Problems for practicing

1. Show that if every subsequence of $\left(x_{n}\right)$ has a convergent subsequence converging to a, then $x_{n} \rightarrow a$.
2. Determine the limit of the following sequence.

$$
\left(x_{n}, y_{n}\right)=\left(\sqrt[n]{n^{2}\left(2^{n}+5\right)},\left(\frac{2 n-3}{2 n+4}\right)^{n+1}\right)
$$

3. Show that $\partial(A \cup B) \subset \partial A \cup \partial B$ and $\partial(A \cap B) \subset \partial A \cup \partial B$ hold for every $A, B \subset \mathbb{R}^{p}$.
4. Prove that the boundary of every subset of \mathbb{R}^{p} is closed.
5. Show that for any $A \subset \mathbb{R}^{p}$ we have $\partial(\operatorname{cl} A) \subset \partial A$, where $\mathrm{cl} A$ denotes the closure of A. Give an example for strict and for non-strict inclusion.
6. Determine the limit of the following functions at the origin. (Prove if they do not exist.)

$$
\frac{x y^{2}}{x^{2}+y^{4}} ; \quad \frac{x^{5}+y^{4}}{x^{2}+y^{4}} ; ; \quad \frac{x^{5}+y^{5}}{x^{2}+y^{4}} ; \quad \frac{x^{2}}{x+y}
$$

7.

$$
f(x, y)= \begin{cases}\frac{y^{p}}{x^{2}+2 y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

For $p=2,3,4$ give the domain and the value of the functions $f_{x}^{\prime}, f_{y}^{\prime}$ and $\operatorname{grad} f$. Calculate the directional derivatives of f (for $p=2,3,4$) at the origin.
8. Let $f(x, y)=g\left(\frac{x}{1+y^{2}}\right)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is twice continuously differentiable. Determine the second order derivative (Hesse matrix) of f.
9. Determine the (local) extremal points of $f(x, y)=(x-y+1)^{2}-\left(x^{2}-2\right)^{2}$.
10. Determine the global extremal points and extremal values of the function $f(x, y)=x^{3} y^{5}$ on the closed triangle with vertices $A=(0,0)$, $B=(1,0), C=(0,1)$.

