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Martingales, the definition

Definition 1.1 (Filtered space)
Here we follow the Williams' book. [21] A filtered space
is (Q, F,{Fn},P), where (Q, F,P) is a probability
space and {F,} , is a filtration. This means:

FoCc FLCF---CF

is an increasing sequence of sub g-algebras of F. Put

(1) e (g }‘n> cF.

The reason that we use filtration so often is
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Martingales, the definition (cont.)

When we say simply "process" in this talk, we mean
"Discrete time stochastic process".
Definition 1.3 (Adapted process)

We say that the process M = {M,}; is adapted to
the filtration {F,} if M, € F,.
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Martingales, the definition (cont.)

Remark 1.5

(a) If My € L then the process M, — M; is a
martingale (respectively submartingale,
supermartingale) iff so is M = {M,}. (This
follows from the definition immediately.)

(b) Assume that M = {M,} is a
supermartingale . Then by the tower
property for m < n we have

(3) E [Xo| Fm] < X
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o Martingales, the definitions
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Martingales, the definition (cont.)

Theorem 1.2

Given the r.v. Xi,...,X, and Y on the probability
space (2, F,P). We define F := o(Xi,...,X,). Then

(2) YeF<dg:R" =R, Borels.t.

This means that if X1, ..., X, are outcomes of an
experiment then the value of Y is predictable based on
we know the values of Xy,..., X, iff Y € F, where

Y € F means that Y is F-measurable.
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Martingales, the definition (cont.)

Definition 1.4

Let M = {M,}, be an adaptive process to the
filtration {F,}. We say that X is a martingale if

(i) E[IMy]] < o0, Vn

(i) E[M,|F, 1] =M, 1 as. forn>1
X is supermartingale if we substitute (i) with
E[Mp|Fra]l <M, 1 as. n>1.
Finally, M is a submartingale if we substitute (ii) with
E [M,|Fp-1] > Mp—1 as. n > 1.
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Martingales, the definition (cont.)

Remark 1.6

In some cases there is another process X = {X,} such
that M, = f(X,, n) for some function f (like

M, = X2 —n). Let F, := o(Xo, ..., Xn, Mp). Then we
say that M is a martingale w.r.t. X if Mis a
martingale w.r.t. the filtration F,.
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Martingales, the definition (cont.)

Example 1.7

Let X1, X, ... be independent L! r.v. (this means that
Vk, E[|Xk|]] < 00) with zero mean (that is
Yk, E[X] = 0). Let

S=0and S, = X;+---+ X,
Fo={0.Q), Frimo{Xi,....X]}.

(4) E [Sn|~/_"n71] =K [5n71|]:n71] +E [anfnfl]
= 5,,,1 +E [Xn] = 5,,,1.
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Martingales, the definition (cont.)

Example 1.9 (Exponential Martingale)

Let Y = {Y,} ~, be iid with moment generating
function finite at some 6 £ 0: M(6) =E {e(l\ﬁ’ < 0.
We write S, ;= Sg+ Y1+ Y,. Then

) exp(0S,

is a martingale w.r.t. Y. Namely, let X; := EXAI;,((%)Y’).

Then E[Y;] = 1. So, we apply Example 1.8 (i).
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© Martingales that are functions of Markov Chains
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Functions of MC (cont.)

Given a Markov chain X = (X)) with transition
probability matrix P = (p(x, y))x,-
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Martingales, the definition (cont.)

Example 1.8

(i) Let X1, Xa,... be independent non-negative
r.v. with E[X,] = 1,Vk. Let My :=1, F, as
in Example 1.7. Let M, := X;--- X, . Then
M = {M,} is a martingale.

(i) Given a r.v. {X,},—; and Y with
E[| Y]] < oo. Then

M, :=E[Y|Xw,..., X,

is a martingale, called Doob martingale .
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Martingales, the definition (cont.)

We proved the following convergence theorem (which is
also [6, Theorem 5.2.9]) in the course Stochastic
Processes. This will be a consequence of some more
general convergence theorems that we learn letter in
this course.

Theorem 1.10 (Convergence Theorem for
non-negative supermartingales)

Let X, > 0 be a supermartingale . Then there exists a
rv. X sit. X, — X as. and E[X] < E[Xo].
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Functions of MC

Remark 2.1

Given a Markov chain X = (X,) with transition
probability matrix P = (p(x, y))x,,. We are also give a
function f : S x N — R satisfying

(5) flx.n) = X p(x.y)f(y,n+1).
yeS
Then M, = f(X,) is a martingale w.r.t. X. (We

verified this in the Stochastic Processes course. See [4,
Theorem 5.5].)
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Functions of MC (cont.)

Definition 2.2 (P-harmonic functions)

Foranf:S — R:

(6) Pf(x) := Z px, y)f(y)-

We say that such an f is harmonic if
(i) ESP(X,}/)If(y)I < o0, ¥x € S and
ye
(i) Vx € S,  f(x) = Pf(x)

if we replace (ii) with Vx, f(x) < Pf(x) then f is
subharmonic .
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Functions of MC (cont.)

f is called superharmonic if —f is subharmonic. It
follows from Remark 2.1 that

Theorem 2.3

Let X = (X,) be a Markov chain with transition
probability matrix P = (p(x, y))x,, and let h be a
P-harmonic function. Then h(X,) is a Martingale w.r.t.
X.
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Functions of MC (cont.)

Example 2.5 (Simple Symmetric Random Walk)
Let Y, Ys, ... be iid with

P(X,=1)=P(X =-1)=1/2,

We write S,, .= Sg+ Y1+ -+ Y,. Then M, ::Sg—n
is a martingale. Namely, f(x, n) = x? — n satisfies (5).

Theorem 2.6

Let h be a subharmonic function for the Markov chain
X = (Xs). Then My := h(Xx) is a submartingale.
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Polya's Urn,

One can find a nice account with more details at
http://www.math.uah.edu/stat/urn/Polya.html
or click here

Given an urn with initially contains: r > 0 red and

g > 0 green balls.

(a) draw a ball from the urn randomly,
(b) observe its color,

(c) return the ball to the urn along with
¢ new balls of the same color .

o If ¢ = 0 this is sampling with replacement.
o If ¢ = —1 sampling without replacement.
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Polya's Urn, (cont.)
Claim 1

X, is a martingale w.r.t. F,.

Proof Assume that

R,=iand G,=

Then - ]
P(Xn+1:.1.c ):J7
I+j+c¢ I+
and
J i
P (X =g ) =
(”H i+j+c) i+
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Functions of MC (cont.)
Example 2.4
Let X;, Xo,... be iid with
P(Xi=1)=pand P(X;=-1)=1—p,

pe(0,1), p#05. Let S,:= Xy +---+ X,. Then

@ = (52)”

is a martingale. Namely, h(x) = ((1 — p)/p)* is
harmonic.
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© Polya Urn
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Polya's Urn, (cont.)

From now we assume that ¢ > 1. After the n-th draw
and replacement step is completed:

@ the number of green balls in the urn is: G, .
@ the number of red balls in the urnis: R, .
@ the fraction of green balls in the urnis X, .

o Let Y, = 1if the n-th ball drawn is green.
Otherwise Y, := 0.

o Let F, be the filtration generated by Y = (Y},).
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Polya's Urn, (cont.)

Hence

(8) E[XpulFn] = ,-i}r_ic ' i-J|-j i+JJ'+C - iJ’rJ'
- IJTJ = X,.

O

Corollary 3.1

There exists an X, s.t. X, — X, a.s..

This is immediate from Theorem 1.10.
In order to find the distribution of Xoo observe that:
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Polya's Urn, (cont.)

@ The probability p,, of getting green on the first
m steps and getting red in the next n — m steps is
the same as the probability of drawing altogether
m green and n — m red balls in any particular
redescribed order.

n—m—1

m 1l g+ ke

- r+fc
Bam = ko8& +r+ke = g+r+(m+0)c
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@ Games, fair and unfair
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Games (cont.)

Definition 4.1

Given a process C = (C,). We say that:
(i) Cis previsible or predictable if

Van>1, C,€Foi.

(i) Cis bounded if 3K such that
Vn,Vw, |Cy(w)| < K.

(iii) C has bounded increments if 3K s.t.
Vn>1,Vwe Q, |C(w)— Gw)| < K
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Games (cont.)

We say that

C e X is the martingale transform of X by C .
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Polya's Urn, (cont.)

If c=g=r=1then

P(Gn_zm+1)_(”)m‘("—m)! 1

m/ (n+1)! n+1

That is X is uniform on (0, 1): In the general case X,
has density

(& +1)/) (s/0)-1(1 _ (/o)1
Fe/or(r/e)

That is the distribution of X, is Beta (%, g)
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Games

Imagine that somebody plays games at times
k=1,2,.... Let X, — Xk 1 be the net winnings per
unit stake in game n.

In the martingale case

E[X,— Xy 1|Fs 1] =0, the game is fair.

In the supermartingale case

E [Xy — Xo-1|Fn-1] <0, the game is unfavorable.
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Games (cont.)

C, is the player's stake at time n which is decided based
upon the history of the game up to time n — 1. The
winning on game nis Cy(X, — X,_1). The total winning
after n game is

(9) Yn = Z: Ck(Xk —Xk 1) = (C.X)n

1<k<n

By definition:
(C [ ] X)O =0.

Clearly,

Yn - Ynfl - Cn(Xn - Xn71)~
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Games (cont.)

Theorem 4.2 (You cannot beat the system)
Given C = (G,)r, satisfying:

n=1
(a) C, > 0 for all n (otherwise the player would
be the Casino),
(b) C is previsible (that is C, € F, 1),
(c) C is bounded.
Then C e X is a supermartingale (martingale) if X is a
supermartingale (martingale) respectively.
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Games (cont.)
Proof.

(10) E[Y, — Y1l Fn1] = GE[X, — Xo_1]|Fn-1] <O.
O

Theorem 4.3

Assume that C is a bounded and previsible process and
X is a martingale then C @ X is a martingale which is
null at 0.
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© Stopping Times
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Stopping Times, definitions (cont.)

E.g. T is the time when we stop plying the game. We
can decided at time n if we stop at that moment based
on the history up to time n.
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Stopping Times, definitions (cont.)

Lemma 5.3

Assume that T is a stopping time w.r.t. the filtration
{Fn}. Let
CT = 1n<T-

n

Then C] is previsible. That is

(13) Cl e Fo

Proof.
{¢]=0}={T<n-1} e Frs O
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Games (cont.)

Theorem 4.4
In the previous two theorems the boundedness can be
replaced by C, € L?, Vn if X, € L?, Vn.

The proofs of the one but last theorem is obvious. The
proof of the last theorem immediately follows from (f)
on slide 77 of file "Some basic facts from probability
theory".
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Stopping Times, definitions

Definition 5.1
Amap T:Q — {0,1,...,00} is called stopping time
if

(11) {T<n}={w: T(w)<n}eF, n<oo.
equivalent definition:
(12) {T=nt={w: T(w)=n}eF, n<o.

We say that the stopping time T is bounded if AK
s.t. T(w) < K holds for all w € Q.
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Stopping Times, definitions (cont.)

Example 5.2

Given a process (X,) which is adapted to the filtration
{Fn}, further given a Borel set B. Let

T:=inf{n>0:X, € B}.
By convention: inf{) := co. Then

{T <n}= U {T =k} €F,

k<n
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© Stopped martingales
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Stopped martingales

Let T be a stopping time for an {F,} filtration. For a
process X = (X,) we write X for the process stopped
at T:

X, (w) = Xr(an(w),
where a A b := min{a, b}.

Assume that Kazmér always bets 1$ and stops playing
at time T. Then Kazmér's stake process is:

(14) CN =17
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Stopped martingales (cont.)
Theorem 6.1
Let T be a stopping time
(i)
X supermartingale => X" supermartingale.
So, in this case ¥n, E [X7x,] < E [X]
(ii)
X martingale => X" martingale.
So, in this case Vn, E [X75,] = E [X]
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Stopped martingales (cont.)

That is by Theorem 4.2 we get that X7,, — Xy is a
supermartingale (martingale ) if (X,) is a
supermartingale (martingale) respectively. Which yields
the assertion of the theorem. W

Remark 6.2
It can happen for a martingale X that

(16) E[Xr] £ E[X)].

The most popular counter example uses the Simple
Symmetric Random Walk (SSRW). First we recall its
definition and a few of its most important properties.
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Stopped martingales (cont.)
Lemma 6.4 (SSRW)

The Simple Symmetric Random Walk on Z is
(i) Null recurrent,
(ii) martingale.

The second part follows from Example 1.7. We proved
that SSRW is null recurrent in the course Stochastic
processes. To give an example where (16) happens:
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Stopped martingales (cont.)

In Lemma 5.3 we proved that C(7) is previsible (the
notion "previsible" was defined on slide # 29).
By (9), Kazmér's winning's process:

(C(T) & X), = X7pn — Xo.

That is
CMNeX=X"-X,.

So, by Theorems 4.2 and 4.3 we obtain

Markov Processes & Martingales A File 42 / 14

Stopped martingales (cont.)

Proof

We define C{7) as in (14). Clearly, C'") >0 and
bounded. As we saw in Lemma 5.3, C(T) is previsible.
So, we can apply Theorem 4.2 for

(15) (CeX)y, = > Ci- (X — Xk—1)
K=1
Xn — Xo, on {T = n};
pr— T
kZ_;I(Xk — kal) = X7 —Xp, on {T < n}.
= XT/\n - XO .
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Stopped martingales (cont.)

Example 6.3 (Simple Symmetric Random Walk
(SSRW))

The Simple Symmetric Random Walk (SSRW) on Z
is S =(S5)r",, where

(17) Sh=Xo+ X1+ -+ X,

where Xy = 0 and Xi, X5, ... are iid with
P(X;=1)=P(Xy=-1)=3.

We have seen that
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Stopped martingales (cont.)

Example 6.5

S =(S,) be the SSRW and let T :=inf{n:S,=1}.
Then by Theorem 6.1, E [X7,,] = E[X;]. However,

E[Xr]=1#0=X =E[X].

Question 1

Let X be a martingale and let T be a stopping time.
Under which conditions can we say that

(18) E[X7] = E [Xo]?
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Stopped martingales (cont.)
Theorem 6.6 (Doob's Optional Stopping Theorem)

Let X be a supermartingale and T be a stopping time.
If any of the following conditions holds

(i) T is bounded.
(i) X is bounded and T < oo a.s..
(iii) E[T] < oo and X has bounded increments.

then
(a) X7 € L' and E(X7) < E [Xo].
(b) If X is a martingale then E(X7)=E[Xo] .
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Stopped martingales (cont.)

Corollary 6.7

Assume that
(a) M = (M,) is a martingale.
(b) 3Ky s.t. Vn, M, — M, 1| < K,
(c) C={C,} is a previsible process with
|Co(w)| < Kz, Yw, Vn.
(d) T is a stopping time with E[T] < oo.
Then

(19) E[(CeM)r]=0.
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Stopped martingales (cont.)

Proof.
We know that nli_)rgc X7an = X7 a.s. and X714, > 0. So
we can apply Fatou Lemma :

On the other hand, by Theorem 6.1 the left hand side is
smaller than or equal to E [Xp]. 0
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Awaiting for the (almost) inevitable (cont.)

Proof.

We apply (20) for n = (k — 1)N. Then the assertion
follows by mathematical induction from Homework
77. O
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Stopped martingales (cont.)

Proof.

By Thm: 6.1 Vn, Xt,, € L' and E [X7,, — Xo] < 0.

If (i) holds then 3N s.t. T < N. Then for n = N, we
have X75, = X7. Hence (a) follows.

If (ii) holds then n|i~>n;oXT/\" = Xt. So, by Dominated

Convergence Theorem: lim E [X,\7] = E [X7]. On the
other hand, by Theorem 6.1, E [X7.,] < E[X].

If (iii) holds The answer comes from Dom. Conv.
A

Thm. |X7an — Xo| = ‘kZN(Xk — X 1) < KT < 0. If
=1

X is a martingale, apply everything above also for

—X. O
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Stopped martingales (cont.)
Proof.
Put together Theorem 4.3 and Theorem 6.6. O

A corollary of the Optional Stopping Theorem is:
Theorem 6.8

Assume that
(i) M = (M,) is a non-negative supermartingale,
(i) T is a stopping time s.t. T < oo a.s..

Then E[X7] <E[Xo] .
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Awaiting for the (almost) inevitable

In order to apply the previous theorems we need a
machinery to check if E[T < o0] a.s. holds.

Theorem 6.9
Assume that AN € N, e > 0 s.t. Vn € N,

(20) P(T <n+ N|F,) >¢. as.

then
E[T] < oo.
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ABRACADABRA

The following exercise is named as "Tricky exercise" in
Williams' book [21, p.45].

Problem 6.10 (Monkey at the typewriter)

Assume that a monkey types on a typewriter. He types
only capital letters and he chooses equally likely any of
the 26 letters of the English alphabet independently of
everything. What is the expected number of letters he

needs to type until the word "ABRACADABRA"

appears in his typing for the first time?

The same problem formulated in a more formal way:
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ABRACADABRA (cont.)

Problem 6.11 (Monkey at the typewriter)

Let Xy, Xp, ... beiid r.v. taking values from the set
Alphabet := {A, B, ..., Z} of cardinality 26. We
assume that the distribution of Xy is uniform. Let T be
(21) T :=min{n+10: (X,, Xns1,. .-, Xnt10)
=(AB,R,A,C,A,D,A;B,R,A)}

Find E[T] =?

We associate a players in a Casino to the monkey:
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ABRACADABRA (cont.)

Now for every j we define a previsible process
Ccl) = {C,Q)}. Namely, let CY) be the bet of gambler j
on day n:

0, ifk<O;
. 1, ifk=0;
ke 26%, if X, ..., Xjik—1 were correct; 1 < k < 11
0, otherwise,
where Xj, ..., Xj ,_1 correct means that they are the

first k letters of ABRACADABRA. For every j, the
value of CU) depends only on X, ..., X, 1. So, for
every j the process CU) = {C,Q)} is previsible.
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ABRACADABRA (cont.)

Similarly, k days after that player j entered the game
(this is the j + k — 1-th day of the game) the net
winning of player j is either (26X — 1)$ or —1$. This net
winning comes from the amount

the Casino paid to the player by the end of his k-th
day in the game (which is the k + j — 1-th day of the
game) minus 1$ (which is the player's initial
investment).

We denote this net winning of player j after HIS k-th

day in the game by ME) .

Remember that we have fixed a j. For this j we define
T = o(X;, ... Xie).
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ABRACADABRA (cont.)
Then

(23) E [Mﬂlwﬁf) = —1} =261 1/26 — 1= MY,

On the other hand, if /\/l,((j) = —1 then also l\/l,(ﬁ1 = -1
So

(24) E [Mﬂlwg) £ 26K — 1] =-1=MY
Putting these together we obtain that
(25) E[MIL|F] = MY,
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ABRACADABRA (cont.)

Example 6.12 (Players associated to the
monkey)

Imagine that for every £ =1,2,..., on the {-th day a new gambler
arrives in a Casino. He bets:

1% on the event: " X, = A" .
If he loses he leaves. If he wins he receives 26$. Then he bets his
26% on the event: " X, ., = B" .
If he loses he leaves. If he wins then he receives 26°$ and then he
bets all of his

26%$ on the event: "( + 2-th letter will be R"
and so on until he loses or gets ABRACADABRA.
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ABRACADABRA (cont.)

The definition of /\/I,EJ) Fix a j > 1. The net winning
of player j after the HIS first day (day j of the game) is
either

@ —1% if monkey did not type A on day j of the
game,

@ (26 — 1)$ if monkey typed letter A on the j-th of
the game.
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ABRACADABRA (cont.)

Claim 2
For every j, ME) is a martingale w.r.t. ]-",Ej) with

(22) E[MP] =o.

Proof of the Claim. Then MY € FY) and

-1< Mf(j) < 26%. That is M,Ej) is bounded, in particular
MY e 11 1f MY £ —1 then MY = 26k — 1.
Conditioned on this:

i) _ 26K+1 — 1, with probability 1/26;
kL) —1, with probability 25/26.
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ABRACADABRA (cont.)

Hence, E [ME)} =E [Ml(j)] = 0. The last equality
follows from an immediate computation.

Now we apply Doob's optional stopping theorem for the
stopping time T defined in (21) and for a martingale
S = (S,) to be defined below.

The definition of S = (S,) Let S, be the cumulative
net winning (may be negative) of all gamblers together
up to (and including) time n:

(26) S, ::; M,
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ABRACADABRA (cont.)
By (22) we have
(27) Vn, E[S,] =0.

Then S, is the finite sum of martingales, so S, is a
martingale itself w.r.t. the filtration: {o(Xi....,X,)},.

Actually we verify in the following two Claims that both
parts of condition (iii) of Theorem 6.6 hold.
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ABRACADABRA (cont.)

Claim 4
There exists a finite J such that |S, — S, 1| < J.

Proof of the Claim

By definition, |S, — Sp_1] is less than the maximum
amount J that the Casino can possibly pay to all of
the players together on any particular single day. We
prove below that J is finite. This implies that S = (S,)
has bounded (by J) increments.
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ABRACADABRA (cont.)

So, J is the amount the Casino pays on the day when
the monkey first completed the typing of the word
"ABRACADABRA". This is by definition day 7. To
compute J note that there are exactly three players who
get payment on day 7. Namely,

@ The one who arrived on day T. (He had to bet for
A). He gets 26$ from the Casino.

@ The one who arrived on day T — 3 has made 4
successful bets. So, he gets 26*$ from the Casino
onday T.

@ The player who arrived on day T — 10 gets 26''$
from the Casino.
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ABRACADABRA (cont.)

From this and from (28) we obtain that
E[T] = J =26+ 26" + 26™.

This solves the Monkey at typewriter problem. W
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ABRACADABRA (cont.)

Claim 3
E[T] < oo.

Proof of the Claim The Claim follows from Theorem
6.9 with the following substitutions:

N=11, ==(1/26)",

Namely, whatever happens now, the probability is at
least (1/26)'! that in the next 11 steps the monkey gets
ABRACADABRA. R
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ABRACADABRA (cont.)

By Claims 3 and 4 both parts of condition (iii) of
Theorem 6.6 hold. Hence by this Theorem and (22) we
get

(28) E[S7] = E[S)] = o.

The computation of J The worst day for the
Casiono, that is the day when the total amount that the
Casino pays to all the players together is at its
maximum is clearly the last day of the game, that is
day T.
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ABRACADABRA (cont.)

So, the total amount that the Casino pays on day T is
J =26+ 26* + 26! .

Observe that whatever the Casino paid to the players on
any day n < T they immediately bet it on day

n—+1< T. So, the Casino got it back. In this way, the
total amount that the Casino ever paid to the players is
just J. By definitions, this means that
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