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The main goal of this article is to provide the mathematical axiomatization of the strictly homophonic
four-part model of classical harmony. This model is mainly based on J. S. Bach's four-part chorales, and
almost unequivocal, prescriptive compositional principles were given for it in the second half of the 18th
century. To understand this procedure itself one has to be able to follow Mathematics on the level of
a Bachelor's course, but the results of the formalization can be directly applied by musicians. A logical
ordering of the basic notions in harmony can also be used for a new highschool music theory coursebook,
which seems to be necessary in Hungary. This motivated me to write my Bachelor's thesis about this topic at
TU Budapest1. About my work I also consulted with Prof. Robert S. Sturman and Prof. Scott McLaughlin
at the University of Leeds (UK), where a Mathematics and Music Bachelor's course takes place.

The main steps and new results of our axiomatization work have been the following:

1. Deduction of the most important basic notions in music theory which are closely related to harmon-
ics, such as the overtone system, the equal-tempered piano, the enharmonic equivalence, the musical
intervals, triads and seventh chords. We applied the mathematical-physical axiomatization results of
Dave Benson ([1]) about overtones and chords for this part.

2. De�ning the musical key from the perspective of functional tonality. According to this, we have been
able to prove that there is exactly one key type di�erent from the traditionally well-known two types,
the major and the minor.

3. De�ning a strictly four-part piece using the topological properties of the real line. Here we use the
mathematical thoughts of the Hungarian music theorist and composer Ligeti György ([2]). This model
of four-part edition gives an opportunity to de�ne the genre of Bach's chorals mathematically precisely.

4. After giving the de�nitions of musical functions and tonality, proving our most important proposition,
the so-called fundamental theorem of tonality about the relation between tonality and compliance with
classical harmonics, in the strictly four-part case.

5. Providing the usual chord-changing compositional principles (e.g. the principle of least motion; princile
of keeping the common voice; forbiding paralel octaves, paralel �fths and augmented second steps etc.)
embedded in our axiom system of classical harmony. This is closely related to the research of Dmitri
Tymoczko regarding the principle of least motion in a wider context ([6]). The compositional principles
are given following the Hungarian music theory coursebook of Kesztler Lörinc ([3]).

6. Standing a simpli�ed model for strictly four-part pieces for negotiating modulations complying with
classical harmonics. Providing the modulational principles of classical harmony (still according to [3]).

1T.: A klasszikus összhangzattan axiomatikája, 65p. Budapest University of Technology and Economics, 2014. Thesis
advisor: Dr. G. Horváth Ákos, associate professor, leader of the Faculty of Geometry.
According to the goal of preparing for a music theory coursebook in Hungarian, my thesis follows the conventional Hungarian�
German notation and treatment system of classical harmony, and not the English one. In this paper we will use the English
notation wherever possible, although the perspective and therefore also some de�nitions (e.g. of the tonic, subdominant and
dominant function) come from Hungarian music theory education. However, this article does not only extract or sum up the
methods and the main results of my degree work, but shows up some further results and generalisations, e.g. the fact that
the considered musical phenomena can be directly derived from the ZFC axiom system (page 2) or the notion of successive
pauseless extension (page 20).
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1 Basic notions of music theory: overtones, equal-tempered piano,

enharmonic equivalence and consonance

Our exact goal is to provide the axiom system for composing four-part classical harmony examples, in a
�rst-order language. We will not construct a new language but use the one in set theory, supposing the
ZFC axiom system. We will use simple physical properties of the overtone system, but formally these
only have arithmetic meaning. When we consider a tone X with frequency f(X), it can be handled as
X = (f(X), f(X)) ∈ (R+)2, these way the exact de�nitions of this paper can be derived consequently from
ZFC .

During the whole article let Br(x) denote the open ball with radius r around the point x in an arbitrary
metric space, and A the closure of A in an arbitrary topological space.

As usual in music theory, tone Y is a longitudinal wave moving in an elastic medium with frequency
f(Y ) > 0. For a tone X with frequency f(X) > 0, X is audible if 20 Hz < f(X) < 20 000 Hz. When talking
about tones, we always mean that the tone consists of all of its overtones. The set of overtones of the tone
X is {Y | Y is a tone, ∃n ∈ N+ : f(Y ) = n f(X)}. The overtone of X with frequency n f(X) is called the
nth overtone of X.

Musical intervals are equal distances in the (base 2) logarithmic frequency scale. The most important
intervals can be derived from the overtone system. The interval of a tone and its 2nd overtone is called
perfect octave, the one of a tone's 2nd and 3rd overtone is called perfect �fth, the one of a tone's 3rd and 4th
overtone is called perfect fourth, the one of a tone's 4th and 5th overtone is called major third and the one of
a tone's 5th and 6th overtone is called minor third. The interval of a tone and itself is called perfect prime.

If an interval of tones X and Y (f(X) < f(Y )) is not greater than an octave, then its inverse interval is
the interval completing it to a whole octave, this is the interval of Y and X's second overtone. It can easily
be seen that the inverse property is a symmetric relation amongst tones. The perfect octave and the perfect
prime are the inverses of each other, so are the perfect �fth and the perfect fourth. The inverse of major
third is called minor sixth and the inverse of minor third is major sixth.

We say that the tone X is higher than the tone Y , or Y is lower than X if f(X) > f(Y ). Intervals can be
summed and hence we can talk about octave-equivalent tones X and Y , the interval of which is n octaves,
where n ∈ Z. If X is n octaves higher than Y , it means that f(X) = 2nf(Y ). It is obvious that octave-
equivalence is an equivalence relation on the set of tones, and therefore we can consider the octave-eqivalency
class of the tone X, we will denote it by [X].
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On the following �gure2 see the �rst 11 overtones of the tone C on the piano3. See that the 7th and 11th
overtones are not members of the C major scale, they will have speci�c roles at modulations, i.e. changings
between musical keys with di�erent bases4.Now we give the basic de�nitions for these relations.

Let X be a tone with its 3rd overtone Y . The leading tone of [Y ] is the octave-equivalency class of
X's 11th overtone. The seventh tone belonging to [X], by other words the upper leading tone of X's �fth
overtone's equivalency class is the octave-equivalency class of Y 's 7th overtone. These properties can be also
de�ned for the tones themselves. If we consider the tones U ∈ [U ] and V ∈ [V ] and, for example, [U ] is the
leading tone of [V ], then we say that U is the leading tone of V .

We de�ne the perfect X major scale for a tone X. Generally, a seven-degree scale with base X1 is a set
of tones {X1, X2, . . . , X7 where f(Xi) > f(Xj) ⇔ i > j and f(X7) < 2f(X1) (this is, every member of the
scale is strictly less then one octave higher than the base). Xi is called the ith degree scale tone of the scale5.
This means that originally we denote the degrees and the operations among them with the elements of the
prime�eld Z7 , but we use the capital roman numeral for the integer (n (mod 7))+1 instead of n ∈ Z7. The
perfect X-major scale is a seven degree scale with base X, where the frequency ratios of the neighbouring
degree tones are respectively:
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where the last ratio is the ratio of the VIIth degree scale tone and the second (one octave higher) overtone
of X.

Observation 1.1. Consider a perfect major scale with all elements in the audible area for the human ear.
Then it can be observed that for the audience the following are perceptually true about the scale tones:

(i) the degree VII is the leading tone of the degree I, III is the leading tone of IV,

(ii) IV is the upper leading tone of III, I is the upper leading tone of VII,

(iii) the interval between IV and I is a perfect �fth, the one of I and V is also,

(iiii) IV is the seventh tone belonging to I, and I the one belonging to V (see on page 3).

Consider the sum of twelve perfect �fths and the one of seven perfect octaves from a tone X. The �rst
interval results a tone with frequency 128 f(X), while the second one gives a tone with frequency 531441

4096 f(X).
The di�erence of the two tones is noticeable by an average person. However, if it is equally spread along
the whole interval, it locally cannot be percieved. Having 12 quasi-�fths perceptually equal to 7 octaves on
a musical instrument such that each tone of it is a base of a seven-degree scale perceptually equivalent to a
perfect major scale could fease the concept of the circle of �fths. We could use the leading tone and upper
leading tone/seventh tone connections between the quasi-perfect major scales to make it possible to move

2The �gures come from the appendix of the Hungarian paper and were made using Lilypond.
3This paragraph is only for musical illustration, all the new notions in it will be de�ned precisely in the following pages.
4Note that these overtones are out of tune in equal temperament. The frequency of the seventh overtone of C is 7 times as

many as the frequency of C, while the frequency of its enharmonic equivalent on the equal-tempered piano, b[1, is 22+
10
12 = 7, 1272

times as many as the one of C. Similarly, the frequency of the 11th overtone of C is 11 times as many as the one of C, while the

frequency of its enharmonic equivalent, f]2, is 23+
6
12 = 8

√
2 = 11, 3137 times as many as the one of C. Therefore if we started

from C on the equal-tempered piano, and used these actual overtones for modulating to G, we would get a G signi�cantly
di�erent from G of the equal-tempered scale.

5According to the Hungarian denotation, we will use capital roman numerals for the degrees.
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from each major scale to the two with a base one quasi-perfect �fth higher and lower. The one perfect �fth
higher scale is called the dominant scale, while the one perfect �fth lower is the subdominant scale. This is
the basic idea for equal-tempered piano6.

De�nition 1.1. K, a countable set of tones X0, X1, . . . is an equal-tempered piano if

(i) A ∈ K, where A is the normal a1 tone with frequency 440 Hz,

(ii) f(Xi) > f(Xj)⇔ i > j,

(iii) ∀i ≤ 0: if ∃Xi+1, then f(Xi+1) =
12
√
2f(Xi),

(iiii) K has two tones X and Y the interval of which is at least 7 octaves.

Hence A is the member of every � �nite and in�nite � equal-tempered piano. Choosing A to be �xed, the
octave-equivalency classes of the piano's white keys (A,B, . . . , G) can be given. J.S. Bach showed that every
tone of the equal-tempered piano can serve as a base of a major scale, by composing his Das Wohltemperierte
Klavier, which contains one piece for every major key of the well-tempered piano. This piano was not yet
equal-tempered, it was an earlier stage in actualising the concept of the circle of �fths.

Enharmonic equivalence in the context of the 12-tone equal tempered scale, between audible tones gen-
erally means that two di�erent tones come from two di�erent perfect major scales, but they have a common
member of the equal tempered piano from which they are not signi�cally di�erent for the human ear. En-
harmonic equivalence therefore depends of the listener's individual properties and cultural background. In
Europe, the audience of music has got used to equal temperament within three centuries and generally
accepts the following two propositions.

1. If we call the interval of two neighbouring tones of the equal tempered piano a semitone, the sequence
of tones 0, 2, 4, 5, 7, 9 and 11 semitones higher than an arbitrary piano tone is a good approximation
of a perfect major scale.

2. If we consider X and Y , two piano tones where Y is two semitones (i.e. one whole tone) higher than
X, then the (only) piano tone Z such that f(X) < f(Z) < f(Y ) is the leading tone of Y and the upper
leading tone of X.

Consider the C major scale on the equal-tempered piano �it consists of the seven white keys. Move stepwise
upwards in the circle of �fths, in the direction of the upper circle of �fths, reaching the G, D, A, E, B major
scales respectively. In this sequence, there is always exactly one degree in the current major scale that is a
non-scale tone in the following scale. The new tone is the leading tone of the �rst degree in the new scale.
Denote this with the letter of the original C major scale tone which becomes a semitone higher in the new
scale and attach a ] to the letter, this way you reach F], C], G], D], A], the leading tones to G, D, A, E, B
respectively. The base of the sixth scale is also a black key which has already been denoted F].

Now go back to the C major scale and move stepwise downwards, in the direction of the lower circle of
�fths, this way you reach the F major scale �rst. There is exactly one scale tone that the C major scale does
not contain: instead of B, there is a semitone lower tone, the seventh tone with regard to F, by other words
the upper leading tone of A. Denote it B[. If, similarly, X[ denotes the one semitone lower piano tone than
the white key X, moving downwards one �fth by one on the equal-tempered piano, we reach F, B[, E[, A[,
D[ and G[.

Note that G[ and F] refer to the same (black) piano keys: these two tones are enharmonic in the context
of equal-tempered piano. We emphasize that they are not the same tones: if we build a perfect A major
scale, F] is the VI degree scale tone there, while G[ can be reached if we move down in the D[ major scale
with 8 perfect �fth steps, and take the IV degree scale tone. It is a well-known experimental result that the
actual G[ and F] that we receive this way are signi�cantly di�erent [?], but there is no di�erence between
their actualisation on the equal-tempered piano.

6About why we consider exactly 12 �fths and 7 octaves, see [1, p. 190�193.]
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] and [ marks can be multiplied. The degree n scale tone's original name with one more ] means always
the (mod 7) n + 1th degree scale tone's leading tone and the degree n + 1 scale tone's original name with
one more [ means always the nth degree scale tone's upper leading tone. Note that [] = ][ = \ means the
identity of the C major scale, and "multiplication" of ['s and ]'s is commutative.

Consequently, we will not describe the properties of clear major scales but the ones on the equal-tempered
piano; a piano tone will always mean a class of enharmonic equivalency of countably in�nite tones connected
to the piano's C major scale by the system of [s and ]s. Usually we will not consider more than twice altered
tones. Note that one major scale cannot contain sharpened and �attened tones in the same time. The
�fth-by-�fth sequence of sharpened scale tones of a major scale on the equal-tempered piano: F], C], . . . or
the sequence of �attened scale tones of the major scale: B[, E[, . . . is called the major scale's key signature.

After this, if X and Y are arbitrary �not by all means audible� tones of the equal-tempered piano
and there is an n ∈ Z so that the audible tone X ′ n octaves higher than X is enharmonic to the (also
audible) Y ′, which is n octaves higher than Y , then we call X and Y audible, too. We also can talk about
enharmonic equivalence of seven-degree scales, octave-equivalency classes, intervals of an equal-tempered
piano K and elements of its Cartesian product powers Kn (n ∈ N) (its elements are the chords) too.
Enharmonic equivalence of the tones A and B is denoted as A ∼ B, and it is easy to prove that ∼ is an
equivalence relation.

According to the construction of the twelve enharmonic equivalency classes of major scales, we can de�ne
all the musical intervals that are in use in classical harmony. In this, we always follow the international termi-
nology (i.e. diminished/minor/perfect/major/augmented prime/�rst/second/. . ./seventh/octave), therefore
we do not detail this. In the context of classical harmony, we call an interval of the equal-tempered piano
consonant if the following two properties apply to it:

1. It is enharmonic with the piano version of the interval between the kth and the mth overtone of a tone
X, where 1 ≤ k,m < 7, up to octave-equivalency,

2. it is neither a diminished nor an augmented interval.

Corollary 1.1. An interval is consonant if and only if it is n octave plus 0, 3, 4, 5, 7, 8 or 9 semitones
and its name is neither diminished nor augmented.

Note that this de�nition for consonance cannot be applied for earlier ages than Viennese classicism, because
in those ages the conditions of consonance had been stricter, e.g. perfect fourth was considered as a dissonant
interval. Dissonant means not consonant. Again, questions of consonance and dissonance depend on human
perception and can be modi�ed by the recipient's cultural�musical environment.

We have declared that an equal-tempered piano has to be at least as wide as a real piano: 7 octaves.
This is for making it possible to contain 7 octaves (12 �fths). For certain parts of the observation it is more
comfortable to consider an equal-tempered piano that is in�nite into both directions. Let d2(X,Y ) mean the
interval between the notes X and Y of an arbitrary equal-tempered piano K, measured in semitones. (The
interval consisting of two semitones is called a wholetone.) Then the following is true:

Proposition 1.1. (K, d2) is a metric space and d2 generates the discrete topology on K.

Proof. It is trivial that d2 has the metric properties. Because there is no smaller d2 distance between piano
elements than 1, ∀X ∈ K B1(X) ⊆ {X}, which shows that the one-point set {X} is open, therefore K is a
discrete topological space.

Hence, we can talk about Borel-measurable functions M : R+
0 → Kn, where n > 1 integer and Kn is a

�nite topological direct product K ×K × . . .×K︸ ︷︷ ︸
n instances

. Considering the real half line as continuous time, we call

this functionM n-part piece. More exact de�nitions about strict four-part composition are coming in section
4. The kth voice ofM is prk◦M , where prk is the projection to the kth instance of the equal-tempered piano.
In the four-part case, the voices (from the �rst to the fourth respectively) are called, as conventionally, bass,
tenor, alto and soprano. Often in the case of more than one voice, the �rst voice is called bass and the last
soprano.
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2 Triads and seventh chords

Triad names are special elements of the factor space K3/ ≡ on an arbitrary equal-tempered piano K, where
≡ is the octave equivalency relation. These contain scale or once modi�ed tones from a certain seven-degree
scale on K, and their main characteristic is that they consist of a kth, a k + 2th and a k + 4th degree
tone (mod 7) of the given major scale based on one of the twelve enharmonic equivalence classes of the
equal-tempered piano. With this notation we call the triad degree k. There are four kind of triad names
which we say that comply with classical harmony, according to the following chart:

Name Notation Interval of the Interval of the Interval of the
degree k and k + 2 degree k + 2 and k + 4 degree k and k + 4

tones
Major triad M major third minor third perfect �fth
Minor triad m minor third major third perfect �fth
Diminished triad d minor third minor third diminished �fth
Augmented triad A major third major third augmented �fth

There is a major and a diminished triad in the set of the �rst 7 overtones of an arbitrary tone: the 4th,
5th and 6th overtones form a major one and the 5th, 6th and 7th overtones form a diminished one. Minor
and augmented triads cannot be found among the triplets of these tones. On the other hand, major and
minor are the consonant triad types�because all the three intervals among their tones are consonant�while
diminished and augmented are dissonant�because their �fths are not perfect and therefore dissonant.

A four-part version of a triad � in other words, later in this article: a triad � is an element of the piano
power K4 which consists of the tones of a triad name, exactly one of them in two voices. Triads with the
same name are considered to be equal if and only if all of their voices are the same (and not only octave-
equivalent!). If the triad consists of the kth, k + 2nd and k + 4th degree scale tone of a seven-degree scale �
these are called the base, the third and the �fth of the triad, respectively � on the equal-tempered piano, its
position is determined by which tone it has in the bass. If in the bass there is the k degree tone, the triad is
in root position (with Hungarian notation: k), if it is the k + 2 degree tone in the bass, the triad is in �rst
inversion (k6), and if it is the k + 4 degree tone, the triad is in second inversion (k64).

If the name of the triad complies with classical harmony, the duplication of this triad name's voices
is appropriate7 and there is a preliminarily �xed frequency interval (of some musical instruments or vocal
voices) for each voice and the contributing voice of the triad is inside this, then we say that the triad complies
with classical harmony. The previous sentence is true with a little correction, which we will give after de�ning
tonality topologically, on page 16.

Consider the union of a degree k and a degree k+2 triad name on an arbitrary seven-degree scale. This
is virtually an element of K4/ ≡, and it is called seventh chord name. If H ∈ K4 consists of the tones
of a seventh chord name, with an arbitrary permutation of the voices, then H is called a seventh chord.
This name comes from the fact that there is a seventh interval between the k and the k + 6 degree scale
tones. The degree k and degree k + 2 triads are the partial triads of the seventh chord. The position of a
degree k seventh chord inverson can be: (root position) seventh chord (k7 in the Hungarian notation), �rst
inversion (k65), second inversion (k43) and third inversion (k2 or sometimes k42), if in the bass there is the
kth, k + 2nd, k + 4th and k + 6th degree tone of the seventh chord name, respectively. The origin of these
notations is the following. If a 7th chord does not have the kth degree tone in the bass and the k + 6th
degree tone in the soprano, then there are two voices between which the interval is a second, by other words:
between these two voices there is a second friction. The upper and lower indices on the right of the degree's
roman numeral show the interval of these two voices from the bass (e.g. in the case of k65 the lower voice
contributing to the friction is a �fth higher than the bass, the higher one is a sixth higher than the bass), up
to octave-equivalency. The kth degree tone is the seventh chord's base, the k + 2nd degree one is its third,

7This means: if the triad is in root position, the kth degree tone participates in two voices, and if the triad is in second
inversion, then the k + 4th degree. Furthermore, if the triad is diminished and it is in root position, then the k + 2nd degree
tone is not in the tenor and the k + 4th degree tone is not in the alto (in order to avoid too strong dissonances). There is no
limitation for voice duplication in the case of �rst inversion.
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the k + 4th degree one is its �fth and the k + 6th degree one is its seventh. We also refer to the interval
between the base and the third, �fth or seventh by the words `third', `�fth' or `seventh', respectively. The
name of a four-part version of a triad or a seventh chord H is signed as N(H) (pronounce: nomen H).

If both partial triads of a seventh chord nameH comply with classical harmony, and there is no triad which
is voicewise enharmonic to H, then we say that H complies with classical harmony. This second condition
is for excluding the augmented triad from the set of seventh chord names, which can be represented by a
triad name in which there is a major third between the kth and k + 2nd, between the k + 2nd and k + 4th
and also between the k+4th and the k+6th degree tone, but this time the kth and k+6th degree tone are
enharmonic on the equal-tempered piano. If a four-part version H0 of a seventh chord H complying with
classical harmony has it voices inside a preliminarily �xed frequency interval, we�similarly to the case of
triads�say that H0 complies with classical harmony. The following chart shows the seventh chord (name)
types those comply with classical harmony. (De�nitions of the major and the minor keys will follow in the
next section, the examples for seventh chord types in the last two columns are only for musical illustration.)
Third Fifth Seventh Partial triads Name Examples in Example in

(. . .) seventh major (degrees) minor (degree)
major augmented major major, augmented augmented major none III
major perfect major major, minor major minor I, IV VI
major perfect minor major, diminished major/dominant V V
minor perfect major minor, augmented harmonic minor none I
minor perfect minor minor, major minor major II, III, VI IV
minor diminished minor diminished, minor semi-diminished VII II
minor diminished diminished diminished, diminished diminished none VII

Remark: a root position dominant seventh that complies with classical harmony may be �fth de�cient,
which means that it need not contain its �fth in any voice but instead the base in two voices (one of these
voices is necessarily the bass).

3 Trichotomy of musical keys

After introducing the basic musical notions we de�ne keys. Our goal is to provide a de�nition of key based
on the idea of key stability and tonality in classical harmony. We preliminarily ensure that it accepts the
major and minor keys, which we have been using in Europe for �ve centuries, to be keys, but we will see
that it does not exclude every other seven-degree scale. What's more, this de�nition gives the ability to �nd
all possible key types, and we will see that apart from major and minor there is exactly one more kind of
key.

De�nition 3.1. Let H be a seven-degree scale on the equal-tempered piano (with scale tones and modi�ed
tones from the C major scale), with seven pairwise non-enharmonic scale tones. We say that H is a key if:

(i) the Vth degree triad of H (built up from scale tones) is major and the Vth degree seventh is dominant,

(ii) all triad and seventh chord names that consist of the scale tones of H comply with classical harmony,

(iii) if the kth degree seventh is dominant, then the degree k + 3 mod 7 triad is major or minor (mod 7),
with the k + 3th degree scale tone one perfect fourth higher than the kth degree one8.

It is obvious that the de�nition implies the next two properties:

Proposition 3.1. In a key the �rst degree triad is major or minor, and the VIIth degree scale tone is the
leading tone of the Ist degree scale tone.

The next two are examples of easily provable propositions in the area of keys.

8In other words: the kth degree dominant seventh, with its seventh dissonance, can resolve to its tonic. This will follow in
detail in section 5.
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Example.

1. Consider a major scale and duplicate it one octave higher. This way you get a sequence of 15 tones �
0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 17, 19, 21 and 23 semitones higher than the lowest one. The seven-degree
scales of seven neighbouring elements (in frequency's order) are called modal scales. Show that among
these only the major scale is a key.

2. Now modify these modal scales to the so-called harmonic modal scales: if the VIIth degree scale
tone is not enharmonic to the leading tone of the Ist degree scale tone, substitute this VIIth degree
tone with the leading tone. Show that this way we receive one more key: the harmonic Aeolian or
harmonic minor, �this is the harmonic version of the Aeolian or natural minor scale� which has
got the following intervals between its �rst degree and the other degrees: 0, 2, 3, 5, 7, 8, 11 and 12
semitones, respectively.

According to this example, we can introduce the major and minor keys. The next lemma helps us �nd
the third key type and prove that there are no other possible types.

Lemma 3.1 (The Minor Lemma). In an arbitrary key H the following properties are equivalent:

(i) the VIth degree scale tone is 8 semitones higher than the Ist degree one,

(ii) every type of seventh chord complying with classical harmony can be built up from scale tones of H,

(iii) the VIIth degree seventh chord (built up from scale tones) is diminished,

(iv) the IVth degree triad is minor,

(v) the IInd degree triad is diminished,

(vi) there are two neighbouring degree scale tones of H between which the interval is an augmented second.

Proof. The de�nition of keys implies that the sequence of intervals of the Ist degree scale tone and the other
scale tones is: (0, 2, ?, 5, 7, ?, 11), where the ?'s refer to unknown intervals. Using the key's de�nition it is
easy to prove that the lemma's conditions are equivalent to the condition (i), which states that the sequence
of intervals is (0, 2, ?, 5, 7,8, 11). The IIIrd degree scale tone can be either 3 or 4 semitones higher than the
Ist degree one in order to satisfy the key's de�nition.

Proposition 3.2 (The trichotomy of keys). Let X be an enharmonic equivalence class on an equal-tempered
piano K. Then there are exactly three keys with �rst degree X, up to enharmonic equivalence. These are the
major, �with interval sequence (0, 2, 4, 5, 7, 9, 11)� the minor �with interval sequence (0, 2, 3, 5, 7, 8, 11)�
and a third type, the so-called minor with a Picardian third9 �with interval sequence (0, 2, 4, 5, 7, 8, 11). The
second and third types are the two ones that satisfy the Minor Lemma.

Proof. As in the previous proof, the key's de�nition implies that the interval sequence of an arbitrary key's
scale is (0, 2, ?, 5, 7, ?, 11).

If the degree VI scale tone has sign 9, then from the requirement that every triad and seventh chord
built up from scale tones has to comply with classical harmony follows that the sign of the IIIrd degree tone
cannot be di�erent from 3 or 4. If this sign is 4, then the scale is the X-major scale. If the sign is 3, then
the IVth degree seventh chord built up from scale tones is a dominant seventh, but the interval between the
IVth and the VIIth degree scale tones is not a perfect fourth but a tritone (enharmonic with 6 semitones/3
whole tones). Therefore in this case we do not get a key10.

If the VIth degree scale tone has sign 8, then the Minor Lemma implies that we have got two possible
keys, exactly which are named in the proposition.

9Referred to as Picardian minor from now on.
10This scale is also a harmonic modal scale: the harmonic Dorian, which begins with the second degree of the original major

scale.
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From the 1500s European music is determined by the major�minor duality. The Picardian minor key,
as we have seen, has the basic key stability properties, but it di�ers in only one scale tone (degree VI) from
the major scale and also in only one scale tone (degree III) from the minor one. Therefore the listener who
thinks in only major and minor tries to decide which of this two key types a given music piece is in, even if
it is actually in a Picardian minor, and hence it has become perceptually very hard to preserve the stability
and individuality of this key type. In music history, this third key type usually appears as a transitional state
between the major and the minor key, not as an individual key. It has got another important application:
when J.S.Bach harmonizes a chorale with the given soprano melody ending in minor key with the �rst degree
tone, he always makes the last triad major (makes its third Picardian). The reason of that is that there is a
major but no minor triad consisting of a tone's overtones, and the tones of a long minor triad would cause
dissonance with the overtones' major triad among certain acoustic conditions (e.g. in churches).

As the minor key comes from a modal scale but its VIIth degree tone is altered (lifted with a semitone),
this alteration has to be signed in the triads including this tone. Therefore we use modi�ed notations in
Hungarian music theory for the triads and seventh chords built up from scale tones: we refer to the interval
from the base to the voice that contains the altered voice with an Arabic letter on the right side of the degree
number, �where we also write the sign of the inversion� and the alteration of the bass under the degree
number. However, we do not write 3] but only ] when referring to an altered third. E.g. V] � root position
�fth degree triad, V7

] � root position �fth degree seventh, VII
]

7 � root position seventh degree seventh, III5]

� root position third degree triad, V
6]
4
3
� seventh degree seventh in second inversion etc. If there are di�erent

[ or ] alterations, we will use the same notation system. The key signature of a (possibly Picardian) minor
key is the key signature of the major scale which has the degree I scale tone of the minor key as degree VI
scale tone. These major and minor scales are called parallel.

4 Topological features of four-part edition

In this whole section let K denote an arbitrary equal-tempered piano. Remember that n-part pieces are
R+

0 → K4 Borel-measurable functions, where we consider R with the standard topology and K4 with the
discrete topology. Now we give the de�nitions of strictly four-part pieces, which we use for modeling classical
harmony. Our notions will permit some non-feasible musical phenomena, such as in�nite pieces and chords
accumulating in one point in time (referred to as packing point, see later). Why don't we use only chord
sequences, which are enough to describe the four-part examples for classical harmony? Basically for two
reasons. On the one hand, we would like to make it possible to talk about periodic pieces without ending
in �nite time, which is often aimed for in 20th�21st century popular music. On the other hand, topological
description will make it technically easier to prove the main theorem of tonality and also possible to de�ne
the genre of Bach's chorale harmonizations mathematically precisely and musically almost correctly. When
talking about modulations (i.e. movements between keys), we will simplify the model and consider only the
chord sequences.

De�nition 4.1. Let M : R+
0 → K4 be a four-part piece. M is called a strictly four-part piece if:

(i) Each element of Ran M is a four-part version of a triad or a seventh chord (in some inversion) that
complies with classical harmony,

(ii) each voice of each element of Ran M only contains tones that can be derived from the C major scale
on K using the system of ['s and ]'s,

(iii) ∀H ∈ Ran M : M−1(H) = {x ∈ Dom M |M(x) = H is a disjoint union of intervals closed on the left
and open on the right.

De�nition 4.2. If M is a strictly four-part piece, B(M), the narrowest interval closed on the left and open
on the right that contains Dom M is called the cover of M .

9



Strictly four-part pieces, which we use for composing examples for showing and teaching compositional
principles of classical harmony, and which are very close to J.S.Bach's chorales from real music, are completely
homophonic. This means that if in a point in time one voice starts to play a new tone, all other voices do
so. From this fact, the general de�nition of n-part pieces and the point (iii) of de�nition 4.1 follows that if
M is a strictly four-part piece, then there is a pause in the point in time t ∈ R+

0 in at least one voice of M
(t /∈ Dom pri ◦M), then this is actually a general pause, i.e. pause in all voices. Another consequence of
these de�nitions is that the connected components of pauses are also intervals closed on the left and open
on the right.

It is easy to prove that every strictly four-part piece M is continuous from the right, which means:

∀t0 ∈ Dom M : lim
t→t0+0

M(t) =M(t0). (1)

More precisely, with respect to the fact that M is a discrete-valued function:

∀t0 ∈ Dom M ∃δ > 0 : ∀t ∈ [t0, t0 + δ[ M(t) =M(t0). (2)

De�nition 4.3. Let M be a strictly four-part piece.

(i) t = inf Dom M is the beginning/starting point of M ,

(ii) t = sup Dom M is the ending point of M , if this point is �nite,

(iii) t is a melody starting point of M if ∃ε > 0 such that t is the beginning point of M |[t−ε,∞[,

(iv) t is a melody ending point of M if ∃ε > 0 such that t is the ending point of M |[0,t+ε[,

(v) t ∈ DomM is a chord changing point ofM if ∃ε > 0, ∃H1 6= H2 ∈ K4 such that ∀x ∈ [t− ε, t[ M(x) =
H1 and ∀x ∈ [t, t+ ε[ M(x) = H2. Let A(M) denote the set of the chord changing points of M .

De�nition 4.4. Let M be a strictly four-part piece.
inf

t∈D(M)
sup {r1 + r2| r1, r2 ≥ 0 ∧ ∀x ∈ [t− r1, t+ r2[ : M(x) =M(t)} is the in�mum of chord lengths ofM ,

while sup
t∈D(M)

sup {r1 + r2| r1, r2 ≥ 0 ∧ ∀x ∈ [t− r1, t+ r2[ : M(x) =M(t)} is the supremum of chord

lengths of M .

The proofs of the following two propositions are not very complex but rather technical and therefore we
leave them to the reader in this article.

Proposition 4.1. Let M be a strictly four-part piece and λ the Lebesgue measure. Then |A(M)| ≤ ℵ0.
If the in�mum of the chord lengths of M is positive, then A(M) does not have any accumulation point. If
sup

H∈R(M)

λ(M−1(N(H))) <∞ is also true, then A(M) is �nite.

Proposition 4.2. Let M be a strictly-four part piece with positive in�mum of chord lengths. Then

(i) ∀t ∈ Dom M : t /∈ Int Dom M if and only if t is a melody starting point of M ,

(ii) ∀t ∈ Dom M : t /∈ Dom M if and only if t is a melody starting point of M ,

(iii) if Dom M = B(M) (then we say that M is pauseless), then M has only one melody starting point: the
starting point and only one melody ending point: the ending point.
M has a �nite number of chord-changing points, all other points of Dom M are in the interior of an
interval on which the image of M is a constant triad or seventh chord.

We do prove the next proposition:

Proposition 4.3. Every ω-accumulation point of the domain of a strictly four-part piece M is a complete
accumulation point.
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Proof. We want to see that if in�nitely many points of Dom M accumulate to t ∈ Dom M , then the actual
cardinality of points of Dom M accumulating to t is continuum.

The de�nition of accumulation point says that for such t ∈ Dom M , ∀n ∈ N : (B 1
n+1

(t)\{t})∩DomM 6=

∅. Then the axiom of choice guarantees that
∏
n∈N

(
B 1

n+1
(t) \ {t}

)
∩DomM 6= ∅. Therefore there is a sequence

a : N → Dom M such that ∀n ∈ N an ∈ B 1
n+1

(t) \ {t}. Let In be the widest open interval containing an

on which M [In] = {M(t)|t ∈ In} = M(an). This sequence of intervals accumulates to t, because ∀n ∈ N
In has a point, namely an, such that |t − an| < 1

n+1 . Therefore the cardinality of the points of Dom M

accumulating to t is 2ℵ0 = |Dom M |, which means that t is a complete accumulation point of Dom M.11

As we anticipated in the beginning of this section, the topological model of strictly four-part pieces gives
us opportunity to compose not completely feasible music. On the one hand, domains of strictly four-part
pieces are not by all means bounded, on the other hand the homophonic edition does not exclude the existence
of packing points: accumulation of in�nitely many chords to one point �in other words: executing in�nite
music in �nite time.

De�nition 4.5. Let M be a strictly four-part piece. t ∈ Dom M is a packing point of M if ∀ε > 0 [t− ε, t[
contains in�nitely many melody starting or chord changing points.

Hence, for feasible music we have to forbid packing points and limit the domain to a bounded interval:

De�nition 4.6. A strictly four-part piece M is feasible if it satis�es the following two conditions:

(i) the in�mum of chord lengths of M is positive, and if Dom M 6= B(M), then the in�mum of general
pause interval lengths is also positive,

(ii) Dom M is compact.

This, from the beginning of the current section, has been the construction of natural parametrization
of strictly four-part pieces. Playing functions describe the performance of these pieces with non-constant
velocity.

De�nition 4.7. Let M be an n-part piece for a certain n ∈ N+ and θ : [0,∞[ → [0,∞[ a continuous,
strictly increasing function, for which [0,∞[ can be divided into countably many disjoint intervals (Ii)i∈ω
joining each other and altogether covering [0,∞[, such that in the interior of each interval θ ∈ C2, θ′ nowhere
vanishes and inf

n∈ω
λ(In) > 0.

Then θ is called a playing function. The name of M ◦ θ|B(M) is the playing of M that belongs to θ. For
t ∈ B(M) θ′(t) is the playing velocity and θ′′(t) the playing acceleration in the point in time t, if they exist.
θ ≡ 1 gives the naturally parameterized n-part piece. The set of playing functions is denoted as PL(R).

It is easy to verify that on bounded intervals playing functions are absolutely continuous with respect to
the Lebesgue measure. The following de�nition is based on this.

De�nition 4.8. If θ ∈ PL(R), M is a strictly four-part piece and A is a Lebesgue-measurable subset of
B(M), then the length of the part A of piece M by the playing function θ is µθ(A) =

∫
A

1dθx =
∫
A

θ′(x)dx.

De�nition 4.9. For a strictly four-part piece M A ⊆ B(M) has the Ligeti�Boulez measure zero12 if
∀θ ∈ PL(R) µθ(A) = 0.

We leave the proofs of the next two propositions �they can also be found in my thesis.

Proposition 4.4. X ⊆ [a, b[ ⊆ B(M) has the Ligeti�Boulez measure 0 if and only if it has the Lebesgue
measure 0.

11This proof does not work only if Dom M = ∅, but the proposition is also true in this case.
12About the origin of this de�nition see: [2, part I.; Decision]
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Proposition 4.5. PL(R) is a group under the composition of playing functions.

Now we turn our attention to the mathematical de�nition of the genre of Bach's chorales. We emphasize
that chorale is a live-music genre with originally non-prescriptive characteristics in Baroque, and therefore
however precisely we de�ne it, our de�nition will only be correct with certain exceptions. Therefore our
goal is not to determine what a four-part chorale is but to show that the topological description of strictly
four-part pieces gives an opportunity to form a de�nition that is correct for the great majority of these
pieces written by Bach for harmonising with a given soprano voice. In preparation for this, we need one
more de�nition.

De�nition 4.10. LetM be a strictly four-part piece with x ∈ DomM andM(x) = H. Then the connected
component of M−1(H) containing x is the area of M(x).
The halving of I = [a, b[ ⊆ B(M) in the playing belonging to θ ∈ PL(R) is dividing I into two disjoint
intervals closed on the left and open on the right I1, I2 which together cover I and µθ(I1) = µθ(I2).

Using this, our de�nition for four-part chorale is the following. Generally, `keeping the common tone'
means staying at the same degree of a seven-degree scale (moving by a perfect or an augmented �rst interval),
`step' means moving one (diminished/minor/major/augmented) second upper or lower and `skip' means any
motion that is bigger than a second.

De�nition 4.11. A four-part piece K is a four-part chorale if there is a feasible, naturally parameterized,
pauseless strictly four-part piece M such that ∃c > 0: ∀x ∈ Dom(M) the length of the area of x by the
identic playing function is c, and
(1) K can be derived from M with using the following steps, the so-called �gurations. They are used for a
�nite number of x ∈ Dom M and the �gurations excluding each other are not done at the same time.
Types of �gurations are:

Chord duplication Halve the area of M(x) by the identic playing function (natural parametrization), and
in the �rst part of the area keep M(x) for K(x), in the other part K(x) is one constant triad or seventh
chord di�erent from M(x).

Suspension Halve the area of M(x) by natural parametrization, in the second part of the area keep M(x),
in the �rst part, in one or two voices change the appropriate tone of M(x) one step higher and keep
the remaining voices.

Advancement Halve the area of M(x) by natural parametrizaton, in the �rst part of the area keep M(x),
in the second part, in exactly one voice write a step higher or lower tone, which is equal to the tone in
the same voice of the next chord after M(x).

Accented passing tone Suppose that there is a third skip in some voice(s) ofM at arriving at or departing
from M(x). Then halve the area of M(x), and on the part which is closer to the interval of the
neighbouring chord that is involved in the third skip, instead ofM(x), write a tone the degree of which
is between these two tones' degree. Note that only one accented passing tone per one chord area of M
is accepted.

(2) consider the given four-part piece K with a playing function θ that di�ers from the identic playing in
the following: ∃m ∈ N that θ increases the length of every mth chord interval of M k times greater than
originally, where k ∈ ]1, 2[ is a conventionally accepted factor. Then we say that there is a pause on every
mth chord.

5 Convergence area of a key. Functions and tonality

Let T be a key with degree I scale tone X in an enharmonic equivalence class on the equal-tempered piano
K. Convergence area of T is CA(T ) = {(Gi, Li)|i = 1, . . . , N}, where N ∈ N and ∀i Gi is a �xed triad or
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seventh chord name of K in a certain inversion and Li is the list of the accepted four-part versions of Gi.
Li is usually described by a formula that is only meant for four-part versions of triads or seventh-chords
that comply with classical harmony �see page 6. In simpli�ed word usage we also call Gi an element of the
convergence area, CA(T ) is the set of chords belonging to T , our goal is to make this meaningful. Before
exact de�nitions we give a little explanation.

Since keys are determined by their scale tones, in classical harmony in an arbitrary key T almost every
triad and seventh chord inversion is an element of CA(T ). Dissonance of diminished triads and certain
classical compositional principles exclude some inversions and four-part versions. All other chords that can
be led to the chords built up from scale tones `appropriately for classical harmony' �this means not only
`complying with classical harmony' but actually `in a way that is not unusual in the works of Viennese
classical authors'� are also elements of CA(T ) and are called altered chords.

Triads and seventh chords built up from scale tones of T in four-part versions complying with classical
harmony are elements of CA(T ) with the following exceptions. Diminished triads are only accepted in �rst
inversion �in order to avoid strong tritone dissonance�, and especially if they are degree VII ones, then they
have to be third-duplicated (the third of the triad has to participate in two voices13). In classical harmony
in every key second inversionsof only degree I and IV triads are used (and hence only these are convergent).
Every non-diminished triad's root position and every triad's �rst inversion is an element of CA(T ).

Example. Which degree triads' root positions are elements of CA(T ) if T is a (a) major, (b) minor, (c)
Picardian minor key?

After introduction of convergence areas, we can give the de�nition of weak tonality.

De�nition 5.1. Let M be a strictly four-part piece and t an accumulation point of Dom M . We say that
M is k-tonal14 in the point t with keys T1, . . . , Tk if there is a connected open neighbourhood U of t such
that ∀x ∈ U \ {t} ∩Dom M M(x) is the element of CA(Ti) for some 0 < i ≤ k.

This de�nition connects the elements of CA(T ) to the tonality with key T , but for actual (not only weak)
tonality we need to introduce new musical notions, the functions: the tonic, subdominant and dominant.
Again, we try to give the general characteristics for some well-known musical notion �instead of only naming
the tonic, dominant and subdominant chords built up from scale tones in every key. This method will later
help us classify the altered elements of the keys' convergence areas by their functions.

In the following, the kth degree triad/seventh chord of a tone will always mean the appropriate triad/seventh
chord built up from scale tones and, in these words, the leading tone/seventh tone of a key T will refer to
the leading tone/seventh tone of the key's Ist degree scale tone. We say that a triad or seventh chord H is a
major chord if H is a major triad or a dominant seventh. The leading tone of a major chord is its third. We
say that a triad or seventh chord L is a diminished chord if L is a diminished triad or a diminished seventh.
The leading tone of a diminished chord is its base.

De�nition 5.2. Let T be a key, H ∈ CA(T ) be a major or diminished chord, i.e. major triad, diminished
triad, major (dominant) seventh or diminished seventh, and G ∈ CA(T ) a major or minor third. We say
that H resolves to G if H contains the leading tone of (the base of) G and if there is a tone x belonging to
H that is not a scale tone in the major key built on the base of G, then x is the upper leading tone of the
�fth of G.

De�nition 5.3 (Dominant function (D) and secondary dominant property.). X ∈ CA(T ) has the dominant
function in the key T if it resolves to the �rst degree triad of T . Y ∈ CA(T ) is a secondary dominant chord
if it resolves to any other major or minor chord built up from the scale tones of T .

In order to show the most typical dominant chords, we require that the seventh degree diminished seventh
chord, which is built on the leading tone of the key's �rst degree scale tone, and which obviously satis�es

13VIIth degree triad inversions cannot contain two �fths, because then there would be two tritones among the intervals of
the triad's voices, which would be too much dissonance. Two classical compositional principles, the leading tone axiom and
avoiding parallel octaves exclude the usage of the base-duplicated �rst inversion of the VIIth degree triad.

14For k = 1: `weakly tonal', for k = 2: `weakly bitonal', for k = 3: `weakly tritonal' etc.
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Type of T Tonic chords Dominant chords Subdominant chords

major I, VI, VI7, I7 V, VII, V7 II, IV, II7

minor I, VI, VI7 V], VII
]
, V7

] , VII
]

7 II, IV, II7

Picardian minor I], VI5], VI75] V], VII
]
, V7

] , VII
]

7 II, IV, II7

the de�nition of dominant function, is also the element of CA(T ) if T is a major key. The Minor Lemma
(lemma 3.1) guarantees that this chord is built up from scale tones in a minor key, also in the case of the
Picardian minor. (We will not name di�erent altered chords in this article, contrary to my thesis, where the
well-known secondary dominants, altered diminished seventh chords, minor subdominants and the chords
with augmented sixth interval are described as well.)

De�nition 5.4 (Tonic function (T)). X ∈ CA(T ) has the tonic function in the key T if

(i) X contains a Ist and IIIrd degree tone of T , the �rst one from the scale T ,

(ii) if X contains the leading tone of T , then it is the seventh tone of X,

(iii) if X is secondary dominant, then X is the Ist degree major triad �with a lifted third in the minor
case,

(iiii) X has got no augmented and no diminished partial triad.

De�nition 5.5 (Subdominant function (S)). X ∈ CA(T ) has the subdominant function in the key T , if

(i) X contains the IVth and VIth degree scale tone of T , possibly both altered,

(ii) if X has an altered leading tone (in this case X is a major or diminished chord), then this is the leading
tone of the dominant key (in other words: the degree V triad's base),

(iii) the intersection of X and the tones of the Ist degree seventh chord of T is either empty or the Ist
degree scale tone.

Proposition 5.1. Consider the elements of CA(T ) which are built up from scale tones. Then the following
chart shows which of these chords have the dominant, the subdominant and the tonic function. In this case,
every chord has the same function as its inversions. The chords that cannot be found in the chart have got
no certain function.

The degree I triad is the tonic main triad of the key T , the degree IV one is the subdominant main triad
and the degree V one is the dominant main triad. Authentic step means basically two things in classical
harmony. On the one hand, it means modulating (changing key) to the one �fth higher �the dominant� key,
without changing the type of key. Among triads this means a V→I or I→IV chord progression. On the other
hand, it means function changing D → T in a certain key, not necessarily between main triads. Similarly,
plagal step means two things. On the one hand modulation to the one �fth lower �the subdominant� key,
among triads making a I→V or IV→I step, on the other hand function changing T → D in certain key.

A cadence is a chord progression consisting of at least two chords that is appropriate for �nishing a piece
in classical harmony. This way we can call the dominant→tonic or tonic→subdominant steps authentic
cadences and the tonic→dominant and subdominant→tonic steps plagal cadences in certain cases, and in a
key a complete authentic cadence is a chord progression with T → S → D → T function sequence, while
a complete plagal cadence is a chord progression with T → D → S → T . From the overtone system, the
connection of leading tones, seventh tones and the circle of �fths (see on pages 19 and 9) it can be explained
in great detail why complete authentic cadences are the most applicable for �nishing a piece15. Most of

15`It is not fully understood why V�I imparts such a feeling of �nality, but it cannot be denied that it does.' [1, p. 174]
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classical, romantic and also recent popular music is based on D → T resolutions, coloured and strenghened
by complete authentic cadences using the function S16.

In complete authentic cadences, especially at �nishing a piece, the second inversion of the degree I triad
and the �rst inversion of the degree III triad, which are actually suspensions of the degree I triad (see
de�nition 4.11 and note that �guration does not mean dissonance in every case!), are used for leading from
a subdominant chord to the degree V triad or seventh chord. The most typical authentic chord progression
in Viennese classicism is I → IV → I64 → V(7) → I. I64 and III6 are also good for leading to degree V
from a dissonant, altered subdominant chord, from which moving directly to V is not possible without
violating classical compositional principles. For further information about classical chord progression see [1,
p. 173�176.].

We need to give the �rst de�nition and the �rst compositional principle �the �rst axiom of classical
harmony given in this article� about modulations in order to become able to de�ne functional tonality. We
will sum up description of modulations later, in section 7. What is very important to emphasise: we demand
that modulations themselves be feasible and pauseless: they need to take place during a bounded interval,
without general pauses and packing points.

De�nition 5.6 (Modulation). If there are keys T1 and T2 for the strictly four-part piece M such that
Dom M has got a subset Z = [a, b[, for which M |Z is feasible, and ∃r1 > 0, r2 > 0 such that on the whole
set Br1(a)∩Dom M \Z M is weakly (1-)tonal with key T1 and on the whole set Br2(b)∩Dom M \Z M is
weakly tonal with key T2, then ∀W ⊆ Z we say that W belongs to a T1 → T2 modulation. We also say that
there is a modulation on Z.

Compositional principle 1 (First modulational axiom). LetM be a strictly four-part piece. IfM complies
with classical harmony and M contains a T1 → T2 modulation, then there exists [a, b[ ⊆ Dom M such that
M(a) is the degree I triad of T1(built up from scale tones), M(b−) = lim

x→b−0
is the degree I triad of T2

(similarly), and in a M is weakly tonal with key T1, in b M is weakly tonal with key T2, and [a, b[ is the
widest interval which belongs to this T1 → T2 modulation.

We have got all notions that we need for de�ning functional tonality. The basic idea for tonality of a
piece in one point is to assign a key to the point as a limit, requiring that all three functions can be found
in the neighbourhood of the point.

De�nition 5.7. Let M be a (not by all means strictly) four-part piece and t an accumulation point of
Dom M . M is tonal in the point t with key T , if there is a connected open neighbourhood U of t such that
U \ {t} ∩Dom M M(x) satis�es the following conditions:

(i) M is weakly tonal with key T in every point of V 17,

(ii) M [V ] contains at least one tonic, one subdominant and one dominant chord of T ,

(iii) if t /∈ Int Dom M , then only triad-valued points of Dom M accumulate to t.

De�nition 5.8. LetM be a strictly four-part piece and t an accumulation point of Dom M . M is tonal in t
and modulates from a key T1 to another key T2 if there is a connected open neighbourhood U of t such that

16As we already mentioned in the proposition 5.1, it is not true that every chord built up from scale tones in a key has a
determined function. It can be observed in the chart that function is closely related to common tones with the main triads.
The diminished degree VII triad is de�nitely dominant in every key, as it has got the leading tone in the bass and it contains
every tone of the degree V dominant seventh except its bass. The minor or diminished degree II triad has got two common
tones with the subdominant main triad. Degree VI has got two common tones with either the tonic and the subdominant main
triad, but lack of degree IV tone implies that this triad is an almost completely stable tonic chord. In certain cases in minor
(possibly Picardian) it can occur that the degree VI triad also has subdominant characteristics. The step between triads of
degree V→VI in any key is called deceptive cadence and it is often used before beginning the actual closing complete authentic
cadence. The function of the degree III triad is incertain: it has got two common voices with the tonic and the dominant
main triad. However, in minor III5] is augmented, its dissonance makes it lead to the tonic, and therefore this triad is almost
completely dominant, although it is neither a major nor a diminished chord.

17We can also say that M is weakly tonal in V .
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∃ [a, b[ = V ⊇ U , where the whole interval V belongs to a modulation as in de�nition 5.6, which complies
with classical harmony apart from the chord-changing points (according to the modulational compositional
principles, which we will give later).

De�nition 5.9 (Tonal piece). Let M be a strictly four-part piece and A ⊆ Dom M . We say that M is
tonal on A if it is tonal in every point of A by de�nition 5.7.

Now we can give the missing point from the conditions for compliance with classical harmony to triads
on page 6. If a triad H sounds in a point t of a strictly four-part piece M which is tonal in t with key T ,
then if H complies with classical harmony, then every tone which is altered in T appears in only one voice
of M .

6 Structure of the axiom system of classical harmony.

The fundamental theorem of tonality

When we think of classical compositional principles, probably chord-changing or voice-leading rules come
to our mind. The basic goal of the four-part model of classical harmony is to describe applicable chord
progression (which chords can be used and how they should follow each other) and applicable voice-leading
between chords which should follow each other. According to the prescriptive perspective of classical harmony
we emphasize these `should's �however, there are few cases when classical compositional principles tell
exactly what and how to do. It is more typical that compositional principles exclude some kind of chord
progression �e.g. they forbid some dominant to subdominant chord changes� or voice-leading, �e.g. they
forbid parallel octaves, parallel �fths and in vocal pieces augmented second steps� but they do not actually
determine what music should be composed. Virtually this property of the axiom system makes it possible
to actually write pieces of art and not only `regular examples' complying with classical harmony.

Basic chord-changing (and amongst these: detailed chord-changing) principles have been accepted for
more than two hundred years and they are no subject of debate. Decision about some less frequent cases is
less equivocal. Therefore our goal is, here and in more detail in Hungarian in my thesis, to give a frame for
chord-changing rules so that our whole axiom system for classical harmony is mathematically consistent and
complete. That is, if we get a strictly four-part piece, using our axioms we will be able to decide if this piece
violates any of them or not. We also aim to make the axiom system extendable with new chord-changing
rules if necessary. This is the cause of not beginning immediately with a description of typical correct and
incorrect chord-changing but something more general. Modulational compositional principles also belong to
the axiom system of classical harmony, so we will sum them up in the following section.

De�nition 6.1 (Correctable piece). Let M be a strictly four-part piece, a ∈ Dom M, b ∈ Dom M ∪
{∞}, N = [a, b[ ⊆ B(M). If N satis�es all the following conditions:

(i) M |N has a positive in�mum of chord lengths,

(ii) N as an interval (possibly without an upper bound) is the disjoint union of a �nite number 2n+1 (n ≤ 0)
of intervals closed on the left and open on the right (I1, I2, . . . I2n+1) so that ∀i ∈ {1, 2, . . . 2n+1} Ii ∩
Dom M 6= ∅, ∀0 < k ≤ n in the whole interval I2k there is a modulation complying with classical
harmony apart from the chord-changing points, and ∀0 ≤ k ≤ n for I2k+1 ∩ Dom M there is exactly
one key Tk such that ∀G ∈ M [I2k+1] = {H ∈ K4| ∃x ∈ I2k+1 : M(x) = H} : G ∈ CA(Tk) and
M [I2k+1] contains at least one tonic, one dominant and one subdominant chord of Tk,

(iii) on N to every melody starting and melody ending point only triad-valued points accumulate,

then M is called a correctable piece,
a) and t ∈ Int Dom M ∩ N , then if there is no chord-changing which is forbidden by the compositional
principles according to chord-changing, then we say that M complies with classical harmony in t and N is
a classical neighbourhood of t.
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b) if t0 ∈ M is a melody starting point of M |N , then according to the de�nition of strict four-part edition
lim

t→t0+0
M(t) = M(t0). In this case, if ∃r > 0 such that ∀x ∈ ]t0, t0 + r[ x ∈ N and in x M complies with

classical harmony, then we say that M complies with classical harmony in t0. If t0 is not the least element
of N , then we also call N a classical neighbourhood of t0.

De�nition 6.2. Let M be a strictly four-part piece, X ⊆ Dom M . M complies with classical harmony on
X if M complies with classical harmony on each point of X according to the previous de�nition and every
point of X has a classical neighbourhood which is a superset of X. If M complies with classical harmony on
Dom M , then we say that M complies with classical harmony.

Now we turn to the most important result of our axiomatisation process, the fundamental theorem of
tonality. We can claim that this proposition has been used for centuries in music theory, �this ensures that
our de�nitions for tonality and the de�nition of correctable piece are rightful� but it cannot be claimed
and proved without mathematical tools. The idea of the proposition came from Máté Vécsey, my university
yearmate at the Budapest University of Technology, who has also helped me edit and correct this article in
English.

Theorem 6.1 (The fundamental theorem of tonality). Let M be a strictly four-part piece that is pauseless
(DomM = B(M)) and feasible. ThenM is tonal (on Dom M) if and only if it is correctable, i.e. it complies
with classical harmony (on Dom M) apart from its chord-changing points.

Proof. First, we show that the condition of the theorem is su�cient for tonality. IfM complies with classical
harmony apart from the �nite set A(M) of its isolated chord-changing points, then every point of Dom M ,
except the beginning point, has a classical neighbourhood containing Dom M . Therefore B(M) can be
divided into an interval system as in the de�nition of correctability, let I1, . . . , I2n+1 be such an interval
system.

If 0 < k ≤ n is an integer, then in I2k there is a modulation from Tk to Tk+1. According to the �rst
modulational axiom (compositional principle 1), in I2k−1 or I2k one can �nd a point xk in which the �rst
degree triad of Tk that starts the modulation begins, and in I2k or I2k+1 a point in which the �rst degree
triad of Tk+1 that closes the modulation ends. Now consider the division of B(M) into the interval system
determined by all these xk and yk points: J1, . . . , J2n+1. It is clear that ∀k(0 < k ≤ n) J2k ⊇ I2k, and this
implies that ∀k (0 ≤ k ≤ n) J2k+1 ⊆ I2k+1. ∀t ∈ Int J2k+1 ∩Dom M Int J2k+1 is an open neighbourhood of
t that guarantees tonality and key Tk in t, while ∀u ∈ Int J2k ∩ Dom M Int J2k is an open neighbourhood
of u that guarantees tonality and modulation from Tk to Tk+1 in u (k's as before). With this, tonality has
been shown for each point of Dom M except the xk and yk points. The �rst modulation axiom guarantees
tonality and key Tk in xk, because the �rst degree triad starting the modulation and beginning in xk is an
element of CA(Tk) and ∃ε > 0 such that in ]xk − ε, xk[ M is tonal with key Tk. It can similarly be derived
from the �rst modulation axiom that in each yk M is tonal with key Tk+1. Therefore M is tonal (on the
whole set Dom M .

Now we show that the condition is necessary for the tonality. Let M be tonal, feasible and pauseless.
∀t ∈ Dom M take an open neighbourhood Ut of t that shows its tonality. If possible, let us choose Ut so
that it shows key and not modulation. Because Dom M is a bounded subset of R, it can be supposed that
∀t ∈ Dom M Ut is a bounded open interval. These neighbourhoods give an open cover of M :
Dom M ⊆

⋃
t∈Dom M

Ut. Dom M is compact and therefore we can choose a �nite number of Ut's which still

cover it: Dom M ⊆
n⋃
i=1

Ui. We can suppose that Ui = ]ai, bi[, where ai < aj ⇔ i < j and bi < bj ⇔ i < j.

The tonality of M guarantees that in U1 there is a key T1. Let us start a sequential process with V = U1,
j = 1 and T = T1 in order to divide B(M) into an interval system that shows that M is correctable. Of the
following two possibilities, one is true:

1. If ∀k > j in Uk there is the same key as in V (or supV is the ending point of M), then let V ∪
⋃
k>j

Uk ∩

Dom M be the last interval for showing correctability. In this interval M is tonal with key T , to the
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only possible melody starting point, which is the beginning point and to the only possible melody
ending point, which is the ending point only triad-valued points of Dom M accumulate.

2. If the previous case is not true, then ∃k > j such that in Uk there is a key T ′, because def-
inition of tonality implies that in supDom M there is a key. Then let s be the supremum of
the points of ]inf V, supUk[ (∩Dom M) in which the key is T and i the in�mum of the points of
]inf V, supUk[ (∩Dom M) in which the key is T ′. Because R is a complete ordered �eld, these points
exist, and tonality ofM implies weak tonality with key T in s and weak tonality with key T ′ in i, there-
fore s ≤ i. Adding the �rst modulation axiom to these, s < i follows. Then on the whole interval [s, i[
there is a modulation from T to T ′ complying with classical harmony apart from the chord-changing
points. Let us add [infV, s[ (as an interval with key T ) and [s, supUk[ (as an interval of a T → T ′

modulation) to the already given set of the intervals showing the correctability of M (this set is empty
in the beginning). Let T = T ′, j = k and V = [i, supUk[, then go back to the beginning alternative of
the sequential process.

Every time we arrive back to the beginning of the process, the ending point of the actual V is the ending
point of Uk for a k that is at least one more than the one in the previous turn. This ensures that the process
is �nite, furthermore the number of turns is not more than n: when supV = supDom M holds, the process
is �nished. The intervals given by the process show that M is correctable: the intervals with an odd index
are intervals with key and the ones with an even index contain modulation from the previous interval's key
to the following one's. Therefore each point of Dom M \A(M) has got a classical neighbourhood containing
B(M). This �nishes the proof of the fundamental theorem of tonality.

When proving that the condition of the theorem is su�cient for tonality, we did not use that Dom M is
bounded; therefore every pauseless and correctable �not by all means feasible� strictly four-part piece is
tonal. The situation is di�erent with the necessity of the conditions: each condition is necessary for ensuring
that the piece complies with classical harmony apart from chord-changing points:

• A tonal piece may have a packing point, in this case it is sure that it has no point in which it complies
with classical harmony.

• A tonal piece M with B(M) = R+
0 may have no packing point but the in�mum of the lengths of chord

intervals can be still zero (in this case the sum of the chord lengths is in�nite).

• A tonal piece M with B(M) = R+
0 and positive in�mum of chord lengths can contain in�nitely many

modulation intervals. In this case it can occur that ∀t ∈ ]inf Dom M,∞[ M |[0,t[ is correctable but M
itself is not.

• A tonal piece, even if it is feasible, is not by all means correctable if it is not pauseless. The next music
score example is tonal in every accumulation point of the domain, its two connected components by
themselves comply with classical harmony, but the whole piece is not correctable because the C major
to F major modulation is completely missing.

The technical reason why we needed the fundamental theorem of tonality is to �nd the exact role of basic
chord-changing compositional principles (namely: obligatory moving direction of leading tones, seventh tones
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and altered tones; avoidance of parallel �fths, parallel octaves, V → IV steps and augmented second steps;
keeping the common voice; the principle of the least motion etc.). In this article we do not detail these one
by one; we have done this following the perspective of the Hungarian music theory coursebooks, e.g. [3,
p. 30�183.] �but we show the scheme how they can be claimed according to our theorem.

Compositional principle 2 (Scheme for chord-changing compositional principles). Let M be a strictly
four-part piece that satis�es the conditions of the fundamental theorem of tonality and t a chord-changing
point of M . If M complies with classical harmony in t, then . . . [here come the detailed conditions for the
chord-changing in t].

This structure of the compositional principles guarantees that if correctable pieces actually exist and our
compositional principles for modulation also do not cause inconsistence, then new chord-changing composi-
tional principles can be added to the axsiom system of classical harmony as long as they do not contradict
each other.

7 Chord sequences: the feasible model of the four-part edition.

Introduction to the modulational rules.

In this, last section we give an introduction to the modulational rules, without giving the exact details of
the technically rather complicated compositional principles themselves and also without naming the altered
chords, the missing elements of the convergence areas of the keys. Note that our whole model for modulations
that can be found in my thesis at [8, p. 55�59.], in which we show all the altered chords of the keys and
state the modulational axioms, is mathematically complete but still much less than universal. Authors
often use very complex modulations, with visiting many keys before arriving in the actual target key. It is
technically quite impossible to give a clear de�nition for modulations which is based on the properties of
every piece of the Viennese classical composers. While four-part pieces without modulations are very close
to the real-music Bach chorales and also to some genres of the Classicism, education of music theory has
always been using a strongly simpli�ed model for describing modulations. This is the concept of seven-chord
modulations, which still gives freedom to the T1 → T2 modulations if T1 and T2 are close in the circle of �fths
(the di�erence in their key signatures is small) but for example it excludes reaching a third key between the
beginning and the ending key. After giving the exact modulational roles the following proposition, which
�together with its proof� has been well-known and used for two centuries in music theory, can be proven
by giving the structure or music score of exact strictly four-part modulations (e.g. see a simple argument at
[3, p. 234�235.]):

Theorem 7.1 (The fundamental theorem of modulations.). Let T1 and T2 be both major or both minor
keys. Then there is a T1 → T2 modulation consisting of seven chords which complies with classical harmony.

The seven chords of the modulation do not have to ensure that the key is T1 in the beginning point of
the modulations, but the new key T2 has to be strengthened by a complete authentic cadence, according to
the compositional principles.

De�nition 5.6 for modulations guarantees that in the context of modulations it is enough to consider
feasible and pauseless strictly four-part pieces. Pauselessness ensures that chords that cannot follow each
other by actual chord-changing also cannot come after each other, separated by a pause. Pause can weaken
the impact of irregular chord progression and there are some examples in music history when composers use
this. But at modulations our basic aim is to make the key change as smooth as possible and to �nd some
connection between the beginning and the target key, therefore such trickery is not advised in these cases.

Let M be an arbitrary strictly four-part piece and Pp(M) be the set of the packing points of M . If
t ∈ Dom M is a packing point, ∃ε > 0 for which the interval ]t, t+ ε[ does not contain any packing points.
This ensures that the following construction gives a well-de�ned function f . Let f(x) = x for each packing
point x of M , and for y ∈ B(M) \ Pp(M) let f(x) = inf

x∈Pp(M),x<y
f(y). This function is increasing, and

therefore the cardinality of its jumps is countable. Hence, M has only countably many packing points.
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Therefore there is a countable ordinal number α for which the set of the starting points of every
chord interval and every general pause interval of M can be enumerated in increasing order in α-type:
(ti, i < α). It can be supposed that if ti is the starting point of a general pause interval, then the
starting point of the successor interval tS(i) begins a chord interval (that is, �nitely many general pause
intervals following each other are united). This way we can de�ne the successive pauseless extension, de-
noted by |M , of an arbitrary strictly four-part piece M from Dom M to B(M): let |M : B(M) → K4,

|M(t) =

M(t), if t ∈ Dom M,

M

(
inf

u>t,u∈Dom M
u

)
, if t /∈ Dom M.

It can be derived from the de�nition of strictly four-part piece that for such a piece M B(M) can
be divided into a system of intervals closed on the left and open on the right (Ii, i < α), where α is a
countable ordinal number, so that ∀i < α the ending point of Ii is the beginning point of IS(i)

18, and on
each interval Ii the image of M is constant: Ii ⊆ Dom M, M [i] = Hi (∃Hi ∈ K4) or Ii is a general
pause interval of M . It is clear that these intervals can be chosen so that if Ii is a general pause interval,
then IS(i) is a subset of Dom M . In this case, the successive pauseless extension of M can be given as

|M(t) =

{
M(t), if t ∈ Dom M,

M [IS(i)] =M(inf{u ∈ Dom M |u > t}), if t ∈ Ii \Dom M.
.

|M is a pauseless piece which is equal to M on the domain of the original piece. If M has no packing point
apart from its ending point, then α ≤ ω and (Ii) is a (possibly �nite) sequence of intervals and therefore
∀i < α i is successor ordinal (virtually a natural number). In this case, another invariant extension M
of M can be given from Dom M to B(M), this is called the right-invariant pauseless extension of M :

M(t) =

{
M(t), if t ∈ Dom M,

M [Ii] =M(sup{u ∈ Dom M |u < t}), if t ∈ IS(i), IS(i) ∩Dom M = ∅.
In this case (M(ti), ti ∈ A(M)) is the chord sequence of M , where ti's follow each other in their order in R+

0 .
We omit the proof of the following proposition, which shows the role of the playing function group PL(R)
in the topology of four-part pieces.

Proposition 7.1. Let M1 and M2 be strictly four-part pieces such that the values of the chord sequences of
M1 and M2 are the same. Then ∃θ ∈ PL(R) : M2 =M1 ◦ θ.

When describing modulations, we will not make any di�erence between feasible strictly four-part pieces
which have the same chord sequence. `A chord sequence is tonal/is correctable/complies with classical
harmony' will mean that every strictly four-part piece with the given chord sequence has this property.

Firstly, we have to ensure the connection of modulational axioms to the de�nition of the correctable piece
and the fundamental theorem of tonality. Basic modulations are the modulations which satisfy not only
de�nition 5.6 but also the �rst modulational axiom (compositional principle 1). For a T1 → T2 modulation
that complies with classical harmony, even if apart from chord changes, a next necessary condition is to be
tonal in the beginning point of the �rst degree triad of T1 that opens the modulation, with key T1, and to
also be tonal in the ending point of the �rst degree triad of T2 that opens the modulation (these chords are
guaranteed by the �rst modulational axiom).

Now we can turn to the basic idea of modulations complying with classical harmony: the chord sequence
of the �pauseless, feasible� T1 → T2 modulation section has to be able to be divided into three disjoint
segments that cover the whole chord sequence [4, p. 36]:

Neutral phase (N) In this segment, which is opened by the degree I triad the key is still T1 (each element
of N is a member of CA(T1)), but there are no secondary dominant chords. In the whole modulation
after the �rst chord there is neither in T1 nor in T2 any root position degree I triad until the tonic
main triad of T2 that closes the modulation.

Fundamental step (F) If T1 and T2 are of the same type and they are neighbours in the circle of �fths,
this whole segment may be empty. Otherwise here dominant chords of di�erent keys follow each other.

18S(i) is the successor of the ordinal number i, this is i ∪ {i}.
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Only the last can be a (major/diminished/in the case of minor T1 and minor T2 augmented) triad, the
ones before have to be seventh chord inversions. These seventh chords have to follow each other by
elision19. The last chord of F can be a triad and the previous chord may resolve to it.

Cadence (C) The modulation has to be �nished with a complete authentic cadence in the new key T2, this
shows and ensures the tonality in the new key. It may occur that we do not write a cadence in each
key, but a modulation progress is only �nished when we reach a cadence in some key. Actually, the
only sure thing is that the last chord before the closing degree I triad is the degree V triad/dominant
seventh chord of T2 in the segment C: the tonic and subdominant chords before these belong to C
(and not F ) if and only if they are built up from scale tones in T2, otherwise they belong to F .

If a basic modulation chord sequence has all the properties that we have introduced in this section, and it
is the member of one of the following three modulation types, then we say that it complies with classical
harmony apart from its chord-changing points. If its chord-changings are also acceptable, the modulation
complies with classical harmony. The modulation types are:

Diatonic For the last chord H of N H ∈ CA(T2), and every chord after this is convergent in T2. This time
F usually consists of at most one chord. This is the smoothest possible key change, but it is often not
possible between keys further from each other.

Enharmonic The last chord of N or the �rst chord of F is an element of T1 that is enharmonic with some
element of CA(T2). The most common enharmonic modulation types use the enharmonic equivalence
of degree VII diminished sevenths or di�erent minor keys' degree III augmented triads in di�erent keys.
After playing this chord, we consider it as an element of CA(T2), and make a cadence in T2.

Chromatic There is elision in the modulation chord sequence. Very far modulations, such as C major →
F] major can be feased this way. In most of the cromatic modulations ]F ≥ 2 holds.

While it is very di�cult to accomplish a modulation that is diatonic and enharmonic at the same time,
these three categories do not exclude each other pairwise. In the music score collection of my thesis we show
examples of both enharmonic and chromatic and both diatonic and chromatic modulations.

Modulational compositional principles �nish our axiomatization work. By giving more and more detailed
chord-changing compositional principles based on the research of real classical music pieces and Bach's
chorales, the four-part model can be re�ned. Some of the chord-changing rules, e.g. the principle of least
motion are very hard to formalize mathematically precisely. However, there are signi�cant results about this
compositional principle. Dmitrij Tymoczko has shown in a wider context than strictly four-part edition that
voice leadings complying with this principle are crossing-free, while for every voice leading that violates it
there is a voice-leading that is closer to the least motion but it does contain voice crossing [5, p. 4�6.].

Finishing our mathematical axiomatization of classical harmony, we name our two basic goals for the
close future. On the one hand, as we have already mentioned, we would like to write a new Hungarian
classical harmony coursebook for high schools in cooperation with professionals of music theory, according
to the logical ordering and the mathematically simpler results of our approach. On the other hand, we would
like to do experiments on the possibilities and barriers of composing four-part chorales by Markov models,
according to the experience of the paper [6].
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