form (4.12) are dense)
we prove it for any arbitrary φ ∈ D(Rn+m).

Step 1: Let us assume that our φ function is in the form (4.12), i.e.

φ(x, y) =
N∑
j=1

ψj(x)χj(y).

Then substituting it into the left-hand side of (4.11), we get:

(u× v)(φ) = u

{
x −→ v

[
y −→

N∑
j=1

ψj(x)χj(y)

]}
=

Now we use the fact that v only acts in variable y (and ψj(x) does not depend on y).

= u

{
x −→

N∑
j=1

ψj(x)v(χj(y))

}
=

Similarly, u only depends on x, meaning that

=
N∑
j=1

u(ψj(x))v(χj(y)).

By the same arguments, for the right-hand side of (4.11) we get:

(v × u)(φ) = v

{
y −→ u

[
x −→

N∑
j=1

ψj(x)χj(y)

]}
=

= v

{
x −→

N∑
j=1

u(ψj(x))χj(y)

}
=

N∑
j=1

u(ψj(x))v(χj(y)).

So they are equal, meaning that we proved the statement for functions in the form (4.12).
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Step 2: Let φ ∈ D(Rn+m) be arbitrary. Then by Lemma 4.16 there is a sequence

{φk} ⊂ D(Rn+m), for which all of the elements are in the form (4.12), and φk
D(Rn+m)−−−−−→ φ.

Then because of Step 1,

(u× v)(φk) = u {x −→ v [y −→ φk(x, y)]} =

= v {y −→ u [x −→ φk(x, y)]} = (v × u)(φk).

Here (u × v)(φk) is a distribution defined on D(Rn+m), meaning that

by the sequentially continuous property, if φk
D(Rn+m)−−−−−→ φ, then

(u × v)(φk) → (u × v)(φ). Similarly, for the right-hand side we get
(v × u)(φk) → (v × u)(φ), which means that (u × v)(φ) = (v × u)(φ), and since φ was
arbitrary here, we get property (4.11).

Proposition 4.17 (Linearity). Let u ∈ D′(Rn), v1, v2 ∈ D′(Rm), λ1, λ2 ∈
C∞(Rm). Then

u× (λ1v1 + λ2v2) = λ1(u× v1) + λ2(u× v2).

Proof. By definition,

u× (λ1v1 + λ2v2)(φ) = u {x −→ (λ1v1 + λ2v2) [y −→ φ(x, y)]} =

= u {x −→ ((λ1v1) [y −→ φ(x, y)] + (λ2v2) [y −→ φ(x, y)])} =

= u {x −→ (λ1v1) [y −→ φ(x, y)]}+ u {x −→ (λ2v2) [y −→ φ(x, y)]} =

= λ1(u× v1) + λ2(u× v2),

which concludes the proof.

Proposition 4.18. Let u ∈ D′(Rn) and v ∈ D′(Rm). Then for all α multi-
index

∂αy (u× v) = u× ∂αv,

and
∂αx (u× v) = ∂αu× v.

Proof. By definition,

∂αy (u× v)(φ) = (−1)|α|(u× v)(∂αy φ) = (−1)|α|u
{
x→ v

[
y → ∂βyφ(x, y)

]}
=

= u
{
x→ ∂βy v [y → φ(x, y)]

}
=
(
u× (∂βy v)

)
(φ).

The other part can be proved similarly.

Proposition 4.19 (Support). Let u ∈ D′(Rn) and v ∈ D′(Rm). Then

supp(u× v) = supp(u)× supp(v).

Proof. We prove that the sets are parts of each other.
Let us assume proceeding towards contradiction that for some point (x, y) /∈ supp(u)×supp(v),

but (x, y) ∈ supp(u × v). Let us assume that x /∈ suppu. Then there is a neighbor-
hood Ux and ∀φ ∈ D(Ω1) for which suppφ ⊂ Ux we have u(φ) = 0. We know that
there is some φ ∈ D(Ω1 × Ω2) function for which suppφ ⊂ Ux × Ω2. Also, the support of
x 7→ [v(y 7→ φ(x, y))] is in Ux, but by the previous arguments u{x 7→ [v(y 7→ φ(x, y))]} = 0
if x ∈ Ux (y is arbitrary). Then (x, y) /∈ supp(u× v), which is a contradiction.

For the other implication let us assume that (x, y) /∈ supp(u×v), but (x, y) ∈ supp(u)×supp(v).
Then ∃U ⊂ Ω1 (x ∈ U) and φ1 ∈ D(Ω1) for which suppφ1 ⊂ U . Also, ∃V ⊂ Ω2 (y ∈ V )
and φ2 ∈ D(Ω2), for which suppφ2 ⊂ V in a way that (U × V ) ∩ supp(u × v) ̸= ∅ , and
letu(φ1) = c1 and v(φ2) = c2 (c1, c2 ̸= 0). Now we define a function φ ∈ D(Ω1 × Ω2) in a
way that φ(x, y) = φ1(x)φ2(y) and suppφ ⊂ U × V . By using the definitions:

0 = (u× v)φ(x, y) = u{x 7→ [v(y 7→ φ1φ2)]} = u{x 7→ φ1(x)v(φ2)} = c2u(φ1(x)) = c1c2 ̸= 0,

so we get a contradiction.
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4.6 Convolution of distributions

As mentioned at the beginning of this Section 4.5, we will see in Chapter 5
that the solutions of certain PDEs are in the form uf ∗ f , in which ∗ is the
convolution of these two distributions. First, we define the convolutions of
two functions (or remind you of the definition, since I am pretty sure you have
learned it in some other classes), and then we generalize it to distributions.

4.6.1 Convolution of functions

Definition 4.15. Let f, g ∈ L1
loc(Rn), and suppose that the function

x −→
∫
Rn

|f(y)g(x− y)|dy (4.13)

is in L1
loc(Rn). Then we say that the convolution of functions f and g

exists, and is defined as

(f ∗ g)(x) :=
∫
Rn

f(y)g(x− y)dy, (x ∈ Rn) (4.14)

Remark 4.9. Because of condition (4.13), the integral inside (4.14) is finite
for a.e. x ∈ Rn. Then f ∗ g ∈ L1

loc(Rn), and if f ∗ g exists, then g ∗ f also
exists, and f ∗ g = g ∗ f .

A problem here is that condition (4.13) is hard to check. Because of this,
in practice people use several other conditions which imply (4.13), e.g. the
next one, which is perhaps the most well-known.

Proposition 4.20. Let f, g ∈ L1(Rn). Then f∗g exists, and is inside L1(Rn).

Proof. We apply Fubini’s theorem to the non-negative function
(x, y) −→ |f(y)g(x− y)|:∫

Rn

∫
Rn

|f(y)g(x− y)|dydx =

∫
Rn

|f(y)|
∫
Rn

|g(x− y)|dxdy ≤

≤
∫
Rn

|f(y)| ∥g∥L1(Rn)dy ≤ ∥f∥L1(Rn)∥g∥L1(Rn) <∞.

Because of this, the function x −→
∫
Rn |f(y)g(x− y)|dy is inside L1(Rn), meaning that f ∗ g

exists, and it is also inside L1(Rn).

As mentioned before, there are several other conditions under which f ∗ g
exists, e.g. it is enough that one of the functions is zero outside a compact
set.

4.6.2 Convolution of distributions

Similarly as in the previous section, and also in the case of the derivatives
of distributions, we start off by examining the regular distributions, more
precisely the regular distribution associated with f ∗ g, and then we try to
generalize the form of this object to get the general definition of the convo-
lution of any two distributions.

Proposition 4.21. Let f, g ∈ L1
loc(Rn), and suppose that f ∗ g exists. Then

Tf∗g(φ) =

∫
R2n

f(y)g(z)φ(y + z)dydz, φ ∈ D(Rn). (4.15)
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Figure 4.1: The infinite strip |y + z| ≤ 1 (it continues on the left and on the right).

Proof. By definition,

Tf∗g(φ) =

∫
Rn

(f ∗ g)φ =

∫
Rn

∫
Rn

f(y)g(x− y) dy φ(x)dx =

=

∫
Rn

f(y)

∫
Rn

g(x− y)φ(x)dxdy =

Now we define a new variable z = x−y, and substitute it to the inner integral:

=

∫
Rn

f(y)

∫
Rn

g(z)φ(y + z)dzdy =

∫
R2n

f(y)g(z)φ(y + z)dydz,

which completes the proof.

Seemingly what we got is that

Tf∗g(φ) ≈ (Tf × Tg)[(y, z) −→ φ(y + z)].

The problem here is that φ(y + z) might not have compact support!

Example 4.1. Let φ be such a test function for which supp(φ) = B(0, 1)
(which is the sphere with radius one centered at the origin). Then

supp [(y, z) → φ(y + z)] =
{
(y, z) ∈ R2n : |y + z| ≤ 1

}
,

which is an infinite strip (see Figure 4.1), meaning that it is clearly not
bounded, so it is not compact.

The way we are going to solve this problem in the following pages is to
somehow ”chop off” the tails of such functions, meaning that we will approx-
imate these problematic functions with those which have compact support.

First we define a set of functions which will tend to the constant one
function in some sense.

Definition 4.16. Let ζk ∈ C∞
0 (R2n),∀k a sequence of functions. Then we say

that ζk
(∗)−→ 1 (or: ζk has the (∗)-property), if the following two conditions

hold:
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(i) ∀α multi-index, ∂α(ζk−1) → 0 uniformly on all compact subsets of R2n.

(ii) ∀α multi-index, there is a constant cα such that

sup
k∈N

sup
R2n

|∂αζk| ≤ cα.

A natural question is whether such functions exist.

Remark 4.10. Let us consider such functions in C∞
0 (R2n) for which{

ζ(y, z) = 1, if |(y, z)| ≤ 1,

|ζ(y, z)| ≤ 1, otherwise.

Such functions exist: see Section 3.4. Then ζk(y, z) := ζ
(y
k
,
z

k

)
are such

functions for which ζk
(∗)−→ 1.

Our goal now is that by using such sequences of functions, we approximate
the problematic φ(y + z) term inside (4.15). First we show that it works for
regular distributions.

Proposition 4.22. Let f, g ∈ L1
loc(Rn), and suppose that f ∗ g exists.

If ζk
(∗)−→ 1 holds, then

Tf∗g(φ) =

∫
R2n

f(y)g(z)φ(y+z)dydz = lim
k→∞

∫
R2n

f(y)g(z)ζk(y, z)φ(y+z)dydz.

(4.16)

Proof. Since ζk
(∗)−→ 1, then by definition (ζk − 1) → 0 uniformly on all compact subsets, so

ζk → 1 point-wise in R2n. We also know that
sup
k∈N

sup
R2n

|∂αζk| ≤ cα, so ζk is also uniformly bounded. Then by Lebesgue’s theorem5 we

get that the right-hand side of (4.16) indeed converges to the left-hand side.

Remark 4.11. The main advantage of this construction is of course that the
function ζk(y, z)φ(y + z) now has a compact support.

Using the previous results, we can finally define the convolution of distri-
butions.

Definition 4.17. Let us suppose that u, v ∈ D′(Rn), ζk
(∗)−→ 1, and also that

the limit
lim
k→∞

(u× v) [(y, z) → ζk(y, z)φ(y + z)] (4.17)

exists and is finite for ∀φ ∈ D(Rn), and this limit depends continuously on
φ6. Then we say that the convolution of distributions u and v exists,
and is defined as

(u ∗ v)(φ) = lim
k→∞

(u× v) [(y, z) → ζk(y, z)φ(y + z)] (φ ∈ D(Rn)). (4.18)

Remark 4.12. Some remarks:
5Lebesgue’s theorem: Suppose that fj : Ω → R measurable functions, and fj → f a.e. on Ω. Also

suppose that there is such a function g ∈ L1(Ω), for which |fj | ≤ g a.e. on Ω, ∀j. Then fj → f in the
L1-norm, meaning that

∫
Ω
fj →

∫
Ω
f .

6Here continuous dependence means that if we change the function φ a little, i.e. φε = φ + ε (ε ∈ R+),
then the change of the value of (u ∗ v)(φ) should be bounded by ε, i.e. ∥(u ∗ v)(φ)− (u ∗ v)(φε)∥ ≤ ε.
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� Note that the convolution is defined only for distributions acting on the
same space, i.e. if u ∈ D′(Rn) and v ∈ D′(Rm), then the convolution is
only defined if n = m. (The reason for this is that the term y+ z inside
φ should make sense.)

� The limit (4.17) does not depend on the choice of ζk, i.e. it is the same

for any sequence ζk
(∗)−→ 1.

� The operator defined as (4.18) is linear in φ.

� The assumption of continuous dependence can be omitted, and actu-
ally can be proved from the other properties: the general proof of this
statement is hard, but for some given examples it might be easy.

Proposition 4.23. If f, g ∈ L1
loc(Rn), and f ∗g exists, then Tf ∗Tg also exists

and Tf ∗ Tg = Tf∗g.

This is an easy consequence of the previous proposition.

4.6.3 Properties of convolutions

In this section we list some useful properties of convolutions, which make
their calculation much more easier. Most of them can be proved easily from
the definition of the convolution.

Proposition 4.24. Let us suppose that u ∈ D′(Rn) and δ0 is the Dirac-delta
concentrated on zero. Then

(u ∗ δ0)(φ) = u(φ).

This means that the Dirac-delta is the identity element in the algebraic
structure of convolutions.

Proof. (Proposition 4.24)

(u ∗ δ0)(φ) = lim
k→∞

(u× δ0) [(y, z) → ζk(y, z)φ(y + z)] =

= lim
k→∞

u {y −→ δ0 [z −→ ζk(y, z)φ(y + z)]} = lim
k→∞

u {y −→ ζk(y, 0)φ(y)} =

= u {y −→ φ(y)} = u(φ),

where we used that ζk has the (∗)-property.

Proposition 4.25 (Commutative property). Let us suppose that u, v ∈ D′(Rn)
and u ∗ v exists. Then v ∗ u also exists, and u ∗ v = v ∗ u.

Remark 4.13. An important remark here is that the associative property does
not hold: it can be shown that for u(φ) = TH(φ) (the regular distribution
corresponding to the Heaviside function), v(φ) = δ′0(φ) (the derivative of the
Dirac-delta) and w(φ) = T1(φ) (the regular distribution corresponding to the
constant one function), we have

T1 = (u ∗ v) ∗ w ̸= u ∗ (v ∗ w) = T0.

This means that the convolution operation defined on the set of distributions
results in an algebraic structure which is commutative, but not associative.
(A non-associative structure is calledmagma in algebra, and another example
of such structure is the game ”rock-paper-scissors”, which is commutative,
but not associative.)
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Proof. (Proposition 4.25)

(u× v) [(y, z) → ζk(y, z)φ(y + z)] = u {y −→ v [z −→ ζk(y, z)φ(y + z)]} =

By Proposition 4.15:
= v {z −→ u [y −→ ζk(y, z)φ(y + z)]} =

By introducing new variables ỹ := z and z̃ := y:

= v {ỹ −→ u [z̃ −→ ζk(z̃, ỹ)φ(z̃ + ỹ)]} = (v × u) [(z̃, ỹ) → ζk(z̃, ỹ)φ(ỹ + z̃)]

If ζk
(∗)−→ 1, then for the sequence ζ̃k(y, z) := ζk(z̃, ỹ) we also know that ζ̃k

(∗)−→ 1, mean-
ing that if k → ∞, then (u × v) [(y, z) → ζk(y, z)φ(y + z)] tends to (u ∗ v)(φ), while
(v×u) [(z̃, ỹ) → ζk(z̃, ỹ)φ(ỹ + z̃)] tends to (v∗u)(φ), meaning that (u∗v)(φ) = (v∗u)(φ).

Proposition 4.26 (Linearity). Let us suppose that u1, u2, v ∈ D′(Rn) and
u1 ∗ v, u2 ∗ v exists. Then for any λ1, λ2 ∈ R, we get

(λ1u1 + λ2u2) ∗ v = λ1(u1 ∗ v) + λ2(u2 ∗ v).

Proof. By definition,

[(λ1u1 + λ2u2)] ∗ v = lim
k→∞

((λ1u1 + λ2u2)× v) [(y, z) → ζk(y, z)φ(y + z)] =

By Proposition 4.17,

= lim
k→∞

(λ1(u1 × v) + λ2(u2 × v)) [(y, z) → ζk(y, z)φ(y + z)] = λ1(u1 ∗ v) + λ2(u2 ∗ v),

which gives the statement.

Proposition 4.27 (Support). Let us suppose that u, v ∈ D′(Rn) and u ∗ v
exists. Then

supp(u ∗ w) ⊂ supp(u) + supp(v),

in which supp(u) + supp(v) := {y + z ∈ Rn : y ∈ supp(u), z ∈ supp(u)}, and
the ”line over the set” notation means the closure of that set.

Proof. We prove this statement in the indirect way.
Let us assume that x ∈ supp(u ∗ v), but x /∈ supp u+ supp v. Then there is a neighbor-

hood Ux, for which Ux ∩ supp u+ supp v = ∅. Let φ ∈ D(R2n), for which supp(φ) ⊂ Ux.
Then

(u ∗ v)(φ) = lim
k−→∞

(u× v)((y, z) −→ φ(y + z)ζk(y, z)).

We know that if y ∈ supp(u), z ∈ supp(v), then

y + z ∈ supp(u) + supp(v) ⊂ Rn \ Ux ⊂ Rn \ supp(φ),

meaning that the term (y, z) −→ φ(y + z)ζk(y, z) in the formula above is constant zero (in
a neighborhood around the previously defined point (y, z)), so

supp[(y, z) −→ ζk(y, z)φ(y + z)] ⊂ R2n \ (supp(u)× supp(v)),

but we know that supp(u× v) = supp(u)× supp(v) (Proposition 4.19), meaning that

(u× v)[(y, z) −→ ζk(y, z)φ(y + z)] = 0,

so (u ∗ v)(φ) = 0, which measn that x /∈ supp (u ∗ v), which is a contradiction.

Proposition 4.28 (Derivative). Let us suppose that u, v ∈ D′(Rn) and u ∗ v
exists. Then for all α multi-indexes

∂α(u ∗ v) = (∂αu) ∗ v = u ∗ (∂αv).



CHAPTER 4. DISTRIBUTION THEORY 61

Proof. It is enough to prove that for all j = 1, 2, . . . n we have

∂j(u ∗ v) = ∂ju ∗ v = u ∗ ∂jv,

since then the original statement can be proved by induction.
By definition,

∂j(u ∗ v)(φ) = −(u ∗ v)(∂jφ) = − lim
k→∞

(u× v) [(y, z) → ζk(y, z)∂jφ(y + z)] =

= − lim
k→∞

u {y −→ v [z −→ ζk(y, z)∂jφ(y + z)]} .
(4.19)

Then by the properties of differentiation,

ζk(y, z)∂jφ(y + z) = ζk(y, z)∂zjφ(y + z) =

= ∂zj (ζk(y, z)φ(y + z))− ∂zj(ζk(y, z))φ(y + z).

By substituting this into (4.19), we get

∂j(u ∗ v)(φ) =
lim
k→∞

(
−u
{
y −→ v

[
z −→ ∂zj (ζk(y, z)φ(y + z))

]}
+ u

{
y −→ v

[
z −→ ∂zj(ζk(y, z))φ(y + z)

]})
=

lim
k→∞

(
u {y −→ ∂jv [z −→ ζk(y, z)φ(y + z)]}+ u

{
y −→ v

[
z −→ ∂zj(ζk(y, z))φ(y + z)

]})
.

(4.20)

Let us observe that ∂zj(ζk(y, z)) =
(
∂zj(ζk(y, z)) + ζk

)
− ζk, and since ζk

(∗)−→ 1, we have

that
(
∂zj(ζk(y, z)) + ζk

) (∗)−→ 1. Then we can rewrite the right term on the right-hand side of
(4.20):

u
{
y −→ v

[
z −→ ∂zj(ζk(y, z))φ(y + z)

]}
= (u× v)

[
(y, z) → ∂zj(ζk(y, z))φ(y + z)

]
=

(u× v)
[
(y, z) →

(
∂zj(ζk(y, z)) + ζk

)]
− (u× v) [(y, z) → ζk(y, z)φ(y + z)]

The left term tends to (u ∗ v), but the right term converges also to (u ∗ v), so this whole
term tends to zero. So we have that

∂j(u ∗ v)(φ) =
lim
k→∞

(u {y −→ ∂jv [z −→ ζk(y, z)φ(y + z)]}) =

lim
k→∞

(u× ∂jv) [(y, z) → ζk(y, z)φ(y + z)] = (u ∗ ∂jv)(φ),

which gives our statement.

Corollary 4.29. If u ∈ D′(Rn), then for all α multi-indexes

∂αu = ∂α(u ∗ δ) = u ∗ ∂αδ0.



Chapter 5

Fundamental solutions

Our goal here is to define fundamental solutions, and show that the solution
of a PDE is in the form uf ∗ F , where uf is the fundamental solution and F
is the right-hand side of the equation.

First, to make the formulas more simple, we define the following notation.

Definition 5.1. Let P be an n-variable polynomial (with variables
ξ = (ξ1, ξ2, . . . ξn)) given in the form

P (ξ) =
∑
|α|≤k

aαξ
α,

in which aα ∈ R, and ξα = (ξα1
1 , ξ

α2
2 , . . . ξ

αn
n ).

Then the linear differential operator with constant coefficients
P (∂) : D(Rn) → D(Rn) is defined as

P (∂)u :=
∑
|α|≤k

aα∂
αu.

Using this notation we can rewrite a linear partial differential equation
with constant coefficients in the form

P (∂)u = F, (5.1)

where F ∈ D′(Rn) is a given distribution, and we search for u ∈ D′(Rn).
(All the previous definitions also hold if aα ∈ C∞(Rn).)

Now we define the fundamental solutions:

Definition 5.2. Let E ∈ D′(Rn) such that

P (∂)E = δ0, in Rn.

Then we call E the fundamental solution of the equation (5.1).

With this, we can now state and prove the main result of this section,
which was mentioned many times before.

Theorem 5.1. Let E be the fundamental solution of (5.1). If E ∗ F exists
for F ∈ D′(Rn), then

P (∂)(E ∗ F ) = F, in Rn. (5.2)

Also, equation (5.1) has at most one such solution for which u ∗ E exists.

62
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Proof. First we prove the first part of the theorem, and then the second part.

1. First part: If E ∗ F exists, then by writing it inside (5.1), we get:

P (∂)(E ∗ F ) =
∑
|α|≤k

aα∂
α(E ∗ F ) =

Now we apply the property of differentiation (Proposition 4.28):

=
∑
|α|≤k

aα [(∂
αE) ∗ F ] =

Then by linearity (Proposition 4.26):

=

∑
|α|≤k

aα ∂
αE

 ∗ F = (P (∂)E) ∗ F =

Since E is a fundamental solution (and by Proposition 4.24)

= δ0 ∗ F = F,

so we get the statement.

2. Second part: Let us suppose that we have two solutions
u1, u2 ∈ D′(Rn), i.e. P (∂)uj = F for j = 1, 2. Now we prove the unique-
ness by a standard technique: we define a new distribution u := u1−u2,
and then we show that it is zero.
By the linearity of operator P (∂), we get P (∂)u = 0. Also,

u ∗ E = u1 ∗ E − u2 ∗ E,

and this convolution exists. Then, since E is a fundamental solution,
and by Propositions 4.24, 4.26 and 4.28:

u = u ∗ δ0 = u ∗ (P (∂)E) = u ∗

∑
|α|≤k

aα ∂
αE

 =
∑
|α|≤k

aα (u ∗ ∂αE) =

=
∑
|α|≤k

aα ∂
α(u∗E) =

∑
|α|≤k

aα (∂αu∗E) =

∑
|α|≤k

aα ∂
αu

∗E = 0∗E = 0,

so we get that u1 = u2.

This completes the proof.

So basically (5.2) means that E ∗F is the solution of equation (5.1). This
theorem is pretty useful, since if we can calculate a fundamental solution of
an equation, then we only have to calculate the convolution with the right-
hand side, and we get the solution. This seems to be easy, but of course in
real life applications finding a fundamental solution can be hard.

In the next section we list a few examples of fundamental solutions (you
do not have to memorize them for the exam).



CHAPTER 5. FUNDAMENTAL SOLUTIONS 64

Examples

1. Wave equation:

(a) One dimension:

Proposition 5.2. Let E ∈ L1
loc(R2), such that

E(t, x) :=
1

2
H(t− |x|),

in which H is the Heaviside function. Then E is a fundamental
solution of the one dimensional wave equation in the distributional
sense, i.e. the following holds on R2:

∂2t TE − ∂2xTE = δ0.

(b) Two dimensions: Let

E(t, x) =
H(t− |x|)

2π
√
t2 − |x|2

,

x = (x1, x2) ∈ R2 and H is the Heaviside function.

Proposition 5.3. Then the following holds in R3:

∂2t TE − ∂2x1
TE − ∂2x2

TE = δ0.

(c) Three dimensions: Here E is not a regular distribution, but is de-
fined as:

E(φ) :=

∫ ∞

0

(
1

4πt

∫
S(0,t)

φ(x)dσx

)
dt,

in which x = (x1, x2, x3) ∈ R3, S(0, t) is the surface of the ball
centered at 0 with radius t, and σx is the surface measure.

Proposition 5.4. Then E ∈ D′(R3) and

∂2tE − ∂2x1
E − ∂2x2

E − ∂2x3
E = δ0.

Remark 5.1. The support of E here is part of a convex cone (for
a given t, there is a convex set at which the solution is non-zero),
meaning that the wave propagates only with a finite speed. This is
also true for the solutions of hyperbolic equations in the canonical
form.

2. Heat equation: Let us define E(t, x) as

E(t, x) :=


1

(2
√
πt)n

exp

(
−|x|2

4t

)
, if t > 0, x ∈ Rn

0 , if t ≤ 0, x ∈ Rn

Proposition 5.5. Here E ∈ L1
loc(Rn+1) and

∂tTE −
n∑

j=1

∂2xj
TE = δ0 in Rn+1.
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For the proof, see Exercise 4 on Practice 6.

Remark 5.2. The support of E here is part of a half space (for a given
t, the function is non-zero at almost every point of R+ × Rn), meaning
that the heat propagates with infinite speed (since if the initial heat-
distribution had compact support, after any small time there will be
points arbitrary far from the initial distribution at which the solution is
non-zero) - see Remark 7.4. (In the previous decades some researchers
proposed other operators instead of the Laplacian - these are called frac-
tional Laplacian operators, and using them can result in finite propaga-
tion of heat.)

3. Poisson equation: Let us define E(x) as:

E(x) :=


− 1

(n− 2)ωn

1

|x|n−2
, if n ≥ 3, x ∈ Rn \ {0}

− 1

2π
log

(
1

|x|

)
, if n = 2, x ∈ Rn \ {0},

where ωn is the area of the surface of the n-dimensional ball of unity.

Proposition 5.6. Here E ∈ L1
loc(Rn), and

∆TE = δ0 on Rn \ {0}.

Remark 5.3. It is worth mentioning here that the main method of finding the
fundamental solution of an equation involves the Fourier transform, which is
also an important tool in the theory of partial differential equations.
Also, the Malgrange-Ehrenpreis theorem states that every linear partial dif-
ferential equation with constant coefficients has a fundamental solution, but
these topics are far beyond the scope of this course.

In the next chapters we will observe some concrete PDEs and get their
solutions using the fundamental solutions.



Chapter 6

Cauchy problem of the wave equation

As it was mentioned at the end of the previous chapter, in the next chapters
we observe different concrete types of equations, and try to apply the theory
of fundamental solutions to them to acquire the solutions of these problems.
This week we consider the wave equation, and next week we will talk about
the heat equation, and later the boundary-value problems will be discussed.

As it was defined in Section 1.2.2, the wave equation has the form

∂2t u−∆u+ cu = f, (6.1)

in which c ∈ R, and ∆ is the Laplacian operator taken in the space variables
(and not in t), and f is a given (usually sufficiently smooth) function (the
”source term”).

Definition 6.1. The classical solution of equation (6.1) is such a function
u ∈ C2(Rn+1

+ ) for which (6.1) holds (t ∈ R+, x ∈ Rn, Rn+1
+ = R+ × Rn),

u, ∂tu ∈ C(Rn+1
+ ), and also

u(0, x) = g(x) (x ∈ Rn)

∂tu(0, x) = h(x) (x ∈ Rn)

in which g, h : Rn → R given functions.

So here g and h are the initial conditions, and since we defined our problem
on the whole Rn (meaning that x ∈ Rn), we do not need any boundary
conditions (”the domain does not have a boundary”). One can say that the
”classical solution” is the intuitive one (to be able to solve the equation,
we of course need u to be twice differentiable). However, using the theory
of distributions, we will define a weak solution also. Since this will be a
generalization of the classical solution, we will mostly talk about the general
one, and only consider the classical one as a special case of the weak one.

6.1 Generalized (or weak) solutions

Our first goal is to be able to define our problem not only on Rn+1
+ , but also

on Rn+1 (so t can also be negative). For this, we have to generalize u and f :

ũ(t, x) :=

{
u(t, x) if t ≥ 0,

0 if t < 0.

f̃(t, x) :=

{
f(t, x) if t ≥ 0,

0 if t < 0.

66
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Here ũ ∈ L1
loc(Rn+1) (since u ∈ C(Rn+1

+ )), and we also have to suppose that

f̃ ∈ L1
loc(Rn+1) - for this, f ∈ C(Rn+1) is enough.

Now we state the key proposition of this section, which talks about the
generalization of the classical problem.

Proposition 6.1. Suppose that u is a classical solution of equation (6.1),
and f̃ ∈ L1

loc(Rn+1). Then for ũ (defined as before), the following equation
holds in Rn+1.

∂2t Tũ −∆Tũ + cTũ = Tf̃ + δ′ × Tg + δ × Th. (6.2)

Proof. The statement is proved by direct calculations.
Let φ ∈ D(Rn+1), then

(∂2t Tũ −∆Tũ + cTũ)(φ) = (∂2t Tũ)(φ)− (∆Tũ)(φ) + c(Tũ)(φ) =

By the definition of derivative of distribution:

= (Tũ)(∂
2
tφ)− (Tũ)(∆φ) + c(Tũ)(φ) =

∫
Rn+1

ũ
(
∂2tφ−∆φ+ cφ

)
=

= lim
ε→0+

∫ ∞

ε

∫
Rn

u
(
∂2tφ−∆φ+ cφ

)
(6.3)

Here the first integral corresponds to variable t (time) and the others to the
space ones.

First let us observe the first term of (6.3). For this, we will change the
order the integrals, and first only consider the inner one, i.e. the one in t:∫ ∞

ε

u(t, x)∂2tφ(t, x)dt =

Now by partial integration, and using the fact that φ has compact support
(it is zero at infinity) we get that

= −u(ε, x)∂tφ(ε, x)−
∫ ∞

ε

∂tu(t, x)∂tφ(t, x)dt =

By the same arguments:

= −u(ε, x)∂tφ(ε, x) + ∂tu(ε, x)φ(ε, x) +

∫ ∞

ε

∂2t u(t, x)φ(t, x)dt

Also, by the second Green formula (which will be proved in Chapter 8) we
know that ∫

v∆u− u∆v =

∫
(v∂νu− u∂νv)∂σ

in which ∂ν is the normal derivative. Then by applying this to our second
term of (6.3) (without the integral in time) we get:∫

Rn

u∆φ =

∫
Rn

(∆u)φ

in which we used that φ has compact support (so its values on the boundary
and its normal derivatives are zero).
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Using these two observations we get that∫ ∞

ε

∫
Rn

u
(
∂2tφ−∆φ+ cφ

)
=

= −
∫
Rn

u(ε, x)∂tφ(ε, x)dx+

∫
Rn

∂tu(ε, x)φ(ε, x)dx+

+

∫ ∞

ε

∫
Rn

(
∂2t u(t, x)−∆u+ cu

)
φ(t, x)dtdx

Note that in the last term, we have ∂2t u(t, x) − ∆u + cu, which equals to f
on Rn+1

+ because of our equation.
Then if we take the limit of the expression above, we can use Lebesgue’s

theorem (since φ has compact support), and we get

lim
ε→0+

∫ ∞

ε

∫
Rn

u
(
∂2tφ−∆φ+ cφ

)
=

= −
∫
Rn

u(0, x)∂tφ(0, x)dx+

∫
Rn

∂tu(0, x)φ(0, x)dx+

∫
Rn+1

+

f(t, x)φ(t, x)dtdx =

Now we use the initial conditions:

= −
∫
Rn

g(x)∂tφ(0, x)dx+

∫
Rn

h(x)φ(0, x)dx+

∫
Rn+1

+

f(t, x)φ(t, x)dtdx (6.4)

The only thing left to show is that (6.4) is indeed the right-hand side of (6.2).
For the first term of (6.4):

−
∫
Rn

g(x)∂tφ(0, x)dx = − (δ0 × Tg) (∂tφ) = ∂t (δ0 × Tg) (φ) = (δ′0 × Tg) (φ)

Also, for the second term of (6.4):∫
Rn

h(x)φ(0, x)dx = Th {x→ φ(0, x)} = Th {x→ δ0[t→ φ(t, x)]} =

Now by applying the commutative property of the Cartesian product of dis-
tributions:

= (Th × δ0)(φ) = (δ0 × Th)(φ)

Also, the third term of (6.4) is clearly Tf(φ), which is by definition the same
as Tf̃(φ). Consequently,(

∂2t Tũ −∆Tũ + cTũ
)
(φ) = (δ′ × Tg)(φ) + (δ × Th)(φ) + (Tf̃)(φ),

which gives our statement.

Remark 6.1. It is important to note that supp (Tf + δ′ × Tg + δ × Th) ⊂ Rn+1
+ ,

which means that the next definition makes sense.

Definition 6.2. Let F ∈ D′(Rn+1) be a given functional in a way that

supp(F ) ⊂ Rn+1
+ . Then the general (or weak) solution of (6.1) is such a

distribution v ∈ D′(Rn+1), for which

∂2t v −∆v + cv = F (in Rn+1) (6.5)

and supp(v) ⊂ Rn+1
+ . Equation (6.5) is called the general Cauchy-problem of

the wave equation.
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Then by using Proposition 6.1 we can state the following result, which is
the direct consequence of the definition and Proposition 6.1.

Proposition 6.2. If u is a classical solution of (6.1) and f̃ ∈ L1
loc(Rn+1),

then the distribution v := Tũ (in which ũ is the same as defined before) is a
solution of the general equation (6.5) with F = Tf̃ + δ′ × Tg + δ × Th.

So Proposition 6.2 states that the generalized solution is indeed a gener-
alization of the classical solution.

Now we state the main result of this section, which talks about the exis-
tence and uniqueness of solutions of (6.5).

Theorem 6.3. The generalized Cauchy-problem (6.5) has a unique solution
v ∈ D′(Rn+1) in the form v = E ∗ F , in which E ∈ D′(Rn+1) is such a
fundamental solution of (6.5) for which supp(E) ⊂ {(t, x) ∈ Rn+1 : t ≥ |x|}.

Proof. (Only main ideas)

1. Step 1: It can be shown that there exists such a fundamental
solution of (6.5) denoted by E ∈ D′(Rn+1) for which
supp(E) ⊂ {(t, x) ∈ Rn+1 : t ≥ |x|}.
Then it can be shown that E ∗ F exists, and by Theorem 5.1 we know
that for v = E ∗ F ,

∂2t v −∆v + cv = F (in Rn+1).

Moreover,

supp(v) = supp(E ∗ F ) ⊂ supp(E) + supp(F ) ⊂ Rn+1
+ + Rn+1

+ = Rn+1
+ .

2. Step 2: By Theorem 5.1, there is at most one v ∈ D′(Rn+1) for which
v ∗ E exists, and since supp(E) ⊂ {(t, x) ∈ Rn+1 : t ≥ |x|}, then there

exists at most one v ∈ D′(Rn+1) for which supp(v) ⊂ Rn+1
+ (since v ∗ E

exists for such v distributions).

By Step 1, the distribution defined in Step 2 is a solution, so we proved the
statement.

Now we can get the following result from Theorem 6.3.

Corollary 6.4. The classical problem (6.1) has at most one classical solution.

Proof. Proceeding towards contradiction, let us suppose that there are two solutions, namely
u1 and u2. Then the function u := u1 − u2 is a solution of the equation

∂2t u−∆u+ cu = 0 (in Rn+1),

and also u(0, x) = 0 and ∂tu(0, x) = 0 for all x ∈ Rn. Therefore the distribution v := Tũ (in
which ũ is defined as before) is a solution of the equation

∂2t v −∆v + cv = 0.

We know that supp(v) ⊂ Rn+1
+ , and then by Theorem 6.3 the only solution is v = 0, so

u = 0.
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6.2 Classical solutions

At the end of the previous section, we showed that the classical problem
has at most one solution. The next theorem talks about the form of such
solutions, if they exist.

Theorem 6.5 (The formula of D’Alembert). Let n = 1, c = 0 and suppose
that f ∈ C1(R2

+), g ∈ C2(R) and h ∈ C1(R). Then equation (6.1) has a

unique solution u ∈ C2(R2
+), and it has the form

u(t, x) =
1

2

∫ t

0

∫ x+(t−τ)

x−(t−τ)

f(τ, ξ)dξdτ +
1

2
(g(x+ t) + g(x− t))+

1

2

∫ x+t

x−t

h(ξ)dξ

(6.6)

Proof. The uniqueness comes from Corollary 6.4. We prove the existence in three steps: first
we show that the function (6.6) is a weak solution in the distribution sense of equation (6.5).

Then, in step 2 we show that if the given functions are smooth enough, then u ∈ C2(R2
+),

and then in step 3 we show that this function satisfies the initial conditions.

1. Step 1: We know that the unique solution is in the form E ∗ F , in which

E(t, x) = H(t− |x|)/2,

by Proposition 5.2, and also

F = Tf̃ + δ′ × Tg + δ × Th.

Now we prove that the convolution E ∗F also exists in the classical (or function) sense.

(E ∗ f̃)(t, x) =
∫
R2

f̃(τ, ξ)E(t− τ, x− ξ)dτdξ =

=

∫
|x−ξ|≤t−τ

∫ t

0

1

2
f(τ, ξ)dτdξ =

1

2

∫ t

0

∫ x+(t−τ)

x−(t−τ)
f(τ, ξ)dξdτ.

In the proof of Proposition 6.1 we showed that

(δ × Th)(φ) =

∫
R
h(x)φ(0, x)dx,

which means that

(E ∗ (δ × Th))(φ) = (E ∗ (δ × Th)) [(t, x, τ, ξ) → ψ(τ, ξ)χ(t, x)φ(t+ τ, x+ ξ)] =

= (δ × Th) {(τ, ξ) → ψ(τ, ξ)TE [(t, x) → χ(t, x)φ(t+ τ, x+ ξ)]} =

=

∫
R
h(ξ)ψ(0, ξ)

∫
R2

E(t, x)χ(t, x)φ(t, x+ ξ)dtdxdξ,

in which ψ = 1 in a neighborhood of the half-space R2
+ and χ = 1 in a neighborhood

of the cone {(t, x) ∈ R2 : t ≥ |x|}. Then by applying the theorem of Fubini,

(E ∗ (δ × Th))(φ) =

∫
R
h(ξ)ψ(0, ξ)

∫
R2

E(t, x)χ(t, x)φ(t, x+ ξ)dtdxdξ =

=

∫
R2

∫
R
h(ξ)ψ(0, ξ)E(t, x)χ(t, x)φ(t, x+ ξ)dξdtdx =

=

∫
R2

∫
R
h(ξ)ψ(0, ξ)E(t, x̃− ξ)χ(t, x̃− ξ)φ(t, x̃)dξdtdx̃ =

=

∫
R2

φ(t, x̃)

(
1

2

∫
|x̃−ξ|≤t

h(ξ)ψ(0, ξ)χ(t, x̃− ξ)dξ

)
dtdx̃ =
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=

∫
R2

φ(t, x̃)

(
1

2

∫
|x̃−ξ|≤t

h(ξ)dξ

)
dtdx̃.

This basically means that E ∗ (δ × Th) = Tv, where

v(t, x̃) =
1

2

∫
|x̃−ξ|≤t

h(ξ)dξ =
1

2

∫ x̃+t

x̃−t
h(ξ)dξ.

By similar arguments,

(E ∗ (δ′ × Tg))(φ) = −
∫
R2

∂tφ(t, x̃)

(
1

2

∫
|x̃−ξ|≤t

g(ξ)dξ

)
dtdx̃ =

= −
∫
R2

∂tφ(t, x̃)

(
1

2

∫ x̃+t

x̃−t
g(ξ)dξ

)
dtdx̃. (6.7)

Now we use that φ has a compact support, and the fact that

∂

∂t

(
1

2

∫ x̃+t

x̃−t
g(ξ)dξ

)
=

1

2
(g(x+ t) + g(x− t)) .

With these, if we apply integration by parts on (6.7), we get

(E ∗ (δ′ × Tg))(φ) =

∫
R2

φ(t, x̃)

(
1

2
(g(x+ t) + g(x− t))

)
dtdx̃,

which means that E ∗ (δ × Th) = Tw, where

w(t, x) =
1

2
(g(x+ t) + g(x− t)).

To sum it up, we got that if F = Tf̃ + δ′ × Tg + δ × Th, then E ∗ F = Tu, where u has
the form (6.6).

2. Step 2: In this step we show that the function u defined in (6.6) is in C2(R2
+).

This is a consequence of the smoothness of the functions involved in the formula and
the properties of parametric integrals. Since u is twice continuously differentiable, its
classical and weak (or distributional) derivatives are the same. Now since u is a solution
of the equation in the weak sense, then by Proposition 6.2 u is a classical solution too.

3. Step 3: In this step we show that the initial conditions are satisfied. By the formula
it is evident that u(0, x) = h(x), and also

∂tu(t, x) =
1

2

∫ t

0

f(τ, x+ (t− τ)) + f(t, x− (t− τ))dτ+

+
1

2
(g′(x+ t)− g′(x− t)) +

1

2
(h(x+ t) + h(x− t)),

meaning that ∂tu(0, x) = h(x).

Then our statement is proved.

Formula (6.6) is called D’Alembert’s formula. (You don’t have to know
the correct form by heart, but you have to be able to recognize it.)

If n > 1, then a similar, but more complicated formula can be proved.

Remark 6.2 (Huygens principle). An interesting phenomena happens when
we move into more dimensions: the solutions might have different behavior.

If we drop a little rock into a pond which have a still surface, waves will
start to form, and not only one wave, but several different ones, starting
from the point of impact. This process is called wave diffusion, and happens
for the solutions of the wave equation in every even dimensional space (the
surface of the lake is a two-dimensional space).



CHAPTER 6. CAUCHY PROBLEM OF THE WAVE EQUATION 72

However, let us think of a lamp. When we switch it on, its light will travel
like a wave with the speed of light, but we will only have just one wavefront,
and no several other waves. This wavefront behavior happens in the case of
odd dimensional spaces (we live in a 3-dimensional space).

This phenomena is called the Huygens principle.

In the next chapter we observe the heat equation, and state similar theo-
rems as in this one.



Chapter 7

Cauchy problem of the heat equation

In the previous chapter we focused on the wave equation. After we defined
the classical problem, we generalized it, and after proving the existence and
uniqueness of solutions for this latter one, we also saw the form of the classical
solution in one dimension. This time we proceed in a similar way, but now
defining all these things for the heat equation.

As it was defined in Section 1.2.1, the heat equation has the form

∂tu−∆u = f (7.1)

in which the Laplace operator ∆ is only taken in the 2nd, 3rd, . . . nth variable
(since the first one is time, and the Laplacian describes movement in space).

Note that since in equation (7.1) we only take the first derivative of u with
respect to time, we only need it to be once continuously differentiable in t.
Because of this, we define a new set of functions, namely:

C1,2(Rn+1
+ ) := {u : Rn+1

+ → R : ∂tu ∈ C(Rn+1
+ ), ∂iju ∈ C(Rn+1

+ ), i, j ̸= 0}.

So this space has all the functions which can be continuously differentiated
with respect to t, and can be continuously differentiated twice with respect
to the space variables.

As in the previous chapter, we first define the classical solutions of equation
(7.1).

Definition 7.1. The classical solution of equation (7.1) is such a function
u ∈ C1,2(Rn+1

+ ), for which

� (7.1) holds (in the classical sense)

� u ∈ C(Rn+1
+ )

� u(0, x) = g(x) (x ∈ Rn) holds, where g : Rn → R is a given function.

As in the case of the wave equation, instead of observing the classical
solutions, we define and state results for the generalized solutions first, and
then they will also hold for the classical ones.

7.1 Generalized (or weak) solutions

As before, our first goal is to define all of our functions in Rn+1 instead of
Rn+1

+ .

ũ(t, x) :=

{
u(t, x) if t ≥ 0,

0 if t < 0.

73



CHAPTER 7. CAUCHY PROBLEM OF THE HEAT EQUATION 74

f̃(t, x) :=

{
f(t, x) if t ≥ 0,

0 if t < 0.

Here ũ ∈ L1
loc(Rn+1) (since u ∈ C(Rn+1

+ )), and we also have to suppose that

f̃ ∈ L1
loc(Rn+1) - for this, f ∈ C(Rn+1

+ ) is enough.
Now we state the key result of this chapter.

Proposition 7.1. Suppose that u is a classical solution of (7.1), and
f̃ ∈ L1

loc(Rn+1). Then the following holds for ũ:

∂tTũ −∆Tũ = Tf̃ + δ × Tg.

The proof is similar to the proof of Proposition 6.1, so it is skipped.

Remark 7.1. Here supp(Tf̃ + δ × Tg) ⊂ Rn+1
+ , so the next definition makes

sense.

Definition 7.2. Let F ∈ D′(Rn+1) be a given functional in a way that

supp(F ) ⊂ Rn+1
+ . Then the general (or weak) solution of (7.1) is such a

distribution v ∈ D′(Rn+1) for which

∂tv −∆v = F (in Rn+1) (7.2)

and supp(v) ⊂ Rn+1
+ . Equation (7.2) is called the general Cauchy-problem

of the heat equation.

Then by using Proposition 7.1 we can state the following result, which is
the direct consequence of the definition and Proposition 7.1.

Proposition 7.2. If u is a classical solution of (7.1) and f̃ ∈ L1
loc(Rn+1),

then the distribution v := Tũ (in which ũ is the same as defined before) is a
solution of the general equation (7.2) with F = Tf̃ + δ × Tg.

So Proposition 7.2 states that the generalized solution is indeed a gener-
alization of the classical solution.

Now we would like to compute such a generalized solution. We know that
these can be written as v = E ∗ F , in which F is the right-hand side of(7.2),
and E is the fundamental solution of the equation, namely:

E(t, x) :=


1

(2
√
πt)n

exp

(
−|x|2

4t

)
if t > 0

0 if t ≤ 0.

The problem here is that the convolution E ∗ F might not exist for all F
functions: we need that the functions F exp(−|x|2) are integrable. However,

one can define such a set of distribution M̃ for which E ∗ F exists.

We are introducing a special set of functions, for which this property will hold.

Definition 7.3. Let M be the set of such measureable functions
f : Rn+1 → R for which

� f(t, x) = 0 if t < 0, and

� f |[0,T ]×Rn ∈ L∞([0, T ]× Rn) for all T > 0.
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So M contains such functions which are zero for t < 0 (before our process), and which
are bounded (in the L∞-sense) on any finite time interval. The next proposition states that
these functions are good choices in the sense that the convolution E ∗ f is well defined for
them.

Proposition 7.3. If f ∈ M, then E ∗ f exists, and E ∗ f ∈ M.

Proof. It is easy to see that if f ∈ M, then f ∈ L1
loc(Rn+1). It can also be proved that

E ∈ L1
loc(Rn+1) (see Exercise 4 from Practice 6, which is also copied here).

Let K ⊂ R×Rn be a compact set. Then there is a T > 0, for which K ⊂ [−T, T ]×Rn.
Let t > 0 be fixed, and we apply the substitution ξ = x

2
√
t
. Then the absolute value of the

Jacobian of this transformation is
(
2
√
t
)n
, meaning that∫

Rn

E(t, x)dx =

∫
Rn

1(
2
√
πt
)n e−|ξ|2

(
2
√
t
)n
dξ =

1

(
√
π)

n

∫
Rn

e−|ξ|2dξ = 1.

Then by using these arguments, we get∫
K

|E| =
∫
K

E ≤
∫ T

−T

(∫
Rn

E(t, x)dx

)
dt = 2T <∞.

Now by definition:

(E ∗ f)(t, x) =
∫
Rn+1

E(τ, ξ)f(t− τ, x− ξ)dτdξ ≤

Since if t < 0 we know that f(t, x) = 0, so

≤
∫ t

0

∫
Rn

E(τ, ξ)|f(t− τ, x− ξ)|dξdτ ≤

≤ ∥f∥L∞([0,t]×Rn)

∫ t

0

∫
Rn

E(τ, ξ)dξdτ

We also know by Exercise 4 (see the small text above) that
∫
Rn E(τ, ξ)dξ = 1, and E(t, x) = 0

for t < 0, so we got that
|(E ∗ f)(t, x)| ≤ t · ∥f∥L∞([0,t]×Rn).

Now t · ∥f∥L∞([0,t]×Rn) is finite, so for T > 0 we got that
(E ∗ f)|(0,T )×Rn ∈ L∞([0, T ] × Rn), so E ∗ f exists (in the function sense), and for t < 0
we know that (E ∗ f)(t, x) = 0. Consequently, E ∗ f ∈ M.

Note that in Proposition 7.3 we are considering functions, but for the generalized solution,
we need the convolution of distributions. However, if E ∗ f exists, then we know that
E ∗ f ∈ L1

loc(Rn+1), meaning that we can define regular distributions corresponding to them.

Definition 7.4. Let M̃ be the set of the distributions in the form

F =
∑
|α|≤m

aα∂
αTfα ,

in which aα ∈ R, fα ∈ M and m ∈ N are arbitrary.

So now we have a set of distributions - the next proposition states that they will be an
appropriate choice.

Proposition 7.4. If F ∈ M̃, then E ∗ F exists in the distribution sense, and E ∗ F ∈ M̃.

Proof. The statement can be proved by direct calculations.
Let us suppose that F ∈ M̃. If fα ∈ M, then E ∗fα exists in the function sense (because

of the previous proposition), and E ∗ fα ∈ M. Then by the theory of the convolution of
distributions,

TE ∗ Tfα = TE∗fα ,

∂α (TE ∗ Tfα) = TE ∗ ∂αTfα .
From which we get that

E ∗ F = TE ∗
∑
|α|≤m

aα∂
αTfα =

∑
|α|≤m

aα∂
α(TE ∗ Tfα) =

∑
|α|≤m

aα∂
αTE∗fα

and then since E ∗ fα ∈ M, we get that E ∗ F ∈ M̃.
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This means that for F ∈ M̃ the convolution E ∗ F exists, so we can state our main
theorem.

Theorem 7.5. Let F ∈ M̃. Then the general parabolic Cauchy-problem (7.2)

has a unique solution v ∈ M̃, i.e. v = E ∗ F , in which E is the fundamental
solution defined above and F is the right-hand side of the equation.

Proof. Since F ∈ M̃, then by Proposition 7.4 E ∗ F exists and it is in M̃. By Theorem 5.1
we know that the solution is in the form v = E ∗ F . Moreover, by Proposition 4.27,

supp(v) ⊂ suppE + suppF ⊂ Rn+1
+ + Rn+1

+ = Rn+1
+ .

Uniqueness is a consequence of Theorem 5.1, since we know that equation (7.2) can at most
one such v ∈ D′(Rn+1) solution for which v ∗E exists, but by Proposition 7.4 we know that
if v ∈ M, then v ∗ E exists.

By the previous Propositions we get the following result from the Theorem.

Corollary 7.6. The classical Cauchy problem has at most one such solution
u for which for every T > 0 it holds that

u|[0,T ]×Rn ∈ L∞([0, T ]× Rn).

Remark 7.2. If we do not require the boundedness of the solutions, it might
happen that our heat equation has several other solutions. For further details,
see Remarks 7.5 and 7.6.

7.2 Classical solutions

By the end of the previous section, we showed that the classical problem
has at most one such solution which is bounded. The next theorem (which
is stated without a proof) talks about the form of such bounded (and thus,
physically important) solutions.

Theorem 7.7. Suppose that f ∈ C1,2(Rn+1
+ ), g ∈ L∞(Rn) ∩ C(Rn) and

∂k∂αf ∈ L∞([0, T ] × Rn), for all T > 0, 2k + |α| ≤ 2 (k ≥ 0). Then equa-
tion (7.1) has exactly one such solution u which is bounded on all regions
[0, T ]× Rn (T > 0), and it has the form

u(t, x) =

∫ t

0

1

2
√
π(t− τ)

∫
Rn

f(τ, ξ) exp

(
− |x− ξ|2

4(t− τ)

)
dξdτ+

+
1

(2
√
πt)n

∫
Rn

g(ξ) exp

(
−|x− ξ|2

4t

)
dξ

(7.3)

(You are not required to know this formula by heart, but you have to be
able to recognize it.)

Proof. Uniqueness is a guaranteed by Corollary 7.6.
For the existence, it can be proved that the solution of the weak problem (7.2) is the

regular distribution corresponding to the function (7.3). By the assumptions of the theorem,
this functions is locally integrable, and it is a solution of the classical Cauchy problem
(7.1).
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Remark 7.3. Note that the smoothness assumption for function g are only
needed for the initial condition to hold. It can also be seen that if we only
assume that g ∈ L∞, then the second term of (7.3) can be differentiated
any number of times, which means that even if the initial function g is not
continuous, then the solution will be continuous: this is sometimes called the
smoothing effect of the heat equation. However, if g is continuous, then

lim
(t,x)→(0,x0)

u(t, x) = g(x0)

also holds.

Remark 7.4. If f = 0, and g is non-negative, but is zero outside of a compact
set, then for any t > 0, the solution is positive at any point x. This practically
means that if the initial heat was concentrated at just a bounded interval,
then it can get to any point in any small time, meaning that the heat transfers
infinitely fast. This seems to contradict the principle of Einstein about that
nothing can move faster than lightspeed. However, those positive values very
far from the initial concentration are very small, so they might not even make
sense physically - see Planck temperature.

Remark 7.5. Note that even in the case f = 0, g = 0, there are infinitely
many solutions of the parabolic equation, which also tend to infinity pretty
quickly. A construction of such functions were given by Tikhonov. The
previous theorem says that there is only one of these solutions which behaves
as expected (in a physically reasonable way) and it has the form (7.3).

Remark 7.6. The solution of problem (7.1) with a physically reasonable be-
havior is also unique on a more general set of functions.
Let us define Mσ to be a set of functions u : Rn+1

+ → R, for which for all
T > 0 there are some cT , aT constants for which

|u(t, x)| ≤ cT exp (aT |x|σ)

if 0 ≤ t ≤ T , x ∈ Rn. Then it can be shown that the classical solution
is unique on M2, but there are infinitely many solutions on Mσ if σ > 2.
However, Widder’s theorem states that only one of these infinitely many
solutions is non-negative. However, these topics are far beyond the scope of
this course.

7.3 Maximum principle and uniqueness of the classical

solutions (skipped in 2024)

This whole section was skipped in 2024.
In this section we show another proof for the uniqueness of solutions using a result which

is one of the most famous theorems in the theory of PDEs called maximum principle.
Lt us assume that Ω ⊂ Rn and T > 0. We are also going to define the parabolic cylinder as

QT = (0, T ] × Ω and the parabolic boundary
ΓT = QT \QT = ({0} × Ω) ∪ ([0, T ]× ∂Ω).

Theorem 7.8 (Weak maximum principle). Let us consider the function
u ∈ C1,2([0, T ]× Ω) ∩ C(QT ) for which

∂tu−∆u ≤ 0 on QT .

Then, the maximum of the function u is on the boundary ΓT , meaning that

max
QT

u = max
ΓT

u.
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Proof. We prove the statement in two steps: first we show the statement in the case of
∂tu−∆u < 0, and in step two we consider the general case.

1. Step 1: Let us assume that ∂tu−∆u < 0. Our goal is to show that in this case

max
QT

u = max
ΓT

u.

We prove the statement by contradiction: let us assume that there is a point (t0, x0) ∈
QT such that u(t0, x0) = maxQT

u (so the maximum is not on the boundary). Now we
have two consider two cases:

� If t0 < T , then (t0, x0) is a local maximum, meaning that
∂tu(t0, x0) = 0. Also, ∂2ju(t0, x0) ≤ 0, and from this we have ∆u(t0, x0) ≤ 0.
By substitution, we have

∂tu(t0, x0)−∆u(t0, x0) ≥ 0,

which is a contradiction.

� If t0 = T , then ∂tu(t0, x0) ≥. Also, ∂2ju(t0, x0) ≤ 0, and from this we have
∆u(t0, x0) ≤ 0. By substitution, we have

∂tu(t0, x0)−∆u(t0, x0) ≥ 0,

which is a contradiction.

2. Step 2: Now let us assume that ∂tu−∆u ≤ 0 on QT . We define the function

uε(t, x) := u(t, x)− εt

where ε > 0. Then,
∂tuε −∆uε = ∂tu−∆u < 0,

so the arguments of step 1 hold for the function uε, meaning that

max
QT

uε = max
ΓT

uε.

Since uε → u uniformly on QT , then

max
QT

u = max
ΓT

u.

Thus, the statement is proved.

Now we can state a more general result.

Theorem 7.9 (Maximum principle for the heat equation). Let us consider the bounded
function u ∈ C1,2((0, T ]× Rn) ∩ C([0, T ]× Rn) for which

∂tu−∆u ≤ 0 on (0, T ]× Rn.

Then, the supremum of the function u is at time t = 0, meaning that

sup
[0,T ]×Rn

u = sup
x∈Rn

u(0, x).

Proof. It is enough to prove that

sup
[0,T ]×Rn

u ≤ sup
x∈Rn

u(0, x). (7.4)

Equality (7.4) is a consequence of the following: for all points

(t0, x0) ∈ Rn+1
+ we have

u(t0, x0) ≤ sup
x∈Rn

u(0, x). (7.5)

Let us assume that |u| ≤M on [0, T ]×Rn (such anM > 0 number exists since u is bounded)
and for a fixed R > 0 number let us define

v(t, x) =
|x|2

2n
+ t.

Let us also use the notation Q = (0, T ]×B(x0, R).
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Lemma 7.10. For every point (t0, x0) ∈ Rn+1
+ and for all µ > 0 numbers we have

u(t0, x0)− µv(t0, x0) ≤ sup
x∈Rn

u(0, x). (7.6)

If this lemma holds, then we get inequality (7.5) as µ → 0, and consequently our state-
ment.

Proof of Lemma 7.10. For equality (7.6) it is enough to prove that

max
QT

(u− µv) ≤ sup
x∈Rn

u(0, x).

By simple calculations one can show that ∂tv −∆v = 0, meaning that

∂t(u− µv)−∆(u− µv) ≤ 0.

Therefore, the weak maximum principle (Theorem 7.8) can be applied to the term u − µv,
meaning that

max
QT

(u− µv) = max
ΓT

(u− µv).

Then, it is enough to prove that

max
ΓT

(u− µv) ≤ sup
x∈Rn

u(0, x).

Now we have two cases:

� If we are on {0} ×B(0, R), then since v ≥ 0 and µ > 0:

max
{0}×B(0,R)

(u− µv) ≤ max
x∈B(0,R)

u(0, x) ≤ sup
x∈Rn

u(0, x).

� If we are on [0, T ] × S(0, R) (here S(0, R) is the boundary of the disc B(0, R)), then

since v(t, x) =
R2

2n
+ t ≥ R2

2n
, meaning that

max
[0,T ]×S(0,R)

(u− µv) ≤M − µ
R2

2n
.

If R → ∞, then the right-hand side of the inequality tends to −∞, so there is such a
large R value for which

max
[0,T ]×S(0,R)

(u− µv) ≤ sup
x∈Rn

u(0, x).

Consequently,
max
ΓT

(u− µv) ≤ sup
x∈Rn

u(0, x),

which proves the lemma.

Thus, the original statement is proved.

Other than helping us in the search for the possible places for the maximum of the
solution of the heat equation, one can also use the previous result to prove that there is a
unique bounded solution of the heat equation.

Theorem 7.11 (Unique bounded solutions of the heat equation). Let us consider the heat
equation {

∂tu−∆u = f,

u(0, x) = g,

in which f ∈ C([0, T ] × Rn) and g ∈ C(Rn). Then, it has at most one bounded solution
u ∈ C1,2([0, T ]× Rn).



CHAPTER 7. CAUCHY PROBLEM OF THE HEAT EQUATION 80

Proof. Let us assume that u1 and u2 are two bounded solutions of the equation. Then it is
easy to see that u = u1−u2 is the solution of the homogeneous heat equation, meaning that{

∂tu−∆u = 0,

u(0, x) = 0.

Then, the maximum principle can be applied to the solution, meaning that

sup
QT

u = sup
x∈Rn

u(0, x) = 0.

Thus, u ≡ 0 (since the solution is non-negative), so u1 = u2, meaning that the solution is
unique.

In the next chapter we observe elliptic problems, and by using them we
start our journey towards Sobolev spaces.



Chapter 8

Boundary-value problems (Elliptic
problems)

In the last two chapters we discussed initial-value, or Cauchy-problems. The
feature they had in common was that the function we were searching for
was depending on time, and also that our space was assumed to be infinite.
Although these models form a relatively solid base for our further studies,
they are not that useful in practice, since in reality our physical processes
usually take place in a bounded domain and not in an infinite space. Because
of this, in practice most of the problems which are considered are boundary-
value problems, meaning that the processes take place on some bounded
(usually connected) domain, and some boundary conditions are given. In
this chapter we focus on the easiest class of these, namely elliptic boundary-
value problems. This usually means that our solutions do not depend on
time: these functions can be thought of as the stationary (i.e. constant in
time) solutions of a time-dependent problem.

8.1 Recap, main ideas

In Section 1.2.1, the stationary heat equation was defined as

− div(k grad(u)) = f inside Ω, (8.1)

in which k : Ω → R is the thermal conductivity, and f : Ω → R is the source
term (these are given functions).

If we apply the choice k = 1 to equation (8.1), we get

−∆u = f, (8.2)

which is the Poisson equation, and the operator u → ∆u = div(grad(u))
is the Laplace operator.

If k = 1 and f = 0, we get

−∆u = 0, (8.3)

which is called the Laplace equation.
An interesting question is the reason for the minus sign on the left-hand

side. The answer is that the operator −∆ is a positive operator (meaning
that (−∆u, u) ≥ 0, in which (., .) is the inner product defined on the space
of functions), and all of its eigenvalues are positive. Since these eigenvalues
show up in the series expansion of the solution of these equations (see Section

81
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8.4 for details) and people usually like positive numbers more than negative
ones, the equations are defined in this way. (For a physical reason, see Section
1.2.1.)

In the case of boundary-value problems, the boundary conditions (Dirich-
let, Neumann, Robin) play an important role: sometimes even the problems
are named after them (e.g. Dirichlet problem). From now on, the problems
equipped with the first-type, (i.e. Dirichlet), the second-type (i.e. Neumann)
and the third-type (i.e. Robin) boundary conditions will be called first-type,
second-type and third-type boundary-value problems, respectively.

Our goal in this chapter is to prove some statements concerning the exis-
tence and uniqueness of the solutions of equations (8.2) and (8.3). As it was
mentioned before, the solutions vary considerably in the cases of the different
boundary conditions - however, it is easy to see that the Robin boundary
condition is the generalization of the other two, so it is enough to consider
just this third one. Also, instead of considering Equation (8.1), we are going
to prove our statements for a more general equation, namely

− div(p grad(u)) + qu = f inside Ω, (8.4)

in which p ∈ C1(Ω) and q ∈ C(Ω) are given functions. It turns out that
observing this equation is not much harder than equation (8.1), so we will
prove theorems concerning this later one (and the desired results are just
some special cases of these latter ones).

In the next section we introduce some useful theorems which are necessary
in the proofs of our main results.

8.2 Theoretical background

In this section we introduce the main technical tools needed in the main proof
of this chapter, namely the formulas of Green. For their proofs, we also need
the Gauss-Ostrogradski theorem.

Theorem 8.1 (Gauss-Ostrogradsky theorem). Let Ω ⊂ R be a compact set
with a piece-wise smooth boundary. Suppose that f : Ω → Rn is a continu-
ously differentiable function (meaning that its coordinate functions are inside
C1(Ω)). Then ∫

Ω

divf =

∫
∂Ω

⟨f, ν⟩ dσ (8.5)

in which ν is the normal of ∂Ω (and ⟨., .⟩ is the usual inner product).

(The proof is skipped, since I assume that you’ve learned about this the-
orem before.)

Remark 8.1. (8.5) can be expressed in the following form: if g : Ω → R, then∫
Ω

∂jg =

∫
∂Ω

g νjdσ j = 1, . . . n (8.6)

in which ν = (ν1, . . . νn) is the normal of ∂Ω pointing out of Ω. Note that we
get the previous result if g is one of the coordinate functions of f and add all
of the equations of (8.6).
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Now we state the first Green identity.

Theorem 8.2 (First (or asymmetric) Green theorem). Let u ∈ C2(Ω),
v ∈ C1(Ω), p ∈ C1(Ω), and Ω is bounded and has smooth boundary. Then
∀j = 1, . . . , n, the following holds:∫

Ω

v ∂j (p ∂ju) = −
∫
Ω

p ∂ju ∂jv +

∫
∂Ω

p v ∂ju νj dσ

Note that the inner product grad(u) · ν is usually denoted by ∂νu.

Proof. Let us define g = v (p ∂ju). By differentiating it, we get

∂jg = v ∂j (p ∂ju) + p ∂ju ∂jv. (8.7)

So if we apply the Gauss-Ostrogradski theorem (in the form (8.6)) to g, we
get: ∫

Ω

∂jg =

∫
∂Ω

g · νjdσ (8.8)

Now by substituting the definition of g and (8.7) into (8.8):∫
Ω

v ∂j (p ∂ju) +

∫
Ω

p ∂ju ∂jv =

∫
∂Ω

p v ∂ju νj dσ,

which gives our statement.

Remark 8.2. The usual form of the first Green theorem (sometimes called
Green’s first identity or first Green formula) which can be found in textbooks
is ∫

Ω

v div (p grad u) = −
∫
Ω

p grad u grad v +

∫
∂Ω

p v ∂νu dσ

In some cases p = 1, so in these cases we have∫
Ω

v∆u = −
∫
Ω

grad u grad v +

∫
∂Ω

v ∂νu dσ

Now we state the second Green theorem, which is in fact a consequence
of the previous one.

Theorem 8.3 (Second (or symmetric) Green theorem). Let u, v ∈ C2(Ω),
p ∈ C1(Ω), and Ω is bounded and has smooth boundary. Then∫

Ω

v div (p grad u)− u div (p grad v) =

∫
∂Ω

p (v∂νu− u∂νv) dσ.

Proof. By applying the first Green theorem for v and u, and then for u and
v: ∫

Ω

v div (p grad u) = −
∫
Ω

p grad u grad v +

∫
∂Ω

p v ∂ju νj dσ∫
Ω

u div (p grad v) = −
∫
Ω

p grad u grad v +

∫
∂Ω

p u ∂jv νj dσ

Now by subtracting these from each other, we get the statement.

Remark 8.3. In the special case of p = 1, the second Green identity takes the
form ∫

Ω

v ∆u− u∆v =

∫
∂Ω

(v∂νu− u∂νv) dσ,

which is the usual form found in textbooks.
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Remark 8.4. The above two identities also hold in a more general domain,
namely if Ω has a Lipschitz boundary (meaning that the boundary can
be viewed as a graph of a function with the Lipschitz property), or when
u ∈ C2(Ω) ∩ C1(Ω) and div (p grad u) ∈ L1(Ω).

By having our technical background, we can now start to state and prove
our main results.

8.3 Classical boundary-value problems

First we define classical boundary-value problems.

Definition 8.1. Let Ω ⊂ Rn be a bounded, connected and open set. Also,
p ∈ C1(Ω), p > 0, q ∈ C(Ω), f ∈ C(Ω), g, h, φ ∈ C(∂Ω) given func-
tions. Then the classical, third-type boundary-value problem means
the search for such u ∈ C2(Ω) ∩ C1(Ω) functions, for which{

−div(p grad(u)) + qu = f inside Ω,

gu|∂Ω + h∂νu|∂Ω = φ.
(8.9)

If g = 1 and h = 0, we get the Dirichlet-boundary, and in the case of g = 0
and h = 1, we get the Neumann one, so it is in fact a generalization of those
two.

Remark 8.5. In practice, sometimes it is more useful to define different bound-
ary conditions at different parts of the boundary (e.g. on one side of the
domain there is a Dirichlet one, and on some other part we have a Neumann
one), but we will not discuss those cases here.

Now we state our main theorem.

Theorem 8.4. Let Ω ⊂ Rn be a bounded, connected and open set with
smooth boundary. Also, p ∈ C1(Ω), p > 0, q ∈ C(Ω), q ≥ 0, f ∈ C(Ω),
g, h, φ ∈ C(∂Ω) given functions for which gh ≥ 0 and g + h ̸= 0. Then:

� If q = g = 0 does not hold, then there is at most one solution u ∈ C2(Ω)
of the boundary-value problem (8.9).

� If q = g = 0, then if there is a solution u ∈ C2(Ω) of the boundary-value
problem (8.9), then there are infinitely-many other ones as well, which
only differ from this one in a constant (so their difference is a constant
function).

Proof. We prove the theorem in two steps.

1. Step 1: If u1 and u2 are two solutions of our equation, then by linearity
of the equation we get that u := u1−u2 is the solution of the boundary-
value problem with f = 0 and φ = 0 (since we can subtract them from
each other). Because of this, our goal is to show that this u function is
zero, meaning that in the case of f = 0 and φ = 0, the problem (8.9)
has only the constant zero function as a solution if u ∈ C2(Ω).
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2. Step 2: In this part we show that if u ∈ C2(Ω) is a solution of (8.9)
with f = 0 and φ = 0, namely{

−div(p grad(u)) + qu = 0 inside Ω,

gu|∂Ω + h∂νu|∂Ω = 0,

then u = 0. For this, let us use the notation

Lu := −div(p grad(u)) + qu.

Now we know that Lu = 0, meaning that
∫
Ω u Lu = 0. Also,∫

Ω

u Lu = −
∫
Ω

u div(p grad(u)) + qu2 = (8.10)

Now let us apply the first Green theorem with u = v to the first term of
the right-hand side of (8.10):

=

∫
Ω

p grad u grad u−
∫
∂Ω

p u ∂νu dσ +

∫
Ω

qu2.

Now let us observe the middle term −
∫
∂Ω

p u ∂νu dσ.

� If h(x) = 0, then from the boundary-condition we get that
gu|∂Ω = 0, but since g+ h ̸= 0 and h = 0, then g ̸= 0, meaning that

since gu|∂Ω = 0, then u|∂Ω = 0. In this case −
∫
∂Ω

p u ∂νu dσ = 0.

� If h(x) ̸= 0, then from the boundary-condition:

gu|∂Ω + h∂νu|∂Ω = 0,

∂νu|∂Ω = −g
h
u|∂Ω.

In this case the second term is

−
∫
∂Ω

p u ∂νu dσ =

∫
∂Ω

p
g

h
u2 dσ ≥ 0,

since p > 0, and since gh ≥ 0, we have
g

h
≥ 0.

In conclusion,

−
∫
∂Ω

p u ∂νu dσ ≥ 0,

which means that

0 =

∫
Ω

uLu ≥
∫
Ω

(
p |grad u|2 + qu2

)
≥ 0

This can only hold if all of the inequalities are equalities, meaning that
grad u = 0, so u is a constant function, and we also know that qu2 = 0.

� If q ̸= 0, then since qu2 = 0, we get that u = 0, meaning that
u1 = u2.

� If q = 0, then u is some constant function.



CHAPTER 8. BOUNDARY-VALUE PROBLEMS (ELLIPTIC PROBLEMS) 86

Therefore, we have four cases:

� If q ̸= 0, then u = 0, so there is at most one solution.

� If q = 0 but g ̸= 0 and h = 0 (special first BVP), then by the previous
arguments we have u|∂Ω = 0 and we know that u is a constant function,
so u = 0 on Ω (meaning that there is at most one solution).

� If q = 0 but g ̸= 0 and h ̸= 0 (special third BVP), then we know that u
is a constant function. But then ∂νu = 0, so since g ̸= 0 and h ̸= 0, the
boundary condition can only hold if u|∂Ω = 0, but since u is constant,
we have u = 0 on Ω (meaning that there is at most one solution).

� If q = 0 but g = 0 (special second BVP), then we only know that u
is constant, so we might have infinitely many solutions, but they only
differ from each other in a constant, i.e. u1 = u2 + const.

Thus, we got the statement of the theorem.

The above theorem states that in some cases we can have at most one
solution, but it does not talk about the existence of such solutions. In the
general case the proof of existence might be hard, but for a given right-
hand side it can be done easily (see the corresponding Practice part, namely
Practice 9).

Corollary 8.5. The first and second boundary-value problems can also have
only one solution, if p > 0 and q > 0.

� First BVP (Dirichlet): There is at most one solution even for q = 0.

� Second BVP (Neumann): If q = 0, then there can be infinitely-many
solutions, but with a constant difference.

In the next section we define eigenvalue-problems, which are used to solve
boundary-value problems.

8.4 Eigenvalue-problems

As mentioned before, eigenvalue-problems (or EVPs) are used to solve boundary-
value problems through the method of Fourier, which will be discussed at the
end of this section.

Let us define the following linear operator L : Dom(L) ⊂ L2(Ω) → L2(Ω)
with domain

Dom(L) := {u ∈ C2(Ω) ∩ C1(Ω) : Lu ∈ L2(Ω), gu|∂Ω + h∂νu|∂Ω = 0}

and Lu := −div(p grad(u)) + qu.
Note that in this case the solution of Lu = f means the 3rd boundary-

value problem with φ = 0.
In this section we search for the eigenvalues of this L operator, i.e. search

for such numbers λ ∈ R (eigenvalues) and functions u ∈ Dom(L), u ̸≡ 0
(eigenfunctions) for which the following holds:

Lu = λ u.

Now we state the precise definition:
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Definition 8.2. Let Ω ⊂ Rn be a bounded, connected and open set with a
smooth boundary. Also, p ∈ C1(Ω), p > 0, q ∈ C(Ω), g, h ∈ C(∂Ω) given
functions. Then in the third-type eigenvalue-problem (EVP) we search
for such λ ∈ R numbers (eigenvalues) and such u ∈ C2(Ω) ∩ C1(Ω), u ̸≡ 0
functions (eigenfunctions) for which the following holds:{

−div(p grad(u)) + qu = λu inside Ω,

gu|∂Ω + h∂νu|∂Ω = 0.
(8.11)

Here λ is the eigenvalue, and u is the eigenfunction of operator L (as
defined before).

Similarly as before, we can define the first and second EVPs also:

� If g = 1 and h = 0, then we have the first eigenvalue-problem (and here
we only require u ∈ C2(Ω) ∩ C(Ω), since there is no derivative in the
boundary condition).

� If g = 0 and h = 1, then we have the second eigenvalue-problem.

Now we can state the main theorem of this section:

Theorem 8.6. Under the above conditions, and also assuming that q ≥ 0,
gh ≥ 0 and g + h ̸= 0, the following holds:

1. L is a symmetric and positive operator. It can have at most countably-
many (possibly infinitely-many) eigenvalues, these are non-negative, and
the eigenfunctions corresponding to the different eigenvalues are orthog-
onal (in the usual inner product defined for functions).

2. λ = 0 can only be an eigenvalue if q = 0 and g = 0 (the 2nd EVP) and
then the eigenfunctions are constant functions.

Proof. We prove the statements in four steps.

1. Step 1: In this step we prove that L is symmetric, i.e.
(Lu, v)L2 = (u, Lv)L2 (in which (., .)L2 is the inner product defined in
the L2-space, namely (f, g)L2(Ω) =

∫
Ω fg.)

(Lu, v)L2 − (u, Lv)L2 =

Now we use the second Green theorem:

=

∫
∂Ω

p (v∂νu− u∂νv) dσ

Then, by similar arguments as in the previous proof:

−pv∂νu =

{
0 if h(x) = 0,

p
g

h
uv if h(x) ̸= 0

−pu∂νv =

{
0 if h(x) = 0,

p
g

h
uv if h(x) ̸= 0

Then this means that

(Lu, v)L2 − (u, Lv)L2 =

∫
∂Ω

p (v∂νu− u∂νv) dσ = 0,

so (Lu, v)L2 = (u, Lv)L2, meaning that L is symmetric.
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2. Step 2: In this step we prove that L is positive, meaning that
(Lu, u)L2 ≥ 0. However, in the previous proof we showed that

0 ≤
∫
Ω

u Lu = (Lu, u)L2,

so L is positive.

3. Step 3: In this step we show the properties of the eigenvalues and the
eigenfunctions. For this, we use a theorem from functional analysis,
which states that positive operators have indeed non-negative eigenval-
ues, and the eigenfunctions are orthogonal to each other. From this
orthogonality property we also get that there can be at most countably
many eigenfunctions1, meaning that there are countably many eigenval-
ues also.

4. Step 4: Here we prove part 2 of the theorem. If λ = 0 is an eigenvalue,
then it means that Lu = 0 · u = 0, so (Lu, u)L2 = 0. Then by the
previous proof we know that in this case q = 0 and g = 0 (since in all
the other cases we have u ≡ 0 which is not an eigenfunction), meaning
that u is constant.

This gives our statement.

Application of the eigenvalue-problems: the method of Fourier

In this section we show the reason the EVPs are important in the solution
of BVPs. The method presented here, usually referred to as the method of
Fourier is a pretty useful tool to find solutions of BVPs for some special f
functions.

Suppose that Lu = f inside Ω, and we have a homogeneous boundary
condition, L has countably-many non-zero λk eigenvalues, and the eigenfunc-
tions form a complete orthogonal system in the function-space. (Note that
all of these hold if the assumptions of the previous theorem are fulfilled.)

Then we search for the solution of the BVP in the form u =
∑∞

k=1 ξkuk, in
which uk, k = 1, 2, . . . are the eigenfunctions of L and the values ξk are some
unknown constants. If the above series can be differentiated term-by-term,
then the following holds (since L is linear):

Lu =
∞∑
k=1

ξkLuk =
∞∑
k=1

ξkλkuk.

Let us also write up f as a (probably infinite) sum of the eigenfunctions:

f =
∞∑
k=1

ckuk.

(Such a series exists if uk, k = 1, 2, . . . forms a complete orthogonal base in
the function space, which is the case of the previous theorem).

1This comes from the fact that the space L2(Ω) is separable, meaning that there can be at most countably
many linearly independent elements in it. The proof of this property can be found in any good functional
analysis textbook.
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Then by our equation Lu = f , we have:

∞∑
k=1

ξkλkuk =
∞∑
k=1

ckuk.

This can only hold if all of the coefficients are the same, meaning that
ξkλk = ck for all indexes of k and consequently ξk = ck

λk
, so our solution

is in the form

u =
∞∑
k=1

ck
λk
uk.

Note that all of the terms on the right-hand side can be calculated, meaning
that we got a formula for our solution. (Of course, in practice the search
for λk, uk or even for ck might be difficult.) Also, since the solution is an
infinite sum, in applications we will not get the precise value of the solution
(we would have to add up infinitely many terms), but usually the summation
is stopped after a given number of terms (since usually the terms with larger
indices are smaller, which can be achieved if they are listed in a descending
order).

In the next chapter we define Green’s functions, and using them we find
another method to construct our solutions.



Chapter 9

Green’s functions (skipped in 2024)

We are going to skip this whole chapter.

As it was mentioned at the end of the previous chapter, a quite useful
method of constructing solutions of PDEs involves Green’s functions.

9.1 Green’s third theorem

Before we can state our main result, we will need another result of Green.

Theorem 9.1 (Green’s third theorem). Let Ω ⊂ Rn be a bounded domain
with a smooth boundary, and x0 ∈ Ω. Let y → w(x0, y) ∈ C2(Ω) ∩ C1(Ω)
be an arbitrary function, for which ∆w ∈ L1(Ω), and consider the following
function

y → F (x0, y) = E(x0 − y)− w(x0, y), (y ∈ Ω)

in which E is the fundamental solution of the problem, namely

E(x) :=


− 1

(n− 2)ωn

1

|x|n−2
, if n ≥ 3, x ∈ Rn \ {0},

− 1

2π
log

(
1

|x|

)
, if n = 2, x ∈ Rn \ {0},

as it was defined in Chapter 5. Then for any u ∈ C2(Ω) ∩ C1(Ω), for which
∆u ∈ L1(Ω), the following holds:

u(x0) =

∫
∂Ω

(F (x0, y)∂νu(y)− u(y)∂νF (x0, y)) dσy−

−
∫
Ω

(F (x0, y)∆u(y)− u(y)∆F (x0, y)) dy.
(9.1)

Proof. We prove the statement in three steps.

1. Step 1: Let ε such a small value for which B(x0, ε) ⊂ Ω. Let us apply the second
Green theorem to the function y → F (x0, y) on the domain Ω \ B(x0, ε) (see Figure
9.11)): ∫

Ω\B(x0,ε)

(F (x0, y)∆u(y)− u(y)∆F (x0, y)) dy =

=

∫
∂Ω

(F (x0, y)∂νu(y)− u(y)∂νF (x0, y)) dσy+

+

∫
S(x0,ε)

(F (x0, y)∂νu(y)− u(y)∂νF (x0, y)) dσy.
(9.2)

1Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
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Let us assume that

lim
ε→0+

∫
Ω\B(x0,ε)

(F (x0, y)∆u(y)− u(y)∆F (x0, y)) dy =

=

∫
Ω

(F (x0, y)∆u(y)− u(y)∆F (x0, y)) dy,

(9.3)

and

lim
ε→0+

∫
S(x0,ε)

(F (x0, y)∂νu(y)− u(y)∂νF (x0, y)) dσy = u(x0) (9.4)

holds. Then if we take the limit of (9.2) as ε→ 0+, then we get (9.1) which we wanted
to prove.

Figure 9.1: The domain with the ”hole” in it.

In steps 2 and 3 we prove the assumptions (9.3) and (9.4).

2. Step 2: (9.3) is true if the function

y → F (x0, y)∆u(y)− u(y)∆F (x0, y)

is integrable on Ω. Since F is continuous on Ω, it is bounded, and ∆u is also integrable
on Ω, so the first term is integrable. For the second one, we know that u is contin-
uous on Ω, and since E is a fundamental solution, then in the case y ̸= x0 we have
∆(y → E(x0−y)) = 0, which means that ∆F (x0, y) = −∆w(x0, y), which is integrable,
so the second term is also integrable, therefore the limit makes sense.

3. Step 3: Now we prove (9.4). It is easy to see that∫
S(x0,ε)

(F (x0, y)∂νu(y)− u(y)∂νF (x0, y)) dσy =

= −
∫
S(x0,ε)

E(x0 − y)∂νu(y)dσy −
∫
S(x0,ε)

w(x0, y)∂νu(y)dσy+

+

∫
S(x0,ε)

u(y)∂yνE(x0 − y)dσy +

∫
S(x0,ε)

u(y)∂yνw(x0, y)dσy.

(9.5)

For the first term of (9.5), we know that since u is bounded and by the definition of
E, we have∣∣∣∣∫

S(x0,ε)

E(x0 − y)∂νu(y)dσy

∣∣∣∣ ≤ ∫
S(x0,ε)

C1

εn−1
dσy =

C1

εn−2
ωnε

n−1 −→ 0 as ε→ 0+

if n ≥ 3, and in the case of n = 2:∣∣∣∣∫
S(x0,ε)

E(x0 − y)∂νu(y)dσy

∣∣∣∣ ≤ C1ε| log ε| −→ 0 as ε→ 0 + .

Similarly, the second and fourth terms in (9.5) also tend to zero when ε → 0+, since
the area of the surface on which we integrate shrinks.
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For the third term of (9.5), let us observe that the normal of our domain onS(0, ε)
points to the center of this ball (see Figure 9.1), so

∂ν(y → E(x0 − y))|S(x0,ε) = ∂|x0−y|(y → E(x0 − y))|S(x0,ε) =
1

ωnεn−1
,

so consequently ∫
S(x0,ε)

u(y)∂yνE(x0 − y)dσy =
1

ωnεn−1

∫
S(x0,ε)

u(y)dσy,

meaning that if ε→ 0+, then it tends to u(x0), so the assumption is proved.

Thus, the statement is proved.

Remark 9.1. If w is such a function for which ∆F = 0 outside of x0 and
F = 0 on ∂Ω, then

u(x0) = −
∫
∂Ω

u(y)∂νF (x0, y)dσy −
∫
Ω

F (x0, y)∆u(y)dy

This would mean that we have a formula for u in this case (since u|∂Ω and
∆u are given). Now our goal is to find such F functions (or, such w for which
these hold).

9.2 Green’s functions and their properties

In this section we define Green’s functions, and also prove some of their
properties.

9.2.1 The case of the First Boundary-value problem

Consider the first boundary-value problem defined on Ω ⊂ Rn which is a
bounded domain with smooth boundary:{

−∆u = f on Ω,

u|∂Ω = φ,
(9.6)

in which f ∈ C(Ω), φ ∈ C(∂Ω) given functions.

Definition 9.1. Let Ω ⊂ Rn be a bounded domain with smooth boundary.
Suppose that for any fixed x ∈ Ω, there is a function vx ∈ C2(Ω)∪C1(Ω) for
which {

−∆vx = 0 on Ω,

vx(y) = E(x− y) y ∈ ∂Ω,

in which E is the fundamental solution of problem (9.6).
Let us use the notation w(x, y) = vx(y) (x ∈ Ω, y ∈ Ω). Then the function

G(x, y) = E(x− y)− w(x, y) (x ∈ Ω, y ∈ Ω)

is called the Green’s function of problem (9.6).

Now we can state the main result of this section.
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Theorem 9.2 (Green’s representation theorem). Let Ω ⊂ Rn be a bounded
domain with smooth boundary. Suppose that (9.6) has a Green’s function.
Then if u ∈ C2(Ω) ∪ C1(Ω) is a solution of (9.6) with f ∈ C(Ω), then

u(x) = −
∫
∂Ω

φ(y)∂yνG(x, y)dσy +

∫
Ω

G(x, y)f(y)dy.

Proof. Let us apply Green’s 3rd theorem with F = G. Consequently,

∆F = ∆G = ∆(E − w) = 0

and
F |∂Ω = (E − w) |∂Ω = (E − E)|∂Ω = 0.

In the first equation we used the fact that ∆E = 0, which can be proved the
following way (not part of the exam material).

If n = 2, then E(x, y) = − 1

2π
log

(
1√

x2 + y2

)
, so

2π∂xE(x, y) = ∂x

(
log
√
x2 + y2

)
=

1

2
∂x
(
log
(
x2 + y2

))
=

x

x2 + y2
,

and therefore

2π∂2xE(x, y) =
y2 − x2

(x2 + y2)2

and by symmetry,

2π∂2yE(x, y) =
x2 − y2

(y2 + x2)2
,

which means that ∆E = ∂2xE(x, y) + ∂2yE(x, y) = 0.

If n ≥ 3, then E(x, y) = − 1

(n− 2)ωn

1

|x|n−2
, meaning that

ωn∂xiE = xi|x|−n

and
ωn∂

2
xi
E = |x|−n−2

(
|x|2 − nx2i

)
,

consequently

ωn∆E = ωn

n∑
j=1

∂2xiE = ωn|x|−n−2
(
n|x|2 − n|x|2

)
= 0,

which gives the statement.

So if we know the Green’s function of a problem, then we have now a
formula for our solution.

Now we state some properties of the Green’s functions.

Theorem 9.3 (Properties of Green’s functions). Let Ω ⊂ Rn be a bounded
domain with a smooth boundary. Then the following properties hold:

(i) ∆yG(x, y) = 0 if x ∈ Ω, y ∈ Ω, y ̸= x,

(ii) G(x, y) = 0 if x ∈ Ω, y ∈ ∂Ω,

(iii) G(x, y) = G(y, x) if x ∈ Ω, y ∈ Ω, y ̸= x.

Proof. (i) By definition:

∆yG(x, y) = ∆y [E(x− y)− w(x, y)] = 0.
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(ii) By definition:

G(x, y)|y∈∂Ω = (E(x− y)− w(x, y)) |y∈∂Ω = (E(x− y)− E(x− y)) |y∈∂Ω = 0.

(iii) (Not part of the exam material.)

Let x1, x2 ∈ Ω, x1 ̸= x2 to be fixed points and choose ε in a way that the balls
B(x1, ε) ⊂ Ω and B(x2, ε) ⊂ Ω are disjoint. Let us then apply Green’s 2nd formula for

the domain Ω \
(
B(x1, ε) ∪B(x2, ε)

)
(see Figure 9.22):∫

Ω\(B(x1,ε)∪B(x2,ε))
(G(x2, y)∆yG(x1, y)−G(x1, y)∆yG(x2, y)) dy =

=

∫
∂Ω∪S(x1,ε)∪S(x2,ε)

(G(x2, y)∂νG(x1, y)−G(x1, y)∂νG(x2, y)) dσy.

(9.7)

Figure 9.2: The domain with the two ”holes” in it.

By property (i), we know that the left-hand side of (9.7) is zero, and by property (ii)
on the right-hand side we have∫

∂Ω

(G(x2, y)∂νG(x1, y)−G(x1, y)∂νG(x2, y)) dσy = 0,

so it means that∫
S(x1,ε)∪S(x2,ε)

(G(x2, y)∂νG(x1, y)−G(x1, y)∂νG(x2, y)) dσy = 0.

By the proof of the third Green theorem, if we take the limit of this term as ε → 0+,
then we have

G(x2, x1)−G(x1, x2) = 0,

which is the statement we wanted to prove.

This concludes the proof.

9.2.2 The case of the Third Boundary-Value Problem

In this section we consider a special case of the third boundary-value problem,
namely {

−∆u = f on Ω,

∂νu|∂Ω + h u|∂Ω = φ,
(9.8)

in which f ∈ C(Ω), φ, h ∈ C(∂Ω) given functions, h > 0.

2Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
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Definition 9.2. Let Ω ⊂ Rn be a bounded domain with smooth boundary.
Suppose that for any fixed x ∈ Ω, there is a function v ∈ C2(Ω) ∪C1(Ω), for
which {

−∆v = 0 on Ω,

∂νv(y) + h(y) v(y) = ∂yνE(x− y) + h(y)E(x− y) y ∈ ∂Ω,

in which E is the fundamental solution of (9.8).
Let us use the notation w(x, y) = v(y) (x ∈ Ω, y ∈ Ω). Then the function

G(x, y) = E(x− y)− w(x, y) (x ∈ Ω, y ∈ Ω)

is called the Green’s function of problem (9.8).

Now we can state the main result of this section.

Theorem 9.4 (Green’s representation theorem). Let Ω ⊂ Rn be a bounded
domain with smooth boundary. Suppose that (9.8) has a Green’s function.
Then if u ∈ C2(Ω) ∪ C1(Ω) is a solution of (9.8) with f ∈ C(Ω), then

u(x) = −
∫
∂Ω

φ(y)∂yνG(x, y)dσy +

∫
Ω

G(x, y)f(y)dy.

The proof is skipped (it is similar to the previous case).
So if we know the Green’s function of a problem, then we have now a

formula for our solution.

Remark 9.2. The theorem about the properties of the Green’s functions also
hold, but in (ii) we have

∂yνG(x, y) + h(y)G(x, y) = 0 (y ∈ ∂Ω).

9.3 Construction of Green’s function

In the previous two sections we saw that by using Green’s functions we can
construct our solution. However, the search for a Green’s function might
be hard. It can be shown that if our domain has a smooth boundary, then
the problem corresponding to it has a Green’s function. Here we show two
examples in which this construction is not that complicated. The main tool
in both of them is the use of a reflection defined on the boundary in a smart
way.

9.3.1 Poisson’s formula on a sphere

Let S(0, R) be the surface of the ball centered at the origin with radius R,
and B(0, R) be the open ball itself. Then the inversion on this ball is the
map Rn \ {0} → Rn defined as

x→ x̃ :=
R2

|x|2
x.

So this means that x̃ is such a point on the line
−→
0x for which |x| · |x̃| = R2

(see Figure 9.33). Then all of the points inside the ball are mapped outside
of it, and the points on the surface are not changed.

3Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.



CHAPTER 9. GREEN’S FUNCTIONS (SKIPPED IN 2024) 96

Figure 9.3: The map of inversion (here x′ is the map of x).

Now we search for the Green’s function of the problem defined on this ball
(so Ω = B(0, R)). For this, we will need a v(y) function for which the
following holds: {

−∆v = 0 on B(0, R),

v = E(x− y) y ∈ S(0, R).

Our main idea is that v(y) = E(x − y) is almost a good choice, since
∆yE(x − y) = 0 outside of the point y = x. The problem is at point x,
since the fundamental solution E(x) was not defined for x = 0. Because of
this, we use an inversion: we will transform our points outside of our sphere!

Let v(y) := E(γ(x̃− y)), in which γ is a suitable constant depending on x
which will be defined later, and x̃ is the map of x using the inversion defined
before. For this function ∆v = 0 on B(0, R), since E is a fundamental
solution, and if x ∈ B(0, R), then x̃ ̸= 0 (since if x̃ = 0, then we have
0 · |x| = R2 but this cannot hold.)

Our goal now is to choose γ in a way that v(y) = E(x− y) on S(0, R).

Proposition 9.5. If x̃ is the map of x using the inversion defined before and
y ∈ S(0, R), then

|x− y| = |x|
R

|x̃− y|.

Proof. We prove the statement using some geometric considerations. Let us
observe Figure 9.44! Here the 0xy and the 0yx̃ triangles are similar, since the
angles x0y and x̃0y are the same, and the ratio of sides 0x, 0y and sides 0y
and 0x̃ are the same, namely

|x|
R

=
R

|x̃|
which is a consequence of |x̃| · |x| = R2. Also, the side 0y is part of both
of them, so they are indeed similar. This also means that the sides at the
opposite of angle x0y have also the same ratio, so

|x|
R

=
|x− y|
|x̃− y|

,

4Source: Besenyei-Komornik-Simon: Parciális Differenciálegyenletek. Typotex, 2013.
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Figure 9.4: The triangles used in the proof.

from which we get

|x− y| = |x|
R

|x̃− y|,

which was the statement we wanted to prove.

By this proposition we get that if γ =
|x|
R

, then

v(y) = E(γ(x̃− y)) = E

(
|x|
R

(x̃− y)

)
.

In conclusion, the choice v(y) = E

(
|x|
R

(x̃− y)

)
is a good one, since

v ∈ C2(B(0, R)) ∪ C1(B(0, R)), ∆v = 0 on B(0, R) and v(y) = E(x − y)
on S(0, R) (by the previous proposition).

Note that if x = 0, then the above arguments do not work. However, if
we choose v(y) = E(R), i.e.

v(y) =


− 1

2π
log |R| if n = 2,

1

(n− 2)ωn|R|n−2
if n ≥ 3,

in which ωn is the surface of the n-dimensional sphere, then ∆v = 0, and also
if y ∈ S(0, R), then v(y) = E(R) = E(0− y) = E(|y|) = E(R).

In conclusion, we can state the following proposition.

Proposition 9.6. The Green function for the B(0, R) sphere has the form

G(x, y) = E(x− y)− E

(
|x|
R

(x̃− y)

)
if x ̸= 0, y ∈ B(0, R),

and
G(0, y) = E(−y)− E(R) y ∈ B(0, R),

in which E is the fundamental solution of the Laplace equation.

Note that in Green’s representation theorem we also need ∂yνG(x, y).
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Proposition 9.7. If G is the Green function of B(0, R), then

∂yνG(x, y) =
−1

ωn

R2 − |x|2

|x− y|n

for x ∈ B(0, R) and y ∈ S(0, R).

The proof is just simple calculations.
Combining the previous two results, we get our main result.

Corollary 9.8. If f = 0, then the solution of the Poisson equation has the
form

u(x) =
R2 − |x|2

Rωn

∫
S(0,R)

φ(y)

|x− y|n
dσy (x ∈ B(0, R)). (9.9)

This is called the Poisson formula for the sphere. Also, sometimes

K(x, y) =
R2 − |x|2

Rωn

1

|x− y|n

is called the Poisson kernel.

Theorem 9.9. Let φ ∈ C(S(0, R))and u be as defined in (9.9). Then
u ∈ C2(B(0, R)) ∪ C1(B(0, R)) and it is the solution of{

−∆u = 0, in B(0, R),

u|S(0,R) = φ.

(Proof is skipped.)

9.3.2 Poisson’s formula on a half-space

In this section we construct the Green’s function for a half space, meaning
that our domain will be the set

Rn
+ := {(x1, . . . , xn) ∈ Rn : xn > 0}

So we search for the solution (and also the Green’s function) for the problem{
−∆u = 0, in Rn

+,

u|∂Rn
+
= φ.

As in the previous section, we are also going to define a reflection, now to the
hyperplane ∂Rn

+ := {(x1, . . . , xn−1, 0)}, namely for x = (x1, . . . xn) we have

x→ x̃ = (x1, . . . , xn−1,−xn).

Then it is easy to see that for all y ∈ Rn
+, |x− y| = |x̃− y|, meaning that

G(x, y) = E(x− y)− E(x̃− y)

is a good choice for a Green’s function, since for all x ∈ Rn
+, ∆yG(x, y) = 0

on Rn
+, and also G(x, y) = 0 on ∂Rn

+ (since the reflection of a point on the
boundary is itself).
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We also know that on the boundary, the normal is in the form
ν = (0, . . . , 0,−1), so if n ≥ 3, then

∂yνG(x, y) = −∂ynG(x, y) =
1

ωn

(
yn − xn
|x− y|n

− yn − x̃n
|x̃− y|n

)
=

−2

ωn

xn
|x− y|n

.

Here we used the fact that if n ≥ 3, then

∂yiE(x− y) = ∂yi

(
− 1

(n− 2)ωn

1

|x− y|n−2

)
=

= − 1

(n− 2)ωn
∂yi

(
1

(
√
(x1 − y1)2 + · · ·+ (xn − yn)2)n−2

)
=

=
1

(n− 2)ωn

(n− 2)

|x− y|n−1

1

2

1

|x− y|
2(xi − yi) =

1

ωn

xi − yi
|x− y|n

.

If n = 2, then we can say that ω2 = 2π and then we get a similar formula:

∂yiE(x− y) = ∂yi

(
− 1

2π
log

(
1

|x− y|

))
=

= − 1

2π
∂yi

(
log

(
1√

(x1 − y1)2 + · · ·+ (xn − yn)2

))
=

=
1

2π
|x− y| −1

|x− y|2
1

2

1

|x− y|
2(xi − yi) =

1

2π

xi − yi
|x− y|2

.

From this we get that our solution is in the form

u(x) =
2xn
ωn

∫
∂Rn

+

φ(y)

|x− y|n
dσy. (9.10)

This is called the Poisson’s formula for the half-space. Also,

K(x, y) =
2xn
ωn

1

|x− y|n

is called the Poisson kernel.

Theorem 9.10. Let φ ∈ C(Rn−1) ∪ L∞(Rn−1). Then for the u defined as
(9.10), we have u ∈ C2(Rn

+) ∪ C(Rn
+) ∪ L∞(Rn

+), and u is the solution of the
problem {

−∆u = 0, in Rn
+,

u|∂Rn
+
= φ.

In the next chapter we define Sobolev spaces, and then observe the general
solutions of the elliptic boundary problems.



Chapter 10

Sobolev spaces

In this chapter we define Sobolev spaces, and show some of their properties.
They are not only useful in the theory of Partial Differential Equations, but
also in Stochastic Differential Equations. However, here we only focus on
their applications for PDEs.

As it was mentioned in previous chapters, usually the weak form of a
PDE is more useful than the classical form: the first one means that we take
the derivatives in the equation not in the classical sense, but rather in the
distributional sense. The derivative of a function f in the distributional sense
meant that we consider the regular distribution Tf corresponding to f , and
then we differentiate this distribution. If we get a regular distribution after
the derivation, namely ∂Tf = Tg, then we can say that function g is the
distributional derivative of function f .

Now a natural question arises: which functions have a distributional deriva-
tive such that it is a regular distribution? We defined regular distributions
for all functions f ∈ L1

loc, but we have also seen that the derivative of regular
distributions is usually not a regular distribution (e.g. ∂TH = δ0 in which
H is the Heaviside function), so they do not have a distributional derivative
as defined above, at least not such a derivative which is a function. Sobolev
spaces solve this problem: these will be the spaces in which all the functions
have distributional derivatives, and these derivatives are also functions.

10.1 Definition of Hk(Ω) and Hk
0 (Ω)

As it was mentioned in the introduction, our goal is to define a space in which
all the functions have nice distributional derivatives. For this, we will define
some function spaces, and then show that they are indeed those which we
were looking for.

Let Ω ⊂ Rn be an open, connected domain which is bounded.

Definition 10.1. Consider the space Ck(Ω) (k ∈ N). Let us define the
following inner product on this space (it can be shown that it is indeed an
inner product):

⟨f, g⟩ :=
∑
|α|≤k

∫
Ω

(∂αf) (∂αg) (10.1)

Then the completion of the space Ck(Ω) with this inner product is called a
Sobolev space, and is denoted by Hk(Ω). This is then a Hilbert space.

100
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Remark 10.1. A quick functional analysis recap, so the above definition makes
more sense:

� Every inner product induces a norm by the rule ∥x∥ :=
√
⟨x, x⟩. The

norm induced by the inner product (10.1) is

∥f∥Hk(Ω) =

∫
Ω

|f |2 +
∑
|α|≤k

|∂αf |2
1/2

(10.2)

� A Cauchy-sequence is a sequence xn for which for every ε > 0 there exists
a bound N after which for all indexes n,m > N we have ∥xn−xm∥ < ε.
This basically means that the elements get closer and closer to each
other after some time.

� Every convergent sequence is a Cauchy-sequence (if it is convergent, then
the elements should get closer after a while), but not every Cauchy-
sequence is convergent (because if might happen that the element the
sequence is getting closer and closer to is not part of our space). The
normed spaces in which all Cauchy-sequences are convergent are called
complete, and they are also called Banach spaces. If there is also an inner
product defined on this space, then a complete inner product space is
called a Hibert space.

� A completion of an inner product space X means that we take a larger
space Y , in which all of the Cauchy sequences defined on X are conver-
gent (so basically Y = X ∪ Z, in which Z is the set of the ”limits” of
the Cauchy sequences defined on X).

Remark 10.2. Note that the inner product defined as (10.1) can be also writ-
ten as

⟨f, g⟩ :=
∑
|α|≤k

(∂αf, ∂αg)L2(Ω) , (10.3)

in which (., .)L2(Ω) is the usual inner product defined on space L2(Ω), namely

(f, g)L2(Ω) =

∫
Ω

fg.

The norm (10.2) can be also written in a shorter form using the usual
L2(Ω)-norm, namely

∥f∥Hk(Ω) =

∥f∥2L2(Ω) +
∑
|α|≤k

∥∂αf∥2L2(Ω)

1/2

(10.4)

A natural question: what is the connection between the Sobolev spaces de-
fined above, and our goal, namely the space in which all of the functions have
”nice” distributional derivatives? The next theorem answers this question.
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Theorem 10.1. The following two are equivalent.

(a) f ∈ Hk(Ω)

(b) The distributional derivatives ∂αf , |α| ≤ k exist for f ∈ L2(Ω), these
derivatives are inside L2(Ω), and there is a sequence fj ∈ Ck(Ω) for
which fj → f in the norm defined above.

Proof. By definition of the space Hk(Ω) we know that there is a set X0 ⊂ Hk(Ω) such that
it is isomorphic to Ck(Ω) and X0 is dense in Hk(Ω).

Let f̃ ∈ Hk(Ω). Then since X0 is dense in Hk(Ω), there is a sequence f̃j ∈ X0 for which

lim
j→∞

(∥∥∥f̃ − f̃j

∥∥∥
Hk

)
= 0.

Let us consider the sequence fj ∈ Ck(Ω) corresponding to f̃j (such sequence exists by
the isomorphism). Since fj is a Cauchy-sequence, and the norm induced by (10.1) is

∥f∥ :=

∑
|α|≤k

∫
Ω

|∂αf |2
1/2

,

then for q fixed multiindex α, the sequence (∂αfj) is a Cauchy sequence in L2(Ω). Since
L2(Ω) is a complete space, then there is such a fα ∈ L2(Ω) element such that

lim
j→∞

(
∥fα − (∂αfj)∥L2(Ω)

)
= 0.

Let f be the function fα corresponding to the multiindex α = (0, . . . 0). Now we prove
the following lemma.

Lemma 10.2. The distributional derivative of the regular distribution corresponding to f is
the regular distribution corresponding to the function fα ∈ L2(Ω), i.e.

∂(α)f = fα, |α| ≤ k.

Proof. (of Lemma 10.2.)
The sequence fj tends to function f in the L2(Ω) norm, so it also tends to it in the weak

sense on the set D′(Ω): for an arbitrary fixed φ ∈ D(Ω) element by the Cauchy-Schwartz
inequality:∣∣∣∣∫

Ω

fφ−
∫
Ω

fφj

∣∣∣∣ = ∣∣∣∣∫
Ω

(f − fj)φ

∣∣∣∣ ≤ ∥f − fj∥L2(Ω)∥φ∥L2(Ω) → 0 as j → ∞.

Then, by the definition of the weak convergence we have

∂αfj
D′(Ω)−−−→ ∂αf (|α| ≤ k).

Also, the sequence (∂αfj) tends to fα in the norm of the setL2(Ω), so it also tends to that one
in the weaker convergence of D′(Ω). Therefore, distribution ∂αf is the same as the regular
distribution corresponding to fα.

(Continuation of the proof of Theorem 10.1.)
Now let us say that the element f̃ ∈ Hk(Ω) corresponds to the function f ∈ L2(Ω). It

can be also shown that this element f does not depend on the choice of the approximating
sequence f̃j chosen for f̃ .

Let X1 be the set of the functions f ∈ L2(Ω) corresponding to the elements f̃ ∈ Hk(Ω).
By the previous construction this connection is a bijection, and if f, g ∈ Hk(Ω) and λ1, λ2 ∈
R, then the element corresponding to λ1f̃ + λ2g̃ is λ1f + λ2g (in which f and g are the
corresponding functions to f̃ and g̃, respectively). Consequently, X1 is a vector space (for
the usual addition defined in the set L2(Ω)), and it is isomorphic to the vector space Hk(Ω).

Let us define the inner product of functions f, g ∈ X1 by the formula (10.1), in which ∂α

means the distributional derivatives of these functions. Let f̃ and g̃ be the corresponding
functions from the space Hk.
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Lemma 10.3. The following holds:

⟨f, g⟩X1
=
〈
f̃ , g̃
〉
Hk
.

Proof. (of Lemma 10.3) Let us assume that the sequence f̃j in space X0 tends to element
f̃ , and the sequence g̃j tends to the element g̃. Then by the continuity of the inner product
and the previous considerations we have

〈
f̃ , g̃
〉
Hk

= lim
j→∞

〈
f̃j, g̃j

〉
Hk

= lim
j→∞

⟨fj, gj⟩Hk = lim
j→∞

∑
|α|≤k

∫
Ω

(∂αfj) (∂
αgj)

 =

=
∑
|α|≤k

∫
Ω

(∂αf) (∂αg) = ⟨f, g⟩X1
,

which gives the statement.

Consequently, the space X1 is isomorphic to the Hilbert space Hk(Ω), which completes
the proof of Theorem 10.1.

The main problem here is that we do not want that approximation prop-
erty to be in our equivalence. The next theorem solves this problem.

Definition 10.2. Ω ⊂ Rn is said to be a star domain, if there is a point
x0 ∈ Ω (”the center of the star”) that for every point x ∈ Ω all the points
on the line starting from x0 and passing through x are also part of Ω. See
Figure 10.1.

Figure 10.1: A star-domain. Here x0 is the center of the star, and x is an arbitrary point in
the domain. All the points on the line between x0 and x are part of the domain.

Theorem 10.4. Assume that Ω is a bounded star domain. Then the following
two are equivalent.

� f ∈ Hk(Ω)

� The distributional derivatives ∂αf , |α| ≤ k exist for f ∈ L2(Ω), and
these derivatives are inside L2(Ω).

Usually Ω is ”nice”, so Theorem 10.4 can be applied, so Sobolev spaces
describe the space we wanted to define.

Now we define another useful space.

Definition 10.3. Consider the space Ck
0 (Ω) (k ∈ N). Let us define the

inner product (10.1) on this space. Then the completion of the space Ck
0 (Ω)

with this inner product is also called a Sobolev space, and it is denoted by
Hk

0 (Ω). This is then a Hilbert space.
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Then a similar theorem can be stated.

Theorem 10.5. The following two are equivalent.

� f ∈ Hk
0 (Ω)

� The distributional derivatives ∂αf , |α| ≤ k exist for f ∈ L2(Ω), these
derivatives are inside L2(Ω), and there is a sequence fj ∈ Ck

0 (Ω) for
which fj → f in the norm defined above.

Remark 10.3.

� If k ≥ 1, then Hk
0 (Ω) is a real subspace of Hk(Ω), meaning that there

are functions which are inside Hk(Ω), but are not part of Hk
0 (Ω) (the

constant 1 function is a good example).

� If k = 0, then H0(Ω) = H0
0(Ω) = L2(Ω).

Remark 10.4. In a more general definition of Sobolev spaces, instead of us-
ing (., .)L2(Ω) one can also use (., .)Lp(Ω), and then we get the Sobolev space
W k,p(Ω): these Sobolev spaces contain functions from the space Lp(Ω) which
have distributional derivatives up to order k which are inside Lp(Ω). Then
it is clear that Hk(Ω) = W k,2(Ω). However, the only case when this Sobolev
space is a Hilbert space is when p = 2, so this is the case which is used in
most applications (the reason for this is that the only Lp space which is a
Hilbert space is when p = 2).

Also, if we define Fourier transforms on the space of distributions, then one
can also define the above spaces using Fourier transforms, and by generalizing
that definition, one can get Sobolev spaces with fractional powers.

10.2 Basic properties of Hk(Ω) and Hk
0 (Ω)

Now we list some properties which are easy to prove (but their proofs are not
part of the exam materials).

Proposition 10.6. Let Ω be a bounded domain. If f ∈ Hk(Ω) and φ ∈ Ck(Ω)
then φf ∈ Hk(Ω), the derivatives of it can be computed using the Leibniz rule
and

∥φf∥Hk ≤ c(φ)∥f∥Hk.

Proposition 10.7. If k < ℓ, then Hℓ(Ω) ⊂ Hk(Ω), and for all f ∈ Hℓ(Ω)
we have

∥f∥Hk(Ω) ≤ ∥f∥Hℓ(Ω).

Proposition 10.8. Let Ω1 ⊂ Ω2 ⊂ Rn be bounded sets. Then the following
hold:

� If f ∈ Hk(Ω2), then f |Ω1
∈ Hk(Ω1), and

∥f∥Hk(Ω1) ≤ ∥f∥Hk(Ω2).

� If f ∈ Hk
0 (Ω1), then by extending f onto Ω2 as a constant zero function

and calling this extension f̃ , we get f̃ ∈ Hk
0 (Ω2) and

∥f∥Hk
0 (Ω1) = ∥f̃∥Hk

0 (Ω2).
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Remark 10.5. If f ∈ Hk
0 (Ω2), then it might happen that f |Ω1

is not part of
Hk

0 (Ω1). Also, if f ∈ Hk(Ω1), we do not know whether we can extend it in a
way that the extension is part of Hk(Ω2). However, if Ω1 and Ω2 are ”nice”,
then there is such an extension.

10.3 Equivalent norms on H1
0(Ω)

As it was defined before, the norm on H1
0(Ω) by definition is

∥f∥H1
0 (Ω)

=

[∫
Ω

(
|f |2 +

∑
j=1

|∂jf |2
)]1/2

. (10.5)

The next theorem talks about the fact that there is a more simple norm which
is usually used instead of the previous one (for an application, see Chapter
11).

Theorem 10.9. Let us assume that Ω is bounded. Then there is a constant
c1 > 0, for which the following holds for every f ∈ H1

0(Ω):(∫
Ω

n∑
j=1

|∂jf |2
)1/2

≤ ∥f∥H1
0 (Ω)

≤ c1

(∫
Ω

n∑
j=1

|∂jf |2
)1/2

(10.6)

This basically means that the norm ∥f∥H1
0 (Ω)

defined in (10.5) and the
norm

|f |H1
0 (Ω)

:=

(∫
Ω

n∑
j=1

|∂jf |2
)1/2

are equivalent.

Remark 10.6. Recap from functional analysis: norms ∥.∥ and |.| are equiva-
lent, if for all x elements in the normed space there are some positive constants
C1 and C2 for which

C1|x| ≤ ∥x∥ ≤ C2|x|.
Equivalent norms are pretty useful, since if we can prove some inequality in
one of them, then the same inequality will hold in the other one also (perhaps
with a different constant). A well known result is that in finite dimensional
spaces all norms are equivalent (but since here we have function spaces which
have infinite dimension, we cannot use this fact).

Proof. (of Theorem 10.9) We prove the statement in four steps.

1. Step 1: The left inequality inside (10.6) is trivial: we add up less terms
(the L2(Ω)-norm of f is not on the left-hand side), so we get a smaller
sum. Now we prove the right one.

2. Step 2: Since Ω is bounded, we can construct an n-dimensional interval
(or a ”rectangle”) T := [a1, b1]× · · · × [an, bn] for which Ω ⊂ T holds.

Let us extend f onto T as f = 0 on T \ Ω. Then f ∈ H1
0(T ) and

∥f∥H1
0 (Ω)

= ∥f∥H1
0 (T )

and also |f |H1
0 (Ω)

= |f |H1
0 (T )

. So it is enough to
prove the statement on T .
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3. Step 3: Since C1
0(T ) is dense in H

1
0(T ), it is enough to prove the state-

ment for all f ∈ C1
0(T ), i.e.∫

T

|f |2 ≤ c2

∫
T

n∑
j=1

|∂jf |2. (10.7)

If we can prove (10.7) then we are finished with the proof, since it is
easy to see that inside ∥f∥H1

0 (T )
all the terms of |f |H1

0 (T )
are present, so

we only have to bound the one which is not there, namely |f |2.

4. Step 4: The proof of (10.7).
Let us use the notation x = (x1, x̃), in which x̃ = (x2, x3, . . . , xn), and
then by the fundamental theorem of calculus (also know as the Newton-
Leibniz formula) we have

f(x1, x̃)− f(a1, x̃) =

∫ x1

a1

∂1f(y1, x̃)dy1.

However, since f ∈ C1
0(Ω), we know that f(a1, x̃) = 0, so:

|f(x1, x̃)|2 =
∣∣∣∣∫ x1

a1

∂1f(y1, x̃)dy1

∣∣∣∣2 ≤
Then by using the Cauchy-Schwartz inequality with g = 1, we get1

≤
∫ x1

a1

1 dy1

∫ x1

a1

|∂1f(y1, x̃)|2 dy1 =

= (x1 − a1)

∫ x1

a1

|∂1f(y1, x̃)|2 dy1 ≤

Since it is an integral of a non-negative function, if the integration in-
terval increases, then the value of the integral will not decrease, so:

≤ (x1 − a1)

∫ b1

a1

|∂1f(y1, x̃)|2 dy1

Therefore, ∫
T

|f |2dx =

∫
T

|f |2dx1dx̃ ≤

≤
∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

[
(x1 − a1)

∫ b1

a1

|∂1f(y1, x̃)|2dy1
]
dxn . . . dx2dx1 =

Note that the term |∂1f(y1, x̃)|2 does not depend on x1, and (x1 − a1)
does not depend on any of the other variables. Because of this, these
two can be integrated separately:

=

(
n∏

i=2

(bi − ai)

)(∫ b1

a1

(x1 − a1)dx1

)
·

·(b1 − a1)

(∫ b2

a2

· · ·
∫ bn

an

[∫ b1

a1

|∂1f(y1, x̃)|2dy1
]
dxn . . . dx2

)
=

1The Cauchy-Schwartz inequality says that | ⟨f, g⟩ | ≤ ∥f∥ · ∥g∥. Here f = ∂1f(y1, x̃), g = 1 and
the norm and the inner product are the usual ones defined in L2, namely ⟨f, g⟩L2(Ω) =

∫
Ω
fg and

∥f∥L2(Ω) =
(∫

Ω
|f |2

)1/2
.
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=

(
n∏

i=1

(bi − ai)

)
(b1 − a1)

2

2

∫
T

|∂1f |2dx

Note that
n∏

i=1

(bi − ai) = λ(T )

where λ(T ) is the Lebesgue-measure (or volume) of rectangle T .

Since the previous argument can be repeated for every variable, we get
that ∫

T

|f |2dx ≤ λ(T )
(bj − aj)

2

2

∫
T

|∂jf |2

for any index j, 1 ≤ j ≤ n. Then if we add up all of these inequalities,
we get

n

∫
T

|f |2dx ≤
n∑

j=1

λ(T )
(bj − aj)

2

2

∫
T

|∂jf |2.

From which we get ∫
T

|f |2dx ≤ c2

∫
T

n∑
j=1

|∂jf |2

with c2 = λ(T )max
j

(bj − aj)
2

2
, which is (10.7), so we are done.

Consequently, the statement of the theorem is proved.

Remark 10.7. The inequality inside (10.6) is not true in the case of H1(Ω):
for example for f ≡ 1 it does not hold (since here ∥f∥H1

0 (Ω)
= λ(Ω) which is

the Lebesgue-measure of Ω, but |f |H1
0 (Ω)

= 0). This also shows that H1
0(Ω) is

a real subspace of H1(Ω).

Remark 10.8. If Ω is not bounded, then the inequality is not necessarily true.
However, it can be proved that it holds for Ω = Rn.

10.4 The trace operator

The main question of this section is the way the boundary values of a function
inside Hk(Ω) can be defined. In the case of continuous functions the bound-
ary values are well-defined - however, in Lp-spaces functions are defined only
almost everywhere2, so since the boundary is usually a set with zero mea-
sure, we cannot really define the values of such functions on it. Fortunately,
Sobolev spaces are defined in a way that their restriction to a domain with
zero measure makes sense: then the trace operator will solve this problem.

Theorem 10.10. Let Ω ⊂ Rn be bounded and ”nice”3. Then for any
f ∈ C1(Ω) function, the map

f → f |∂Ω
is continuous as a linear operator acting between H1(Ω) → L2(∂Ω) .

2It means that there is a set with zero measure on which the function might take any arbitrary (real)
values.

3We should assume that Ω is locally brick-like, meaning that there is a diffeomorphism between every
neighborhood of a point in Ω and a neighborhood of a point inside a ”brick”, an n-dimensional interval or
rectangle.
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Corollary 10.11. Since C1(Ω) is dense in H1(Ω), then the map Lf := f |∂Ω
defined for f ∈ C1(Ω), which is linear and bounded, can be extended uniquely
to H1(Ω).

In the previous corollary we used the fact that any bounded linear operator
defined on a dense subset of a normed space can be extended uniquely to the
whole space.

Definition 10.4. The above extension of the operator L,

L̃ : H1(Ω) → L2(∂Ω)

is a bounded and linear operator called the trace operator, and L̃f is called
the trace of f ∈ H1(Ω) on ∂Ω.

Theorem 10.12. Let Ω ⊂ Rn be bounded and ”nice”4. Then
L̃ : H1(Ω) → L2(∂Ω) is a compact operator.

Remark 10.9. Small recap from functional analysis: an operator is compact, if a map of a
closed set is relatively compact (meaning that its closure is compact).

Theorem 10.13. Let Ω ⊂ Rn be bounded and ”nice”5. Then the following
two are equivalent:

1. f ∈ H1
0(Ω)

2. f ∈ H1(Ω), and f |∂Ω = 0 (in the trace sense).

Proof.

1. Case 1.⇒ 2.
If f ∈ H1

0(Ω), then there is a sequence fj ∈ C1
0(Ω) for which fj → f in

the H1-norm. But we know that fj|∂Ω = 0, so by the convergence we
get f |∂Ω = 0.

2. Case 2.⇒ 1.
This is rather long and technical, so it is skipped.

So basically this means that the functions inside H1
0(Ω) are those functions

inH1(Ω) which are zero on the boundary (in the ”trace sense” defined above).

10.5 The embedding of H1
0(Ω) and H1(Ω) into L2(Ω)

(skipped in 2024)

This section talks about the embedding of Sobolev spaces into L2-spaces, which will play an
important role in the next chapter.

Theorem 10.14. Let Ω ⊂ Rn be a bounded domain. Then the embedding of H1(Ω) and
H1

0 (Ω) into L2(Ω) is compact, i.e. H1
0 (Ω) ⊂ L2(Ω) (or

H1(Ω) ⊂ L2(Ω)), and if f̃ ∈ H1
0 (Ω) (or f̃ ∈ H1(Ω)), then there is an f̃ → f ∈ L2(Ω)

compact operator.

Remark 10.10. The compact property can also be expressed in the following way:
If fk is a bounded sequence in H1

0 (Ω) (or in H
1(Ω)), then there is a sub-sequence which is

convergent in the L2-norm.

In the next chapter we state theorems about the existence of solutions of
the general boundary value problems.

4We should assume that Ω is locally brick-like, see the previous footnote
5We should assume that Ω is locally brick-like, see the previous footnote



Chapter 11

Weak form of boundary value
problems

In this chapter we define the weak form of boundary-value problems, more
precisely the weak form of the first boundary-value problem.

As it was defined before, the classical first boundary-value prob-
lem is the following. Consider an Ω ⊂ Rn bounded domain, p ∈ C1(Ω),
p(x) ≥ m > 0, q, f ∈ C(Ω), q > 0, g ∈ C(∂Ω). Then we search for a function
u ∈ C2(Ω) ∩ C(Ω) for which the following holds:{

−div(p grad(u)) + qu = f inside Ω,

u|∂Ω = g.
(11.1)

In Chapter 8 we proved that this problem has only one solution, but the
existence of such solutions is still an open question. In this chapter we will
prove this latter one.

(Note that in Chapter 8 the first boundary value problem had also a given
function inside the boundary condition, which is now assumed to be constant
one.)

Our goal is now to prove the existence of solutions in the weak sense, and
then by a connection between the weak and classical solutions, we will get
the desired statement.

11.1 Weak form of boundary-value problems

As it was mentioned before, the weak form of an equation means that we do
not take the derivatives of the functions in the classical (i.e. ”usual deriva-
tive”) sense, but we consider the distributional derivatives in the equation.
This latter one means the following: if we have a ”nice” function f (i.e.
it is in L1

loc), then we can define a regular distribution corresponding to it,
namely Tf . Then we can compute the derivative of this distribution, and if
this derivative is also a regular distribution, i.e. ∂Tf = Tg, then we say that
the weak derivative of f is g. Or, in other words, if we take the derivative
only in one variable, then:

∂iTf = ∂i

(∫
Ω

fφ

)
= −

∫
Ω

f∂iφ =

∫
Ω

gφ,

so if

∫
Ω

f∂iφ = −
∫
Ω

gφ, then we say that ∂if = g in the distributional sense.

Note that the main gain of this whole process is that here f should not be

109
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differentiable, and it is enough that the integral of f∂iφ exists, which is true
if f ∈ L2 (this was the space on which the Sobolev spaces were defined).

Now the main question is how to get such an

∫
Ω

gφ term in our equation.

The main idea here is to multiply our equation by φ, and then integrate it
on Ω.

Let us suppose that u ∈ C2(Ω) ∩ C1(Ω) is a classical solution of the
first boundary-value problem (11.1). Let us multiply the first equation with
v ∈ C1

0(Ω) and integrate it on Ω afterwards! Then we get the following form:∫
Ω

−div(p grad(u))v + quv =

∫
Ω

fv. (11.2)

Now let us use the first Green theorem, namely∫
Ω

−div(p grad(u)) v =

∫
Ω

p gradu · gradv −
∫
∂Ω

p v ∂νu dσ.

By definition, v = 0 on the boundary, so the second term is zero in our case.
Then equation (11.2) can be rewritten as∫

Ω

p gradu · gradv +
∫
Ω

quv =

∫
Ω

fv. (11.3)

Equation (11.3) is called the weak form of the boundary-value problem
(11.1).

Note that since equation (11.3) holds for every v ∈ C1
0(Ω), it also holds

for every v ∈ H1
0(Ω) (since we can construct a sequence of functions inside

C1
0(Ω) which tend to the element of H1

0(Ω)). Also, in this case u ∈ H1(Ω),
and u|∂Ω = g in the trace sense.

Definition 11.1. The general (or weak) solution of the first boundary-
value problem is such a u ∈ H1(Ω) function, for which (11.3) holds
∀v ∈ H1

0(Ω) and u|∂Ω = g in the trace sense.

By the previous arguments we showed that if u is a classical solution of the
first boundary-value problem, then u is also a weak solution of this problem,
so in this sense it is a generalization of the classical problem. The next
theorem sum up the connections between these two terms.

Theorem 11.1 (Connection between the classical and weak solutions).

1. If u is a classical solution of the first boundary problem and u ∈ C1(Ω),
then u is also a weak solution of the same problem.

2. If u ∈ H1(Ω) is a weak solution, and also u ∈ C2(Ω) ∩ C1(Ω), then u is
also a classical solution.

Proof.

1. See the previous arguments.

2. If (11.3) holds, and also u ∈ C2(Ω)∩C1(Ω), then the first Green theorem
can be applied to (11.3) in the other direction, so we get:∫

Ω

v (−div(p grad(u)) + qu− f) = 0 (11.4)
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Then (11.4) holds for every v ∈ C1
0(Ω), and since C1

0(Ω) is dense in
L2(Ω), we get that

−div(p grad(u)) + qu− f = 0,

which is the equation we wanted.
Thus, the statement is proved.

This theorem states that if we have a general solution and it is smooth
enough, then it is going to be a classical one, meaning that if we can prove
that the weak problem has a unique solution and it is smooth enough, then
it is also a unique solution of the classical problem.

11.2 Existence of solutions

The existence of solutions of problem (11.3) can be proved in several ways,
but most of these involve some theorems from functional analysis (e.g. Lax-
Milgram lemma or other fixed point theorems). Here we are going to use the
Riesz representation theorem.

From now on, we will assume that g = 0, meaning that we have a homoge-
neous Dirichlet condition (the next theorems can also be proved in the case
of g ̸= 0).

Let us define an inner product in the space H1
0(Ω) in the following way:

{u, v} :=

∫
Ω

p gradu · gradv + quv (11.5)

It can be proved that it is indeed an inner product.

Proposition 11.2. Inner product (11.5) generates a norm1 which is equiva-
lent to the usual H1

0(Ω) norm.

Proof. The square of the norm generated by (11.5) is

{u, u} :=

∫
Ω

p gradu · gradu+
∫
Ω

qu2. (11.6)

We have to bound this expression form above and from below using the norm
of H1

0(Ω).
The bound from below:∫

Ω

p gradu · gradu+
∫
Ω

qu2 ≥

Now we use that q ≥ 0, so the second term is non-negative, so:

≥
∫
Ω

p gradu · gradu ≥

Now we use the fact that p ≥ m > 0, so

≥
∫
Ω

m |∂iu|2 ≥ c2

(
∥u∥′H1

0 (Ω)

)2
1An inner product (u, v) generates a norm with the formula ∥u∥ =

√
(u, u).
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in which ∥.∥′
H1

0 (Ω)
is the norm defined in the Section 10.3, which was proved

to be equivalent to the usual Sobolev norm.
The other direction is also similar:∫

Ω

p gradu · gradu+
∫
Ω

qu2 ≤

Now by using the Cauchy-Schwartz inequality (with g = 1):

≤ const

∫
Ω

[
|∂u|2 + |u|2

]
= const ∥u∥2H1

0 (Ω)
,

which means that these two norms are equivalent.

If we use the inner product defined above, our equation (11.3) can be
rewritten as

{u, v} =

∫
Ω

fv

Theorem 11.3. Problem (11.3) has a unique solution.

Proof. Let us define operator B in the following way:

B(v) :=

∫
Ω

fv, v ∈ H1
0(Ω)

It is clear that B is a linear functional. Also, B is bounded, since

|B(v)| =
∣∣∣∣∫

Ω

fv

∣∣∣∣ ≤
By applying the Cauchy-Schwartz inequality:

≤ ∥f∥L2(Ω)∥v∥L2(Ω) ≤

By Proposition 11.2 (and by the proof of Theorem 10.9):

≤ const ∥f∥L2(Ω)

√
{v, v}.

Then if we consider the inner product space H1
0(Ω) equipped with the inner

product {., .}, then in this space B is a linear, bounded functional. This
means that we can apply the Riesz representation theorem, which is the
following:

Theorem 11.4 (Riesz representation theorem). If H is a Hilbert space with
inner product ⟨., .⟩ and φ is a linear, bounded functional, then there is a
unique element u ∈ H for which

⟨u, x⟩ = φ(x) ∀x ∈ H.

(Its proof can be found in any good functional analysis textbook.)
Then we get that there exists a unique element u ∈ H1

0(Ω) for which

{u, v} = B(v), ∀v ∈ H1
0(Ω),

which by definition means that there is a unique element u ∈ H1
0(Ω) for which∫

Ω

p gradu · gradv +
∫
Ω

quv =

∫
Ω

fv

so we got that the weak problem has a unique solution.
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The next corollary is a consequence of Theorems 11.1. and 11.3., which is
also the main result of this chapter.

Corollary 11.5. The classical (homogeneous) first boundary-value problem
has a unique solution.

Remark 11.1. Similar arguments also hold for time-dependent (mixed) prob-
lems, in which there are also some initial conditions next to the boundary
conditions.

Remark 11.2. In most applications, the weak forms of PDEs are considered,
since one of the most effective numerical method, the finite elements method
is designed to solve weak problems, so the above formulation is widely used
in applications.
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