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Introduction

joint work with Balint Téth

‘true’ self-avoiding walk = true (nearest neighbour) random walk
with self-repulsion (driven by the negative gradient of its own local
time in a certain way)
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Introduction

joint work with Balint Téth

‘true’ self-avoiding walk = true (nearest neighbour) random walk

with self-repulsion (driven by the negative gradient of its own local
time in a certain way)

Original problem (discrete time, site repulsion):

D. Amit, G. Parisi, L. Peliti: Asymptotic behaviour of the ‘true’
self-avoiding walk, 1983.
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Original problem

X(n) nearest neighbour random walk with X(0) = 0.
Local times on sites:

U(n, k) :=#{0<j<n:X(j) =k} if necZi kel

Balint Vetd Models of the ‘true’ self-avoiding walk on Z



Original problem

X(n) nearest neighbour random walk with X(0) = 0.
Local times on sites:

U(n, k) :=#{0<j<n:X(j) =k} if necZi kel

Transition probabilities:

w : Z — R4 almost arbitrary weight function, non-decreasing, e.g.
w(k) = ek with 8 > 0.

P (X(n+1)=X(n)£1| F,) = YEURX E>)i+ lv)v(_..,g)("’x(")))
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Original problem

X(n) nearest neighbour random walk with X(0) = 0.
Local times on sites:

U(n, k) :=#{0<j<n:X(j) =k} if necZi kel

Transition probabilities:

w : Z — R4 almost arbitrary weight function, non-decreasing, e.g.
w(k) = ek with 8 > 0.

w(—(¢(n, X(n) £ 1) — £(n, X(n)))

P(X(n+1)=X(n)£1|F,) = w(o..) + w(...)

W(1) w@2)
WR+W(1)  WR)+W(-1)

«— —
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Questions: asymptotic behaviour

m Scaling limit of the local time

Tim:=min{n>0:4(n,i) > m}
Nim(k) :=L(Ti m, k)
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Questions: asymptotic behaviour

m Scaling limit of the local time

Tim:=min{n>0:4(n,i) > m}
Nim(k) :=L(Ti m, k)

AT N -1 ([AY]) = Acn(y)
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Questions: asymptotic behaviour

m Scaling limit of the local time

Tim:=min{n>0:4(n,i) > m}
Nim(k) :=L(Ti m, k)

AT N -1 ([AY]) = Acn(y)

m Limit theorem for the position of the random walker

A X([At]) = X(t)
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Overview of related models

Discrete time, site repulsion (original problem)
D. Amit, G. Parisi, L. Peliti. Asymptotic behaviour of the
‘true’ self-avoiding walk. Phys. Rev. B, 1983.
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Overview of related models

Discrete time, site repulsion (original problem)
D. Amit, G. Parisi, L. Peliti. Asymptotic behaviour of the

‘true’ self-avoiding walk. Phys. Rev. B, 1983.

Discrete time, edge repulsion
B. Té6th. The ‘true’ self-avoiding walk with bond repulsion on

Z: limit theorems. Ann. Probab., 1995.
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Overview of related models

Discrete time, site repulsion (original problem)
D. Amit, G. Parisi, L. Peliti. Asymptotic behaviour of the
‘true’ self-avoiding walk. Phys. Rev. B, 1983.

Discrete time, edge repulsion
B. Té6th. The ‘true’ self-avoiding walk with bond repulsion on
Z: limit theorems. Ann. Probab., 1995.

Discrete time, oriented edge repulsion

B. Téth, B. V. Self-repelling random walk with directed edges
on Z, submitted to Electron. J. Probab., 2008.
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Overview of related models

Discrete time, site repulsion (original problem)
D. Amit, G. Parisi, L. Peliti. Asymptotic behaviour of the
‘true’ self-avoiding walk. Phys. Rev. B, 1983.

Discrete time, edge repulsion
B. Té6th. The ‘true’ self-avoiding walk with bond repulsion on
Z: limit theorems. Ann. Probab., 1995.

Discrete time, oriented edge repulsion
B. Téth, B. V. Self-repelling random walk with directed edges
on Z, submitted to Electron. J. Probab., 2008.

Continuous time, site repulsion
B. Téth, B. V. Continuous time ‘true’ self-avoiding random
walk on Z, preprint, 2008.
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Discrete time, site repulsion (original problem)
Discrete time, edge repulsion

Discrete time, oriented edge repulsion
Continuous time, site repulsion

Models 1, 2, 4:

mv= % (proper scaling: );(/ta)

—
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Discrete time, site repulsion (original problem)
Discrete time, edge repulsion
Discrete time, oriented edge repulsion
Continuous time, site repulsion

Models 1, 2, 4:

(t)

X
273)

mv= % (proper scaling:
m )\ (local time):
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Discrete time, site repulsion (original problem)
Discrete time, edge repulsion

Discrete time, oriented edge repulsion
Continuous time, site repulsion

Models 1, 2, 4:

m v = 3 (proper scaling: ):2(/2))

m )\ (local time):

m X(t) (scaling limit): true self-repelling motion
(T6th—Werner, 1998)
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Model 3 (discrete time, oriented edge repulsion):

m v = 3 (time-space scaling exponent);

Balint Vetd Models of the ‘true’ self-avoiding walk on Z



Model 3 (discrete time, oriented edge repulsion):
m v = 3 (time-space scaling exponent);

m )\ (local time):
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Model 3 (discrete time, oriented edge repulsion):
m v = 3 (time-space scaling exponent);

m )\ (local time):

m X(t): uniform on [—V/t, /1] (X(At) (t))

no continuous limit process
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Discrete time, oriented edge repulsion

En k) = #{0<j<n: X()=kX(+1)=k+1}
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Discrete time, oriented edge repulsion

En k) = #{0<j<n: X()=kX(+1)=k+1}

w + n “(n n
P (X(n+1) = X(n) +1] 7,) = WEE (())i me() X(n))))
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Discrete time, oriented edge repulsion

En k) = #{0<j<n: X()=kX(+1)=k+1}

w + n “(n n
P (X(n+1) = X(n) +1] 7,) = WEE (())i me() X(n))))

W(-2) W)
WR)HWE2)  WE)+W(2)

—
<—

«— —
«— —
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Auxiliary Markov-chains

Mt (n) = F(C7(t(n), k) = £ (t(n), k))
where t(n) = min{s > 0: (*(s, k) = n}
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Auxiliary Markov-chains

Mt (n) = F(C7(t(n), k) = £ (t(n), k))
where t(n) = min{s > 0: (*(s, k) = n}

«— . t(4) =10 Nk,—(4) =2
T = t(3)=8  m(3)=2
— t2)=4  m (2)=0
=L =1 () =1
k
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Auxiliary Markov-chains

Mt (n) = F(C7(t(n), k) = £ (t(n), k))
where t(n) = min{s > 0: (*(s, k) = n}

« . t(4) =10 Nk,—(4) =2
—3 t(3)=8  m-(3)=2
—

- t(2)=4  m-(2)=0
—

— : t(1)=1 Mk,—(1) = -1
k
7k + are i.i.d. Markov-chains (if we choose either 4 or — for each

keZ)
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Recursion on A;

Tim:=min{n>0: €+(n, i) > m}
Nim(k) == EJF(T,-,,,,7 k)
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Recursion on A;

Tim:=min{n>0: €+(n, i) > m}
Nim(k) == EJF(T,-,,,,7 k)

/\i,m(i) =m

Balint Vetd Models of the ‘true’ self-avoiding walk on Z



Recursion on A;

Tim:=min{n>0: €+(n, i) > m}
Nim(k) == EJF(T,-’,,,7 k)

/\i,m(i) =m
Nim(k +1) = Nim(k) + mr1,— (ANi.m(k)) if k>i
Nim(k =1) = Nim(K) + e (Nim(k) —1)+1 i 0<k<i
/\i,m(k - 1) = Ai,m(k) + 77k,+(/\i,m(k)) if k < 0
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Recursion on A;

Tim:=min{n>0: €+(n, i) > m}
Nim(k) == EJF(T,-’,,,7 k)

/\i,m(i) =m
Nim(k+1) = Nim(k) + nkg1,— (Ni.m(k)) if k>
/\;’m(k — 1) = /\,'7,,,(/() + ’I7k,+(/\,"m(k) — 1) +1 if 0< k<i
Nim(k —1) = Nim(k) + 1+ (Aim(k)) if k<0

Ai m is a random walk.
The step distribution depends on the position.
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Stationary distribution of 7 4

Lemma

The unique stationary distribution of the Markov-chains 1 1 is
defined by

k
p(k) = p(=k=1) = H

if k > 0.
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Stationary distribution of 7 4

Lemma

The unique stationary distribution of the Markov-chains 1y + is
defined by

k o r
p(k) = p(—k—1) H where —2ZHWV5@)')

r=0 /=1
if k > 0.
There are constants ¢; < oo and ¢» > 0 such that
Z]P" 0,y) —p(y)| < cre” "
YEZL

where P"(x,y) = P (nk+(n) =y | mk,+(0) = x).
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Limit theorem for the local time process

Theorem (B. Téth, B. V., 2008)
Let x € R and h € R, fixed. Then

A N g Lan (LAY =

in supremum-norm in probability as A — oo.
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Limit theorem for the local time process

Theorem (B. Téth, B. V., 2008)
Let x € R and h € R, fixed. Then

A7 N Lan (LAY =

in supremum-norm in probability as A — oo.

Proof: A|ax|, an| can be coupled with a walk /N\LAXJ,LAhJ with step
distribution p is such a way that as long as they are above /A,
then they coincide with high probability.
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Limit theorem for the local time process

Theorem (B. Téth, B. V., 2008)
Let x € R and h € R, fixed. Then

A7 N Lan (LAY =

in supremum-norm in probability as A — oo.

Proof: A|ax|, an| can be coupled with a walk /N\LAXJ,LAhJ with step

distribution p is such a way that as long as they are above /A,
then they coincide with high probability.

It can be shown that if A, an) is at most V/A, then it reaches 0
in o(A) time with large probability.
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Limit theorem for the position of the random walker

X([At])

W = UNI[—Vt, /1]

as A — oo.
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Limit theorem for the position of the random walker

Conjecture

X([At])

JE = UNI[—Vt, /1]

as A — oo.

Theorem (B. Téth, B. V., 2008)

Let 05/ be independent of the walk X with geometric distribution

P(0s)a=n) = (1 _ e—s/A) (e*S/A>"_
Then oo
VA

where the density of Y is x s [* €™ L ]l(|x| <V/t)dt

=Y
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Simulation results

Figure: Local time process A1go goo With w(k) = 2% and w(k) = 10k
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Simulation results

Figure: Trajectories of X(n) with w(k) = 2% and w(k) = 10k
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Continuous time, site repulsion

(t,J) = H0<s<t:X(s) =/}
P(X(t+dt)=j+x1]past,X(t) =j) = w(l(t,j)—¢(t,j£1))dt
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Continuous time, site repulsion

Ut j):=H0<s<t:X(s)=,j}
P(X(t+dt)=j+x1]past,X(t) =j) = w(l(t,j)—¢(t,j£1))dt

Infinitesimal generator of the auxiliary Markov-processes 7y 4 :

(KF)(x) = —f'(x) + /R r(u,v)(f(v) — f(u))dv

where r(u,v) = 1(v > u)w(—u)exp (— [ w(s)ds) w(v)
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Continuous time, site repulsion

Ut j):=H0<s<t:X(s)=,j}
P(X(t+dt)=j+x1]past,X(t) =j) = w(l(t,j)—¢(t,j£1))dt

Infinitesimal generator of the auxiliary Markov-processes 7y 4 :

(KF)(x) = —f'(x) + /R r(u,v)(f(v) — f(u))dv

where r(u,v) = 1(v > u)w(—u)exp (— [ w(s)ds) w(v)

u
] ‘

N
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Continuous time, site repulsion

Ut j):=H0<s<t:X(s)=,j}
P(X(t+dt)=j+x1]past,X(t) =j) = w(l(t,j)—¢(t,j£1))dt

Infinitesimal generator of the auxiliary Markov-processes 7y 4 :

(KF)(x) = —f'(x) + /R r(u,v)(f(v) — f(u))dv

where r(u,v) = 1(v > u)w(—u)exp (— [ w(s)ds) w(v)

u
] ‘

N
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Lemma

The unique stationary distribution for the auxiliary
Markov-processes is defined by

p(du) = %e_W(“)du

where W(u) = [¢'(w(v) — w(—v))dv and Z = [ e~V () dv.
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Lemma

The unique stationary distribution for the auxiliary
Markov-processes is defined by

p(du) = %e_W(“)du

where W (u) = fou(w(v) —w(—v))dvand Z = [ e W) qv.
There are ¢; < oo and ¢ > 0 such that

HPt(O, ) - pH < ce et

where Pt(x,dy) = P (i +(t) € dy | 7k +(0) = x).
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|dea of the proof: coupling

11(0) = 0 and P(12(0) € A) = p(A)
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|dea of the proof: coupling

11(0) = 0 and P(12(0) € A) = p(A)

|[PE(0,) = p|| <P (T > 1)

where T is the time of merge in any coupling.
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|dea of the proof: coupling

11(0) = 0 and P(12(0) € A) = p(A)

|[PE(0,) = p|| <P (T > 1)

where T is the time of merge in any coupling.
The rate of merge provided that 71 = x; and 7, = xo:

w(—x1Vx2) exp (— /X i:z W(Z)dZ) > w(—b)exp (— /_ l; w(z) dz)

if x1 Vxo <b.
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|dea of the proof: coupling

11(0) = 0 and P(12(0) € A) = p(A)

|[PE(0,) = p|| <P (T > 1)

where T is the time of merge in any coupling.
The rate of merge provided that 71 = x; and 7, = xo:

w(—x1Vx2) exp (— /X i:z W(Z)dZ) > w(—b)exp (— / l; w(z) dz)

if x1 Vxo <b.

P(T>t)§P(19t<£)+P<T>t|z9t2£)

where ¥, = [{0 < s < t:ni(s) Vna(s) < b}.
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Open questions

m rigorous proof for the original model (discrete time, site
repulsion)
How to do: show that the discrete and the continuous models
do not differ too much in the long run (not so easy)
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Open questions

m rigorous proof for the original model (discrete time, site
repulsion)
How to do: show that the discrete and the continuous models
do not differ too much in the long run (not so easy)

m ‘true’ self-avoiding random walk in higher dimensions
diffusive behaviour with Gaussian scaling limit
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Open questions

m rigorous proof for the original model (discrete time, site
repulsion)

How to do: show that the discrete and the continuous models
do not differ too much in the long run (not so easy)

‘true’ self-avoiding random walk in higher dimensions
diffusive behaviour with Gaussian scaling limit
generalization of Kipnis—Varadhan-theorem for the
non-revesible case (central limit theorem for additive
functionals of Markov-processes)

Markov-process: environment seen from the position of the
walker

joint work with I. Horvath and B. Téth
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Thank you for the attention!
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