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Abstract

The myopic (or ‘true’) self-avoiding walk is a random motion in Z
d

which is pushed locally in the direction of the negative gradient of its
own local time. This transition rule defines a family of self-repelling
random processes which have different asymptotic behaviour in differ-
ent dimensions. We present several models in one and high dimensions
(d ≥ 3), and we prove limit theorems which describe the scaling prop-
erties and the limiting behaviour of these processes.

Introduction

The ‘true’ self-avoiding walk appeared first in the physics literature
in 1983 as a natural random model of self-repellence, see [APP83].
The problem was originally introduced in discrete time, but here, we
define it as a continuous time nearest neighbour jump process on Z

d

in the following way.
Let X(t), t ∈ R+ be the process to be defined, and we call

ℓ(t, x) := ℓ(0, x) + |{0 ≤ s ≤ t : X(s) = x}|

the occupation time measure (or local time) of X(t) at x ∈ Z
d with

some initial value ℓ(0, x).

local timetime

Let w : R → (0,∞) a fixed smooth non-decreasing ‘rate function’.
Then the law of X(t) is given by the jump rates

(1) P
(

X(t + dt) = y
∣

∣ Ft, X(t) = x
)

= 11(|x − y| = 1)w(ℓ(t, x) − ℓ(t, y)) dt + o(dt)

where Ft is the information which is known up to time t. Note that
it includes all the values of ℓ(t, x), x ∈ Z

d.

Dimension-dependent behaviour

Non-rigorous scaling and renormalization group arguments suggest
the following conjecture on the dimension-dependent asymptotic scal-
ing behaviour:

– d = 1: X(t) ∼ t2/3 with intricate non-Gaussian scaling limit,

– d = 2: X(t) ∼ t1/2(log t)ζ with Gaussian scaling limit (ζ unknown),

– d ≥ 3: X(t) ∼ t1/2 with Gaussian scaling limit.

This conjecture was set up by the authors of [APP83] and confirmed by
subsequent rigorous results. Our contribution in one dimension is that
we identified the limit behaviour of the walk formulated above, and
we also treated another variant. We remark that the two dimensional
case was investigated by B. T. and B. Valkó. We also prove the central
limit theorem for the high dimensional case of the myopic self-avoiding
walk and the self-repelling Brownian polymer.
On this poster, we formulate our results in one dimension and the
limit theorems in three or more dimensions.

One dimension

As indicated above, the proper scaling of the one dimensional myopic
self-avoiding walk is t2/3 after time t. More precisely, in [TV10], we
prove the following theorems for the random walk defined by (1) in
late random times.
The inverse local time of the model is

Tj,r := inf{t ≥ 0 : ℓ(t, j) ≥ r}

for j ∈ Z and r ∈ R+. The sequence of local times at Tj,r is

(2) Λj,r(k) := ℓ(Tj,r, k) for all k ∈ Z

With proper scaling, we describe the limit behaviour of this process.

Theorem (B. T., B. V., 2009). Let x ≥ 0. There is a σ ∈ (0,∞)
such that

(
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y∈R

=⇒ h
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as A → ∞ where the limit process is the absolute value of a two-
sided standard Brownian motion |Wy| started at |Wx| = h between
0 and x backwards which is absorbed at the first hitting time of 0
on {y > x} forward and on {y < 0} backward.

Theorem (B. T., B. V., 2009). The rescaled displacement

X(At)/A2/3 converges to the true self-repelling motion defined
in [TW98] (both stopped at an independent exponential random
time).

One dimension with directed edge repulsion

A discrete-time model is analyzed in [TV08]. We define the local time
of oriented edges. The transition probabilities depend on the local
times of the edges pointing out of the current position similarly to
(1). A surprisingly different limit behaviour is obtained:

Theorem (B. T., B. V., 2008). 1.

A−1/2X(At) =⇒ UNI(−
√

t,
√

t)

as A → ∞ with no continuous limit process.

2. The rescaled local time process analogous to (2) converges to a
deterministic triangular shape function.

trajectory local time

Ray – Knight approach

The basic idea of the proofs appeared first in [T95]. The differences
of local times on adjacent vertices/edges are auxiliary Markov chains
which are independent. These Markov chains are close to their sta-
tionary distribution if the local time is high at the corresponding
site/bond. In the directed edge repulsion case, the expected value
in stationarity is non-zero, hence LLN holds, and the limit is deter-
ministic. In the site repulsion case, the expected value is 0, and the
CLT for simple random walks gives the Brownian limit.

Dimensions three and higher

In the high dimensional case, the stationary measure is identified first,
and the following results are valid in the stationary regime, i.e. when
the local times are initialized according to the stationary measure of
the walk.
The stationary measure is constructed as a Gibbs measure, but can
be formulated loosely as

dπ(ω) = Z−1 exp
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∑

x,y∈Zd,|x−y|=1

R(ω(x) − ω(y))








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where

R(u) :=

u
∫

0

r(v) dv, r(u) =
w(u) − w(−u)

2

and Z is a normalizing constant.
In the stationary regime, the displacement scales like t1/2, and the
finite dimensional distributions of the rescaled displacement process
converge to those of a d dimensional Brownian motion with covariance
matrix σ2. For precise assumptions regarding the rate function w, see
[HTV10].

Theorem (I. H., B. T., B. V., 2010). 1. For a wide class of rate
functions w (including polynomials),

0 < γ ≤ inf
e∈Rd

|e|=1

lim
t→∞

t−1
E

(

(e · X(t))2
)

,

sup
e∈Rd

|e|=1

lim
t→∞

t−1
E

(

(e · X(t))2
)

< ∞.

2. For a more restricted class of rate functions, the finite dimen-
sional distributions of the rescaled displacement process

XN (t) := N−1/2X(Nt)

converge to those of a d dimensional Brownian motion with
some covariance matrix σ2.

Idea of proof

The main idea is to consider the local time profile as seen from the
position of the random walker

η(t) := (η(t, x))x∈Zd with η(t, x) := ℓ(t, X(t) + x).

The displacement can be written as

(3) X(t) = M(t) +

t
∫

0

ϕ(η(s)) ds

where M(t) is a martingale and ϕ is the infinitesimal conditional
speed, i.e. ϕk(ω) = w(ω(0)−ω(ek))−w(ω(0)−ω(−ek)) where ek is
the kth unit vector and k = 1, . . . , d. This is the setup of [KV86]. The
martingale part in (3) behaves diffusively, but the integral requires
more effort, since the process η(t) is not reversible. We check the
graded sector condition, see [SVY00]. The generator of η(t) is

G = −γ∆ −
∑

|e|=1

∇−ewsymm(a
∗
e + ae)∇e +

∑

|e|=1

∇−eae − a∗e∇−e,

acting on a Gaussian Hilbert space.

Continuous space variant: the self-repelling
Brownian polymer model

The self-repelling Brownian polymer model, which is a continuous
space variant of the true self-avoiding walk, was initiated by J. Norris,
C. Rogers and D. Williams in 1987 in [NRW87].
X(t) is a diffusion process in R

d. The occupation time measure is
defined by

ℓ(t, A) := ℓ(0, A) + |{s ∈ [0, t] : X(s) ∈ A}|

where ℓ(0, A) is a random initialization sampled from the distibution
of the massless free Gaussian field on R

d. This is a stationary
measure for the local time profile as seen from the position X(t).
The evolution of this process is given in terms of the smeared-out local
times as follows:

dX(t) = dB(t) − grad(V ∗ ℓ(t, ·))(X(t)) dt

where V : R
d → R

+ is an approximate identity, e.g. V (x) = e−|x|2.
Theorem (I. H., B. T., B. V., 2009). 1. The finite dimensional

marginal distributions of the rescaled process

XN (t) :=
X(Nt)

σ
√

N

converge to those of a standard d dimensional Brownian motion
for some 0 < σ < ∞. The convergence is meant in probability
with respect to the starting state η(0) sampled according to the
stationary distribution.

2. For the limiting variance

1 ≤ d−1 lim
t→∞

t−1
E

(

|X(t)|2
)

≤ 1 + ρ2

holds with some ρ < ∞.
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