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Abstract

In this note we present a new sufficient condition which guarantees martingale approx-

imation and central limit theorem à la Kipnis –Varadhan to hold for additive functionals

of Markov processes. This condition, which we call the relaxed sector condition (RSC)

generalizes the strong sector condition (SSC) and the graded sector condition (GSC) in

the case when the self-adjoint part of the infinitesimal generator acts diagonally in the

grading. The main advantage being that the proof of the GSC in this case is more trans-

parent and less computational than in the original versions. We also hope that the RSC

may have direct applications where the earlier sector conditions do not apply. So far we

do not have convincing examples in this direction.

1. Introduction

The theory of central limit theorems for additive functionals of ergodic

Markov processes via martingale approximation was initiated in the mid-

1980-s with applications to tagged particle diffusion in stochastic interacting

particle systems and various models of random walks in random environ-

ment.

The Markov process is usually assumed to be in a stationary and ergodic

regime. We shall stick to these assumptions in the present note, too. There
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are however also other type of related results, see e.g. [8], [1], which use

partly different techniques.

In their celebrated 1986 paper [4], C. Kipnis and S. R. S. Varadhan

proved a central limit theorem for the reversible case with no assumptions

other than the strictly necessary ones. For an early non-reversible extension

see [12] where the martingale approximation was applied to a particular

model of random walk in random environment.

The theory has since been widely extended by Varadhan and collabo-

rators to include processes with a varying degree of non-reversibility. For a

detailed account of these so-called sector conditions and the different models

they are applied to, see the surveys [9], [5] and the more recent result [3].

In the present note, we introduce a new sector condition which we call

the relaxed sector condition (RSC). Apart from appearing to be interesting

in its own right, it also provides a new, slightly improved version of the

graded sector condition (GSC), in the case when the self-adjoint part of the

infinitesimal generator does not mix the subspaces of the graded Hilbert

space. The proof presented here is less technical and more transparent.

2. Setup, Abstract Considerations

We recall the non-reversible version of the abstract Kipnis –Varadhan

CLT for additive functionals of ergodic Markov processes, see [4] and [12].

Let (Ω,F , π) be a probability space: the state space of a stationary and

ergodic Markov process t 7→ η(t). We put ourselves in the Hilbert space

H := L2(Ω, π). Denote the infinitesimal generator of the semigroup of the

process by G, which is a well-defined (possibly unbounded) closed linear

operator on H.

The adjoint G∗ is the infinitesimal generator of the semigroup of the

reversed (also stationary and ergodic) process η∗(t) = η(−t). It is assumed

that G and G∗ have a common core of definition C ⊆ H. We denote the

symmetric and antisymmetric parts of the generators G, G∗, by

S := −
1

2
(G +G∗), A :=

1

2
(G−G∗).
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(We prefer to use the notation S for the positive semidefinite operator defined

above, so the infinitesimal generator will be written as G = −S+A.) These

operators are also extended from C by graph closure and it is assumed that

they are well-defined self-adjoint, respectively, skew self-adjoint operators:

S∗ = S ≥ 0, A∗ = −A.

Summarizing: it is assumed that the operators G, G∗, S and A have a

common dense core of definition C. Note that −S is itself the infinitesimal

generator of a Markovian semigroup on L2(Ω, π), for which the probability

measure π is reversible (not just stationary). We assume that −S is itself

ergodic:

Ker (S) = {c11 : c ∈ C}.

We shall restrict ourselves to the subspace of codimension 1, orthogonal to

the constant functions.

In the sequel the operators (λI + S)±1/2, λ ≥ 0, will play an important

rôle. These are defined by the spectral theorem applied to the self-adjoint

and positive operator S. It is easy to see, that C is also a core for the opera-

tors (λI + S)1/2, λ ≥ 0. The operators (λI + S)−1/2, λ > 0, are everywhere

defined and bounded, with
∥∥ (λI + S)−1/2

∥∥ ≤ λ−1/2. The operator S−1/2 is

defined on

Dom (S−1/2) :=
{
f ∈ H :

∥∥∥S−1/2f
∥∥∥
2

:= lim
λ→0

∥∥∥ (λI + S)−1/2f
∥∥∥
2

<∞
}

= Ran (S1/2). (1)

We shall refer to (1) as the H−1-condition.

Let f ∈ H, such that (f, 11) =
∫
Ω
f dπ = 0. We ask about CLT/invariance

principle for

N−1/2

∫ Nt

0

f(η(s)) ds (2)

as N → ∞.

We denote by Rλ the resolvent of the semigroup s 7→ esG:

Rλ :=

∫ ∞

0

e−λsesGds =
(
λI −G

)−1
, λ > 0, (3)
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and given f ∈ H as above, we will use the notation

uλ := Rλf.

The following theorem is direct extension to general non-reversible setup

of the Kipnis –Varadhan theorem from [4]. It yields the efficient martingale

approximation of the additive functional (2). To the best of our knowledge

this non-reversible extension appears first in [12].

Theorem KV.With the notation and assumptions as before, if the following

two limits hold in H:

lim
λ→0

λ1/2uλ = 0, (4)

lim
λ→0

S1/2uλ =: v ∈ H, (5)

then

σ2 := 2 lim
λ→0

(uλ, f) = 2 ‖ v ‖2 ∈ [0,∞)

exists, and there also exists a zero mean, L2-martingale M(t) adapted to the

filtration of the Markov process η(t), with stationary and ergodic increments

and variance

E
(
M(t)2

)
= σ2t,

such that

lim
N→∞

N−1E

((∫ N

0

f(η(s)) ds−M(N)
)2
)

= 0.

In particular, if σ > 0, then the finite dimensional marginal distributions

of the rescaled process t 7→ σ−1N−1/2
∫ Nt
0

f(η(s)) ds converge to those of a

standard 1d Brownian motion.

Remarks

◦ For the historical record it should be mentioned that the idea of mar-

tingale approximation and an early variant of this theorem under the

much more restrictive condition f ∈ Ran(G), appears in [2]. For more

exhaustive historical account and bibliography of the problem see the

recent monograph [5].
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◦ The reversible case, when A = 0, was considered in the celebrated paper

[4]. In that case conditions (4) and (5) are equivalent. The proof of the

Theorem KV in the reversible case relies on spectral calculus.

◦ Conditions (4) and (5) of Theorem KV are jointly equivalent to the

following

lim
λ,λ′→0

(λ+ λ′)(uλ, uλ′) = 0. (6)

Indeed, straightforward computations yield:

(λ+ λ′)(uλ, uλ′) =
∥∥∥S1/2(uλ − uλ′)

∥∥∥
2

+ λ ‖uλ ‖
2 + λ′ ‖uλ′ ‖2 .

◦ The non-reversible formulation appears – in discrete-time Markov chain,

rather than continuous-time Markov process setup and with condition

(6) – in [12] where it was applied, with bare hands computations, to

obtain CLT for a particular random walk in random environment. Its

proof mainly follows the original proof of the Kipnis –Varadhan theorem

from [4] with the difference that spectral calculus is replaced by resolvent

calculus.

◦ In continuous-time Markov process setup, it was formulated in [13] and

applied to tagged particle motion in non-reversible zero mean exclusion

processes. In this paper, the strong sector condition (SSC) was formu-

lated, which, together with the H−1-condition (1) on the function f ∈ H,

provide sufficient conditions for (4) and (5) of Theorem KV to hold.

◦ In [11], the so-called graded sector condition (GSC) was formulated and

Theorem KV was applied to tagged particle diffusion in general (non-zero

mean) non-reversible exclusion processes, in d ≥ 3. The fundamental

ideas related to the GSC have their origin partly in [6].

◦ For a list of applications of Theorem KV together with the SSC and

GSC, see the surveys [9], [5], and for a more recent application of the

GSC to the so-called myopic self-avoiding walks and Brownian polymers,

see [3].

3. Sector Conditions

In subsection 3.1 we recall the SSC and the GSC. In subsection 3.2 we

formulate the RSC, which is the main abstract result of this note and, as a
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consequence, a slightly improved version of GSC. In further sections we first

prove the RSC, then we show how the SSC and GSC follow in a very natural

way from RSC. The main gain is not in slightly weakening the conditions

but in simplifying the proof of GSC.

3.1. Strong and graded sector conditions

From abstract functional analytic considerations, it follows that the

H−1-condition (1) together with the following bound jointly imply (6), and

hence the martingale approximation and CLT of Theorem KV:

sup
λ>0

∥∥∥S−1/2Guλ

∥∥∥ <∞. (7)

Theorem SSC. With notations as before, if there exists a constant C <∞

such that for any ϕ,ψ ∈ C, the common core of S and A,

| (ψ,Aϕ) |2 ≤ C2(ψ, Sψ)(ϕ, Sϕ), (8)

then for any f ∈ H for which (1) holds, (7) also follows. So for every

function f for which (1) holds, the martingale approximation and CLT of

Theorem KV applies automatically.

Remark.

◦ Condition (8) is equivalent to requiring that the operator S−1/2AS−1/2

defined on the dense subspace S1/2C := {S1/2ϕ : ϕ ∈ C} be bounded in

norm by the constant C. Hence, by continuous extension, condition (8)

is the same as ∥∥∥S−1/2AS−1/2
∥∥∥ ≤ C <∞. (9)

For the GSC, assume that the Hilbert space H = L2(Ω, π) is graded

H = ⊕∞
n=0Hn (10)

whereH0 is the 1-dimensional subspace of constant functions. Since we work

with functions f for which
∫
Ω
f dπ = 0, we exclude the subspace H0 from H

without changing the notation (and thus abusing it slightly).
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Also, assume that the infinitesimal generator is consistent with the grad-

ing in the following sense:

S =
∑

n≥1

Sn,n, Sn,n : Hn → Hn, S∗
n,n = Sn,n ≥ 0, (11)

A =
∑

m,n≥1
|n−m |≤r

Am,n, Am,n : Hn → Hm, A∗
m,n = −An,m, (12)

where r is a fixed finite integer. This means that the operator S acts diag-

onally on the grading (does not mix the subspaces Hn), while the operator

A only mixes subspaces whose indices are closer than a fixed finite amount.

The operators Sn,n and Am,n are not necessarily bounded. Cn = C ∩Hn is a

common core for them.

Theorem GSC. Let the Hilbert space and the infinitesimal generator be

graded in the sense specified above. If there exist κ <∞, β < 1 and C <∞

such that for any n,m ∈ N and ψm ∈ Cm, ϕn ∈ Cn the following bounds hold:

| (ψm, Am,nϕn) |
2 ≤ C2

(
δm,nn

2κ + (1− δm,n)n
2β
)
(ψm, Sm,mψm)(ϕn, Sn,nϕn),

(13)

then, for any function f ∈ ⊕∞
n=0Hn (no closure!), for which (1) holds, (7)

also follows. As a consequence, for these functions the martingale approxi-

mation and CLT of Theorem KV hold.

The statement remains valid for β = 1 if C is sufficiently small.

Remarks.

◦ Condition (13) is equivalent to requiring that the operators

S−1/2
m,m Am,nS

−1/2
n,n : Hn → Hm

are bounded, with norm bounds

∥∥∥S−1/2
m,m Am,nS

−1/2
n,n

∥∥∥ ≤ C
(
δm,nn

κ + (1− δm,n)n
β
)

(14)

◦ There exists a stronger version of Theorem GSC, where it is not required

that the self-adjoint part acts diagonally on the grading, see [11], [5], or

[3] for the sharpest formulation. Our simplified proof seems to work

smoothly only in the case when S acts diagonally in the grading.
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3.2. Relaxed sector condition

Let, as before, C ⊂ H be a common core for the operators G, G∗, S and

A. Note that for any λ > 0, C ⊆ Dom((λI + S)1/2) and the subspace

(λI + S)1/2C := {(λI + S)1/2ϕ : ϕ ∈ C}

is dense in H. The operators

Bλ : (λI + S)1/2C → H, Bλ := (λI + S)−1/2A(λI + S)−1/2, λ > 0, (15)

are densely defined and skew-Hermitian, and thus closable. Actually it is the

case that they are not only skew-Hermitian, but essentially skew self-adjoint

on (λI + S)1/2C. Indeed, let χ ∈ C, ϕ = (λI + S)1/2χ and ψ ∈ H, then

(ψ, (I ±Bλ)ϕ) = ((λI + S)−1/2ψ, (λI + S ±A)χ).

So, ψ ⊥ Ran (I ±Bλ) implies (λI + S)−1/2ψ ⊥ Ran (λI + S ±A) and thus,

since the operators S ± A are Hille-Yosida-type, (λI + S)−1/2ψ = 0, and

consequently ψ = 0 holds. That is Ran (I ± Bλ) is dense in H. By slight

abuse of notation we shall denote by the same symbol Bλ the skew self-

adjoint operators obtained by closure of the operators defined in (15).

The main point of the following theorem is that if there exists another

skew self-adjoint operator B, formally identified as

B := S−1/2AS−1/2, (16)

and a sufficiently large subspace on which the sequence of operators Bλ

converges pointwise (strongly) to B, as λ → 0, then, the H−1-condition

(1) implies (4) and (5), and thus the martingale approximation and CLT of

Theorem KV follow.

Theorem 1 (Relaxed sector condition). Assume that there exist a subspace

C̃ ⊆ ∩λ>0Dom (Bλ) which is still dense in H and an operator B : C̃ → H

which is essentially skew self-adjoint and such that for any vector ϕ ∈ C̃

lim
λ→0

‖Bλϕ−Bϕ ‖ = 0. (17)
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Then, the H−1-condition (1) implies (4) and (5), and thus the martingale

approximation and CLT of Theorem KV follow.

Remarks.

◦ Finding the appropriate subspace C̃ and defining the skew-Hermitian

operator B : C̃ → H comes naturally. The difficulty in applying this

criterion lies in proving that the operator B is not just skew-Hermitian,

but actually skew self-adjoint. That is, proving that

Ran (I ±B) = H. (18)

This is the counterpart of the basic criterion of self-adjointness. See e.g.

Theorem VIII.3. of [10]. Checking this is typically not easy in concrete

cases.

◦ The statement and the proof of this theorem show close similarities with

the Trotter-Kurtz theorem. See Theorem 2.12 in [7].

◦ Theorem SSC follows directly: In this case the operator B is actu-

ally bounded and thus automatically skew self-adjoint, not just skew-

Hermitian. In order to see (17) note that

Bλ = S1/2(λI + S)−1/2BS1/2(λI + S)−1/2 st.op.top.
−→ B, (19)

where
st.op.top.
−→ denotes convergence in the strong operator topology.

As a direct consequence we formulate a slightly stronger version of Theorem

GSC. The main advantage is actually in the proof: our proof is considerably

less computational, more transparent and natural than the original one from

[11], reproduced in a streamlined way in [9] and [5].

Assume the setup of Theorem GSC: the grading of the Hilbert space

and the infinitesimal generator G acting consistently with the grading: (10),

(11), (12).

Proposition 1 (GSC from RSC). If there exist two positive nondecreasing

sequences dn and cn, such that

dn <∞,

∞∑

n=1

c−1
n = ∞, (20)
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and for any n,m ∈ N and ψm ∈ Cm, ϕn ∈ Cn the following bounds hold:

| (ψm, Am,nϕn) |
2 ≤

(
δm,nd

2
n + (1− δm,n)c

2
n

)
(ψm, Sm,mψm)(ϕn, Sn,nϕn),

(21)

then the conditions of Theorem 1 hold with C̃ = ⊕∞
n=1Hn (no closure!).

4. Proofs

4.1. Proof of Theorem 1

Since the operators Bλ, λ > 0, defined in (15) are a priori and the

operator B is by assumption skew self-adjoint, we can define the following

bounded operators (actually contractions):

Kλ := (I −Bλ)
−1, ‖Kλ ‖ ≤ 1, λ > 0,

K := (I −B)−1, ‖K ‖ ≤ 1.

Hence, we can write the resolvent (3) as

Rλ = (λ+ S)−1/2Kλ(λ+ S)−1/2. (22)

Lemma 1. Assume that the sequence of bounded operators Kλ converges in

the strong operator topology:

Kλ
st.op.top.
−→ K, as λ→ 0. (23)

Then for any f satisfying the H−1-condition (1), (4) and (5) hold.

Proof. From the spectral theorem applied to the self-adjoint operator S, it

is obvious that

∥∥∥λ1/2(λ+ S)−1/2
∥∥∥ ≤ 1, λ1/2(λ+ S)−1/2 st.op.top.

−→ 0, (24)

∥∥∥S1/2(λ+ S)−1/2
∥∥∥ ≤ 1, S1/2(λ+ S)−1/2 st.op.top.

−→ I. (25)

By condition (1) we can write

f = S1/2g
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with some g ∈ H. Now, using (22), we get

λ1/2uλ = λ1/2(λ+ S)−1/2Kλ(λ+ S)−1/2S1/2g, (26)

S1/2uλ = S1/2(λ+ S)−1/2Kλ(λ+ S)−1/2S1/2g. (27)

From (23), (26), (27), (24) and (25), we readily get (4) and (5) with

v = Kg. ���

In the next lemma, we formulate a sufficient condition for (23) to hold.

This is reminiscent of Theorem VIII.25(a) from [10]:

Lemma 2. Let Bn, n ∈ N, and B = B∞ be densely defined closed operators

over the Hilbert space H. Assume that

(i) Some (fixed) µ ∈ C is in the resolvent set of all operators Bn, n ≤ ∞,

and

sup
n≤∞

∥∥ (µI −Bn)
−1

∥∥ <∞. (28)

(ii) There is a dense subspace C̃ ⊆ H which is a core for B∞ and C̃ ⊆

Dom (Bn), n <∞, such that for all h̃ ∈ C̃:

lim
n→0

∥∥∥Bnh̃−Bh̃
∥∥∥ = 0. (29)

Then

(µI −Bn)
−1 st.op.top.

−→ (µI −B)−1. (30)

Proof. Since C̃ is a core for the densely defined closed operator B and µ is

in the resolvent set of B, the subspace

Ĉ := {ĥ = (µI −B)h̃ : h̃ ∈ C̃}

is dense in H. Thus, for any ĥ from this dense subspace, we have

{
(µI −Bn)

−1 − (µI −B)−1
}
ĥ = (µI −Bn)

−1(Bnh̃−Bh̃) → 0,

due to (28) and (29). Using again (28), we conclude (30). ���
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Putting Lemmas 1 and 2 together, we obtain Theorem 1. ���

4.2. Proof of Proposition 1

Let

C̃ = ⊕∞
n=1Hn.

Note that there is no closure of the orthogonal sum on the right hand side.

Then the operator B = S−1/2AS−1/2 is defined on C̃ and is graded as

B =
∑

m,n≥1
|n−m |≤r

Bm,n, Bm,n : Hn → Hm,

Bm,n := S−1/2
m,m Am,nS

−1/2
m,m , B∗

m,n = −Bn,m.

Indeed, due to (21)

‖Bn,m ‖ ≤ δm,ndn + (1− δm,n)cn. (31)

The operator B : C̃ → C̃ is clearly skew-Hermitian. In order to prove that it

is actually essentially skew self-adjoint we have to check (18).

For ϕ ∈ H we use the notation

ϕ = (ϕ1, ϕ2, . . . ), ϕn := (ϕ1, ϕ2, . . . , ϕn, 0, 0, . . . ).

In order to simplify the notation in the forthcoming argument we assume

that r = 1. The cases with r > 1 are done exactly the same way, only

notation becomes heavier.

Assume ϕ ⊥ Ran (I −B), then

0 = (ϕ, (I −B)ϕn) = ‖ϕn ‖2 − (ϕn+1, Bn+1,nϕn).

Hence, by (31) and letting n so large that ‖ϕn ‖2 ≥ ‖ϕ ‖2 /2,

‖ϕn ‖
2 + ‖ϕn+1 ‖

2 ≥
2

cn
‖ϕn ‖2 ≥

1

cn
‖ϕ ‖2 .

Summing over n we obtain that ϕ = 0. This implies that Ran (I − B) is
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dense in H. Identical argument works for Ran (I+B). This proves (18) and

B is indeed essentially skew self-adjoint on C̃.

Checking condition (29) is done exactly like in (19):

(Bλ)m,n = S1/2
m,m(λIm,m + Sm,m)−1/2Bm,nS

1/2
n,n(λIn,n + Sn,n)

−1/2

st.op.top.
−→ Bm,n,

as λ→ 0, since ‖Bm,n ‖ <∞ and S
1/2
m,m(λIm,m+Sm,m)−1/2 st.op.top.

−→ Im,m. ���
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