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1 Introduction
In the last three decades Random Walk in Random Environment (RWRE)
has been a core subject of intensive research in probability theory. Histori-
cally among the first influential papers Sinai’s article has to be mentioned,
see [2]. One of the main reasons is perhaps that these phenomena possess
in general more complex problems, and for their studies development of new
technical tools is almost inevitable. A comprehensive introduction to this
topic with an extensive bibliography is Zeitouni’s lecture notes [6].

In general for the definition of RWRE two components are needed. First,
in each steps the random walker is given a randomly chosen environment and
second, the random walk is a Markov chain whose transition probabilities
are defined by the environment chosen, by this way the transition matrices
change step by step.

1.1 Mathematical definition

Let d ≥ 1. Define a collection of probability measures M with finite support
on Zd, that is in our case, the nearest neighbor RWRE {e ∈ Zd : |e| = 1}.
An environment that describes the transition probabilities is an element ω ∈
Ω := MZd , ω = (ωx)x∈Zd . F denote the corresponding σ-algebra on Ω. We
define the random walk in random environment as a Markov chain {Xn} with
transition probabilities

Pω(Xn+1 = x + y|Xn = x) := ωx(y).

Let us denote the law of a Markov chain with these transition probabilities
and with the starting point x by Px,ω. We write Γ for the set of paths in
Zd, with the appropriate σ-algebra G. Clearly for any G ∈ G, P defines a
measurable mapping from Zd × Ω to Γ, that is (x, ω) 7→ Px,ω(G). We refer
to Px,ω as the quenched law.

To a randomly chosen sample environment ω we fix a probability measure
P on (Ω,F). Naturally the measure Px := P ⊗ Px,ω on (Ω× Γ) may also be
defined,

Px(F ×G) =

∫
F

Px,ω(G)P(dω).

It is common to call Px the annealed law. Note that under Px the RWRE
{Xn} is not a Markov chain. It is important to remark that throughout this
paper only quenched laws will be studied.
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1.2 Setup of our model

In this paper we study nearest neighbor random walk in periodic environ-
ment (RWPE), a special case of the general model described above. More
precisely, fix the period M := (M1, . . . ,Md) and assume the environment
is periodic, i.e. ωx(y) = ωx+(k1M1,k2M2,...,kdMd)(y + (k1M1, k2M2, . . . , kdMd)),
where k1, . . . , kd ∈ Zd. We will also use the notation px(e) = ωx(x + e) for
P (Xn+1 = x + e|Xn = x), where x ∈ Zd, |e| = 1. So the period M can
be thought of simply as a hypercube in Zd. In this setup the sample space
is T = Zd/M = [0, M1) × · · · × [0, Md), where T is a d dimensional torus.
Apart from the periodicity condition, for the random walk we assume that
px(e) 6= 0 for ∀x ∈ T and ∀e. So in this way the asymptotic velocity will
be some positive constant, that is the random walk will be ballistic. In the
sequel we will only deal two slightly different types of Markov chains.

Definition 1. Let {Xn}n∈N be a Markov chain defined on Zd, with transi-
tion probabilities that have dependence on finite number of site determined by
the fixed period M , i.e. with the notation above {px(e)}, where now x ∈ Zd.

Let us denote this Markov chain by {Xn}n∈N

Definition 2. Let {Yn}n∈N be a Markov chain, defined on T = Zd/M ,
with transition probabilities that have dependence on finite number of site,
i.e. {py(e)}, where y ∈ T and M ∈ Zd is fixed and denotes the period.

Let us denote this Markov chain by {Yn}n∈N

The crucial difference between {Xn}n∈N and {Yn}n∈N is that the later
one is defined only on the d dimensional torus, whereas the sample space
of {Xn}n∈N is the whole Zd. These two Markov chains strongly rely on
each other, in fact with a carefully defined function one can be mapped
onto another and vice versa. Therefore introduce the equivalence relation
x v y, i.e. x = y + k1M1 + k2M2 + · · · + kdMd. With these equivalence
classes {Yn}n∈N can be uniquely determined if {Xn}n∈N is given. The other
direction is a bit harder, however still can be. A possible way could be the
following. Assign the row vectors kd(n) := (k1, k2, . . . , kd) to each step of
{Yn}n∈N. A row vector kd(n) tells exactly how many times the random walk
has gone round on the marginal periods k(·), by this way the position on Zd

is given by Xn = Yn + (k1M1, . . . kdMd). Further, since the assumption of
px(e) 6= 0 for ∀x ∈ T and ∀e the Markov chain {Xn}n∈N and also {Yn}n∈N will
be irreducible, therefore the stationary measure π of {Yn}n∈N will uniquely
exists. In case of {Xn}n∈N this is not true, i.e. a stationary measure may
be given, but note that it will not be a probability measure, since its sample
space Zd is not finite.
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For the purpose of study we require the Markov chain {Xn}n∈N to be
reversible, i.e. {Xn}N

n=0
d
= {XN−n}N

n=0. Note that in case of {Yn}n∈N the
reversibility condition will not hold. Define the potential as the mapping
u : S → R for which log

(
px(e)

px+e(−e)

)
= u(x) − u(x + e); hereafter log has

base e. By the reversibility condition the potential will exist uniquely apart
from addition of a constant, which is important since we intend to determine
the relationship between the asymptotic direction of the potential and the
limiting direction of the motion. Our conjecture arose intuitively, that is
the angle enclosed by the asymptotic direction of the motion and the the
asymptotic direction of the potential cannot be greater than a right angle.
In Section 4 we show that this conjecture is proved to be correct.

The paper is organized as follows. In next Section we discuss the the Law
of Large Numbers and Central Limit Theorem for RWPE in quenched law
context. In Section 3 we discuss the d = 1 case. Next, in Section 4 our main
result is presented. Finally Section 5 concludes.

2 LLN and CLT
In many studies in probability theory some essential questions can be ad-
dressed, two of these are whether the Law of Large Numbers and the Central
Limit Theorem hold. Moreover if the answers are positive to these questions,
then their related conditions and assumptions have to be specified as well.

These two questions are naturally arose in our RWPE model. In both
cases the answer is positive. A slightly complicated proof of CLT for RWPE
can be found in [3], however here we attempt to give a more simple way
to prove it. Though we are not aware of any proof of CLT, it also does
not take too much effort to prove it. Similarly in both cases widely known,
fundamental results will be used.

In this section we work with a slightly modified Markov chain. The main
difference in the definition lies the possible values the Markov chain can takes.

Definition 3. Let {Zn}n∈N be a Markov chain, so that Zn := (Yn−1, Yn −
Yn−1) defined on S := Zd/M × {e : |e| = 1}.

Let us denote this Markov chain by {Zn}n∈N

Remark 1. The transition probabilities of {Zn}n∈N

P (Zn+1 = (x′, e′)|Zn = (x, e)) =

{
px(e) if x′ = x + e mod M

0 otherwise,

where M is the fixed period.
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In this definition the only difference to the Markov chain {Yn}n∈N is that
{Zn}n∈N is defined on the edges of the d dimensional torus T = Zd. This
Markov chain will not be reversible as well.

Proposition 1. The Markov chain {Zn}n∈N is irreducible.

Proof. It is clear, since for the Markov chain {Xn}n∈N the assumption px(e) 6=
0 ∀x ∈ Ω holds; {Xn}n∈N is irreducible. Due to the the mappings between
{Xn}n∈N and {Yn}n∈N and the definition of {Zn}n∈N, the proposition follows.

Here we point out that since the Markov chain {Yn}n∈N has a stationary
measure, {Zn}n∈N will also have a stationary measure, which can be defined
as the stationary measure of {Yn}n∈N weighted by the transition probabilities,
i.e. πZ(x, e) = π(x)px(e).

Theorem 1. (Ergodic theorem for Markov chains) Let ξn be an irre-
ducible Markov chain and π its stationary measure. If f is a real function on
the state space S then

lim
n→∞

1

n

n−1∑
i=1

f(ξi) = m a.s.

where

m = Eπf =
∑

x

π(x)f(x)

is the expectation of f with respect to π.

Proof. For the proof see [4].

LLN. Now we are ready to give the

Theorem 2. Consider the stationary Markov chain {Zn}n∈N with stationary
measure πZ determined by {Xn}n∈N. Let

ν := EπZ
(Z1) =

∑
z∈Ω

∑
|e|=1

π(x)px(e)f((x, e)), where f((x, e)) = e.

Then
Xn

n

a.s.−→ ν, P

(
{ω :

Xn

n
→ ν}

)
= 1
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Proof. Since the irreducibility condition of Theorem 1 holds and for the func-
tion f : S → R given above

Xn =
n∑

k=1

f(Zk),

since Zn was defined on the edges of the d dimensional torus T , i.e. the edges
are the differences of two consecutive steps of the Markov chain Yn, the LLN
is really a corollary of Theorem 1.

The first steps for CLT we proceed as follows. Define the Hilbert-space
L2(S, π) with the operator P on it by

(Pf)(x) =
∑
y∈S

Pxyf(y),

which is the transition matrix. Suppose m = 0 i.e. Eπ(f) = 0. So, the
variance

1

n
D2

(
n∑

i=1

f(Xi)

)
=

1

n
E

( n∑
i=1

f(Xi)

)2


=
1

n
E
(
f(X1)

2 + f(X2)
2 + . . . f(Xn)2

)
+

1

n
2E (f(X1)f(X2) + f(X1)f(X3) + . . . )

stac.
=

n

n
E
(
f(X1)

2
)

+2

(
E (f(X1)f(X2))

n− 1

n
+ E (f(X1)f(X2))

n− 2

n
+ . . .

)
−→ E

(
f(X1)

2
)

+ 2 (E (f(X1)f(X2)) + E (f(X1)f(X3)) + . . . )

= E
(
f(X1)

2
)

+ 2E (f(X1)Pf(X1)) + 2E
(
f(X1)P

2f(X1)
)

+ . . .

= E
(
f(X1)[I + 2P + 2P 2 + 2P 3 + . . . ]f(X1)

)
(1)

= 2E
(
f(X1)[(I − P )−1f ](X1)

)
− E

(
f(X1)

2
)
. (2)

Since m = 0, f cannot be a constant. Together with the irreducibility im-
plies that f is in the orthocomplement of the one dimensional eigenspace
corresponding to the eigenvalue 1 of P . In this subspace ||P || < 1 and

I + 2P + 2P 2 + 2P 3 + · · · = 2(I − P )−1 − I, =⇒ (2) = (1)
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and 2(I − P )−1 − I is a bounded operator, since m = 0, in this way we get
that the expression in (2) is finite.

With this construction above we have

Theorem 3. (Markov chain Central Limit Theorem) Let ξn be an
irreducible Markov chain with its stationary measure π. If

f : S → R Eπ(f) =
∑
x∈S

π(x)f(x) = 0

Then ∑n
i=1 f(ξi)√

n
=⇒ N (0, σ2).

Proof. Again, for the proof see [4].

Theorem 4. For the Markov chain {Xn}n∈N

Xn√
n

=⇒ N (0, σ2),

holds.

Proof. Argument goes similarly as above. Consider the Markov chain {Zn}n∈N
with its stationary measure πZ(x, e) = π(x)px(e). In order to apply Theo-
rem 3 we need to have

f : S → R Eπ(f) =
∑

(x,e)∈S

πZ(x, e)f(x, e) = 0.

To fulfil these conditions we only have to work with

f((x, e)) = e− ν,

where ν = EπZ
(Z1). By this way we get

EπZ
(f) =

∑
(x,e)∈S

π(x)px(e)f(x, e) = 0

The irreducibility condition is satisfied as argued in the beginning of this
section. The only thing remains to be seen is that

n∑
i=1

f(Zi) = Xn.

This is a clear consequence of Xn−Xn−1 = f(Zn). Therefore CLT for RWPE
is really a corollary of Theorem 3.
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3 One dimensional RWPE
In this section we study show analogous result, that is if the random walk
has some drift in one direction, say in the right direction, then almost surely
the particle will not be found on the other (the left-hand) side of the origin,
when the number of steps, n → ∞. Throughout this section we assume a
fixed environment ω, in order to remain in ‘quenched law ’ context.

Let X0, X1, X2, . . . be a Markov chain defined on Z with site dependent
transition probabilities

pi = P (Xn+1 = i+1|Xn = i), qi = 1−pi = P (Xn+1 = i−1|Xn = i), i ∈ Z.

The random walk starts from the origin, i.e. P (X0 = 0) = 1. That is we
deal the with Markov chain {Xn}n∈N in d = 1 defined in Section 1.2. So we
also have a fixed period M .

Note that ν := E(Xn) = limn→∞
Xn

n
exists because of the LLN deduced

in the previous section.

Theorem 5. Consider the Markov chain {Xn}n∈N in d = 1.

(i) If C(M) < 0 ⇒ ν ≥ 0 a.s.;

(ii) If C(M) > 0 ⇒ ν ≤ 0 a.s.,

where C(M) := 1
M

∑M
j=1 log

qj+1

pj
is a constant depending on the parameters

of the period M .

Remark 2. Theorem 5 is a special d = 1 case of our main result. We intend
to generalize this theorem in higher dimension.

We also introduce the notations we need in the sequel

τm− : = min{k : Xk = m−}.

with m− < 0 < m+ Our main goal in this section is to prove the following
theorem

Proposition 2. Consider the Markov chain {Xn}n∈N and d = 1. Let C(M)
be defined as above so that C(M) < 0. Then

P (min
k∈N

Xk < −n|X0 = 0) = eC(M)n −→ 0, as n →∞.

Remark 3. This proposition is the (i) part of Theorem 5, and here we will
prove only this. The proof of part (ii) follows by symmetry.
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Here we point out that this problem is basically a generalized gambler’s
ruin type problem.

Proof of Proposition 2. Now fix an interval [m−, m+] and m− < a < m+ We
are interested in finding the probability that the particle reaches m− first, the
lower limit of the interval before hitting m+, the upper limit of the interval

Qm−,m+(a) := P
(
τm− < τm+ |X0 = a

)
.

In order to compute Qm−,m+(a) we define the random variable

f(k) := 1 +
k−1∑
j=1

j∏
i=1

qi

pi

, Zn := f(Xn).

Proposition 3. {Zn} is a martingale under the filtration {Fn−1}.

Proof. We need to see if E(Zn|Fn−1) = Zn−1 holds. Only a standard compu-
tation is required to this.

E(Zn|Fn−1) = pXn−1(f(Xn−1 + 1)) + qXn−1(f(Xn−1 − 1))

= pXn−1

(
1 +

Xn−1∑
j=1

j∏
i=1

qi

pi

)
+ qXn−1

(
1 +

Xn−1−2∑
j=1

j∏
i=1

qi

pi

)

=

(
1 +

Xn−1−2∑
j=1

j∏
i=1

qi

pi

)
(pXn−1 + qXn−1) + pXn−1

(
Xn−1−1∏

i=1

qi

pi

+

Xn−1∏
i=1

qi

pi

)

=

(
1 +

Xn−1−2∑
j=1

j∏
i=1

qi

pi

)
+

(
Xn−1−1∏

i=1

qi

pi

)(
1 +

qXn−1

pXn−1

)
pXn−1

=

(
1 +

Xn−1−1∑
j=1

j∏
i=1

qi

pi

)
= Zn−1

Now, with this martingale we can apply the classical theorem from [5].

Theorem 6. (Doob’s Optional-Stopping Theorem) Let T be a stopping
time. Let X be a martingale. If any of the conditions

(i) T is bounded (for some N ∈ N, Tω ≤ N, ∀ω);

(ii) X is bounded (for some K ∈ R+, |Xn(ω)| ≤ K for every n and ω) and
T is a.s. finite;
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(iii) E(T ) ≤ K, and, for some K ∈ R+

holds, then
E(XT ) = E(X0).

Proof. For the proof of the theorem see [5].

Since for Zn the conditions in Theorem 6 hold, we have

E(Zm−∧m+) = E(Z0)

Qm−,m+(a)

1−
a−1∑

j=m−

a−1∏
j=i

pi

qi

+ (1−Qm−,m+(a))

(
1 +

m+−1∑
j=a

j∏
i=a

qi

pi

)
= 1

Qm−,m+(a) =

∑m+−1
j=a

∏j
i=a

qi

pi∑m+−1
j=a

∏j
i=a

qi

pi
+
∑a−1

j=m−

∏a−1
j=i

pi

qi

.

Now, push the upper limit of the interval in right direction while the lower
limit is being kept fixed, i.e. take the limit m+ →∞

Qm−,∞(a) =

∑∞
j=a

∏j
i=a

qi

pi∑∞
j=a

∏j
i=a

qi

pi
+
∑a−1

j=m−

∏a−1
j=i

pi

qi

.

The probability we need to find is

P (min
k∈N

Xk < −n|X0 = 0) = Q−n,∞(0)

We take the limit in M ·n and then n →∞ this can be done for two reasons.
First the periodicity of the environment. The second argument is that the
tail distribution of τ−m is exponentially small. Put it another way, if the
limit of the interval [m−, m+] is kept fixed, then

P ({Xn} never hits [m−, m+]c) = 0

So, we have to show that Q−Mn,∞(0) decays exponentially as n →∞. Take
the logarithm

lim
n→∞

1

Mn
log Q−Mn,∞(0) = lim

n→∞

1

Mn
log

∑∞
j=0

∏j
i=0

qi

pi∑∞
j=0

∏j
i=0

qi

pi
+
∑−1

j=−Mn

∏−1
j=i

pi

qi

Due to the assumption the sum in the numerator and also the first term in
the denominator is finite, we can write

lim
n→∞

1

Mn
log

(
∞∑

j=0

j∏
i=0

qi

pi

)
− lim

n→∞

1

Mn
log

(
∞∑

j=0

j∏
i=0

qi

pi

+
−1∑

j=−Mn

−1∏
j=i

pi

qi

)
≤
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and with limn→∞
1

Mn
the first term → 0

≤ − lim
n→∞

1

Mn
log

(
−1∑

j=−Mn

−1∏
j=i

pi

qi

)
=

Since the single periods are independent,

− lim
n→∞

1

Mn
log

(
M∏

j=1

pj

qj+1

)n

= − lim
n→∞

1

M

M∑
j=1

log
pj

qj+1

=

Hence we arrived to the desired result

1

M

M∑
j=1

log
qj+1

pj

= C(M) < 0.

4 Two and higher dimensional RWPE
We arrived to present our main result in d ≥ 2. The conjecture mentioned
in the introduction part, will be proved to be correct. More precisely if
reversibility is assumed for {Xn}, then the limiting velocity of the random
walker and the asymptotic direction of the potential cannot enclose an angle
α > π/2. Before claim the result in mathematical detail, let us define the
gradient of the environment by

g :=

(
1

M1

log

M1−1∏
i=0

pi+1e1(−e1)

pie1(e1)
,

1

M2

log

M2−1∏
i=0

pi+1e2(−e2)

pie2(e2)
. . .

)
which is basically the asymptotic direction of the potential. Recall ν =
limn→∞

Xn

n

Theorem 7. Consider the reversible Markov chain Xnn∈Z, and assume that
g 6= 0. Then 〈g, ν〉 ≥ 0.

Remark 4. This theorem holds for any dimension. We have seen in d = 1
case, now it will be proved in d = 2. The proof goes similarly in higher
dimension, with the necessary modification.

Remark 5. The idea is traced back to those discussed above in d = 1, we
will try to grasp the direction of g through first hitting times. See Theorem 8.
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Now we gather the important tools and definitions. Take the line orthog-
onal to g across the origin (0, 0), that is lg := {x : 〈x, g〉 = 0, x ∈ R2},
i.e. go = {cg c ∈ R. Take the line go := {(x, y) : 〈(x, y), (x′, y′)〉 =
0, where (x′, y′) ∈ lg}. Translate the line lg by k ∈ Z on go in both
direction with an integer multiple of the period M , so we take p ∈ go so that
p ∼ (0, 0) and consider

l±k
g := {x : 〈x, g〉 = ±kc, x ∈ R2},

where c = 〈p, g〉 is some fixed constant determined by the gradient of the
environment. Important to note, that in the sequel −k will mean the transla-
tion in the left direction, i.e. and k in the right direction. To put it another
way, if one chooses an arbitrary element (xA−k

, yA−k
) from the half plane

A−k := {(x, y) : 〈(x, y), (gx, gy)〉 < −kc (x′, y′) ∈ go}, then (xA−k
, yA−k

)g <

0. Define the level lines in such a way that they are close to lkg , periodical
and disconnect Z2, denote these level lines by m±k. That is the level lines
mk are sets of points in Z2.

Analogously to d = 1 define the first hitting times

τk := min{n : Xn ∈ mk}.

Further assumption for now is that g
i
∈ Q for ∀i = 1, . . . , d. We deal with

the remaining case only at a later stage.
With these definitions just given above, analogously to the d = 1 case,

we claim

Theorem 8. Consider the reversible Markov chain Xn in d = 2. Then

P (Xn ∈ m−k) = eC2k −→ 0, as k →∞,

where C2 < 0 some constant depending on the parameters of the period M .

Proof. As already mentioned above, the idea of the proof share some link
with the concept of the d = 1 case.

Since the environment is periodic and Xn is reversible the potentials and
also the potential differences ∆a,b := u(a)−u(b) along the central level line m0

can only take a finite number of possible values and these will be periodically
repeated. So to each level line mk only finite number of possible potentials
belong.

Our goal is to see that from an arbitrary chosen point a ∈ m0, a ∈ Z2,

P−k := P (ω : ∃k τ−k < τk|X0 = a ∈ m0) <

P (ω : ∃k τ−k > τk|X0 = a ∈ m0) =: P+k,
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in other words, we want to show that the probability of hitting the level m−k

provided starting from an arbitrary chosen, but fixed point on the central
level line is strictly smaller than reaching the level line mk, with the same
starting condition.

It is one of the key idea of the proof, since if we have that P−k < P k then
we have a well defined random walk on the level lines . . . , m−k1 , m0, mk1 , . . . ,
for which the theorem holds, as we have seen the results in Section 3. Though
on these level lines the random walk will have random time instants, i.e. the
time needed for jumping to the nearest neighbor level line is not deterministic.
However, since the LLN this time will have finite expectation. Moreover
the tail distribution of τ+k ∧ τ−k decays exponentially fast. Also it follows
from the periodicity that the time instants between two neighbor levels are
independent.

To see that P−k < P k, we attempt to give estimates to the paths going
from the central level line to the nearest neighbor level m−k. It turns out
that estimates can always be given by certain paths to the level line mk

constructed from the paths needed to be estimated.
In order to go on this way three different kind of points will be defined.

Take a sample path ω from a ∈ m0 to a fixed point c = Xτ−k
(ω). In general

it is possible that this path crosses some times the line m0 before reach the
level m−k, however we are only interested in the last crossing point. Therefore
define the last visiting point of the path on the central level line by

b := Xηb
(ω), where ηb = max{t : Xt(ω) ∈ m0 and 0 ≤ t < τ−k}.

Hence the three kinds of points are: the starting point a, the last visiting
point on the central level line b (a = b is also allowed), and the hitting point
c of level m−k. This is a canonical decomposition can uniquely be made in
case of each path from the central gradient to the next levels.

So the required estimation can be constructed in the following way. Fix
an arbitrary starting point a, which is now assumed to be the origin (0, 0).
Take a sample path ω to the neighbor level m−k, the end of this path will
be the point c = Xτ−k

. Along the sample path ω it is possible that there is
a last visiting point b, which is now assumed to be b 6= a. Now the setup is
given by a fixed sample path ω.

Let us canonically choose for ∀x, y ∈ m0∩T a path with some probability
weight and denote this path by γx,y. The subscript tells us the direction of
the path, i.e. it goes from x → y. Important to note, that number of these
weights are finite, since the periodicity of the environment.

Let us denote the path from a to b by

ωa→b := trajectory a → b : X0(ω), X1(ω), . . . , Xηb
(ω),
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and the reversed path

ωb→a := trajectory b → a : Xηb
(ω), Xηb−1(ω), . . . , Xa(ω).

we will denote the connected path by

ωa→c := ωa→b ∗ ωb→c,

clearly

P (ωa→c) = P (ωa→b)P (ωb→c).

Now with these paths we construct the path to the neighbor level mk

that serves for estimation. Take the previously fixed path γa→b to the last
visiting point b, then take the reversed path ωb→a. The next step is to go to
a c′ ∈ m0 point along the path γa→c′ for which c ∼ c′ holds, because of the
periodicity. Finally, translate the starting point of the path ωc→b to c′ ∈ m0.
Hence we arrive to the level line mk, see Figure 1

Therefore for the estimation path we have

γa,b ∗ ωb→a ∗ γa,c′ ∗ ωc→b

The last term is because of the periodic environment

P (ωc→b) = P (ωc′→b′′)

where

b ∼ b′′ ∼ b′ c ∼ c′

The estimation follows from the reversibility condition

P (γa,b ∗ ωb→a ∗ γa,c′ ∗ ωc→b) = P (γa,b)e
u(b)−u(a)P (ωa→b)P (γa,c′)e

u(c)−u(b)P (ωb→c),

= eu(c)−u(a)P (γq,b)P (γa,c′)P (ωa→c) (3)

where the exponential estimation came from the definition of potential. Now
the desired result is just one step away.

P (ωa→c) ≤ eu(a)−u(c)C2
γP (ωc→a)

where C2
γ is a constant, depending on γ. Since c ∈ m−k ⇒ u(a) < u(c), and

if we increase k, then u(a)−u(c) decreases approximately linearly. Therefore
we can push the level line m−k so far that

P (ωa→c) < qP (ωc→a),
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Figure 1: Construction of the estimation
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with q < 1, independent from ω.Since the the the lines mk determine inde-
pendent areas, our desired result yields

P−k < P+k.

We need to highlight that this construction given above also works if the
points b and c are different than above. Clearly the estimation will produce
different result, but the procedure is applicable and ends up with the same
relation.

Only the case tan θ ∈ R\Q left to be discussed. The whole idea is the
same, but there are some key differences need to be thought. First of all, how
to determine the level lines l±k

g . Clearly on the line go there will not be any
point (x, y) ∈ Z2, except the origin (0, 0). Therefore the same can be told
about l0g. However the gradient of the environment g can be approximated
arbitrarily close, that is

∀ε > 0, ∃ga, such that, for ∀y ∈ Z2, 〈ga, y〉 → 〈g, y〉,

let us denote these approximation vectors by ga. Now the same construction
has to be built up on this ga. Therefore we get level lines, which approximates
the ‘original ’ l±k

g . Say the error term of the approximation is ε, arbitrarily
given, and gives the potential differences. Then along the line l0g fix a rect-
angular area with sides K + K and rK + rK, so that the sides rK + rK are
parallel to l0g and where r is the number of points with possible potentials in
this area. Clearly the upper bound for the real and approximated potential
deviation is rε, which can be made arbitrarily small as well.

The only question needs to be addressed is that what is the possibility that
the random walker ‘escape’ on the K+K side of this rectangle. The answer is
it has exponentially small probability, since Large Deviation Principle holds,
and the number of probability measures are finite,because of the periodic
environment. Indeed it can be made so by letting K →∞.

5 Conclusion
As mentioned in the previous Section the Theorem 7 can be proved along the
same argument as given in d = 2 only the appropriate modifications need to
be done, e.g. the level lines have to be replaced be hyperplane in Z, and the
random walker’s position is described by a 2d + 1-dimensional simplex, i.e.
we have 2d + 1 vertices, where +1 is because we allow px(0) 6= 0.

This paper could be improved in deeper study of the finding out fine
details about the relationship between the asymptotic velocity and gradient
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of the environment. We conjecture that with some certain conditions 〈g, ν〉 →
0, i.e. the angle of these vectors can be close to rectangle. This investigation
can be supported with further simulations.

In wider scale, in case of the general RWRE a still open problem is whether
the asymptotic velocity is always an almost sure constant, recently this is the
core subject of some research paper, see [1] and a lot of work has been done
so far in the slowdown estimates. Mainly the hard nut is to give results in
annealed law context. So this topic will have a lot to offer in the forthcoming
years.
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