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Chapter 1

Introduction

In this thesis, we study the stabilization time of evolution on random sequences

and its limiting distribution. The aim of the evolution is to arrange the elements

in decreasing order over the steps. Evolution for two types of sequences is a well-

known and researched topic, with an established and well-regarded interpretation[2]

of confused soldiers,which says:

“A large (but finite) number of soldiers are arranged in an east-west line, and

all the soldiers are facing north. The commander shouts “Right face!” One second

later, all the soldiers ought to be facing east, but they have not completely mastered

“right” and “left”, so some are facing east and some west. Any soldier who is face-

to-face with his neighbor realizes that there was a mistake and turns 180 degrees

(disregarding the possibility that the mistake might have been the neighbor’s). One

second later, when all these 180 degree turns have been completed, any soldier who

is now face-to-face with a neighbor turns 180 degrees (even if he had just turned at

the previous step). The process repeats in the same manner. Prove that it stops

after finitely many steps.”

The evolution of two type sequences is a discrete TASEP process mentioned in

James Martin and Philipp Schmidt’s article[5]. We consider a different approach

from the three update rules explained in that article, but our evolution process is

also natural and similar to the fully parallel updates in the 5th section of the article.
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The distribution of the stabilization time depends on the probability of choos-

ing each type. A natural question arises: what happens during the evolution of

sequences with three types, and how does the stabilization time change in this con-

text? The case of three types of sequences is more challenging because the evolution

itself is not trivially generalizable from the two-type model. Our goal was to study

these three-type sequences in the special case, when there is only one of the third

type in the sequence, using the theorem on the limiting distribution of stabiliza-

tion time provided in a previous paper (see [1]) as a basis. However, for better

understanding and applicability to three types, we approached the expression of

stabilization time differently, making it more generalizable. We introduced the evo-

lution for three-type sequences and examined the additional time required compared

to the stabilization time for their projection into two types. We characterized this

additional time and studied its limiting distribution for different probabilities.

This special third type element can be considered a second class particle in

some sense, which is defined in Ferrari and Kipnis’s paper [6], but they have some

differences.

The paper is structured as follows: in Chapter 2 we introduce the rules of the

evolution, define the projections, the stabilization time and the evolution steps, in

Chapter 3, we state the theorem on the limit distribution of the stabilization times

of the two types sequences , which is a known result of the Funk-Nica-Noyes article

(see [1]). The results in Chapter 4 are new results, namely the characterization of

the excess and Theorem 4.2, in which we state the limit distribution of the excess.
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Chapter 2

Model definition

For n ∈ N let Ωn = {0,1,2}n be the sample space consisting of the n-length strings

with the following three types: 0,1,2.

On this set, we define a discrete time ’evolution’ process S : Ωn 7→ Ωn,a process

that, step by step, seeks to reach a stable state in which the elements of the sequence

are in descending order. The process works the following way: in a step we replace

each occurrence of the length-2 substrings when the smaller number is followed by

a bigger one (so S(01) = 10, S(02) = 20 and S(12) = 21). This procedure is well-

defined when the string only consists of two types. There is no evolution rule for

three types under which both natural projections evolve according to the dynamics

for two types. Either of the two projections can have priority over the other. We

choose Π1 below to have the priority.

Definition 2.1. Π1 : Ωn 7→ Ωn and Π2 : Ωn 7→ Ωn are two projections on Ωn such

that

(Π1ω)i = π1(ωi)

and

(Π2ω)i = π2(ωi),

where
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π1 : {0,1,2} 7→ {0,1,2} such that π1(0) = π1(1) = 0 and π1(2) = 2,

π2 : {0,1,2} 7→ {0,1,2} such that π2(0) = 0 and π1(1) = π1(2) = 2.

So projection Π1 is the case when we consider 0’s and 1’s identical in ω, so

that the two types are {0,1},{2} and projection Π2 is when we consider 1’s and 2’s

identical, so that the two types are {0},{1,2}.

However in case of three types it can happen that ω ∈ Ωn contains a substring for

which ωi < ωi+1 < ωi+2 (where ωj is the jth element of ω), which means that 012 ⊆ ω,

therefore we must choose one of the aforementioned projections. Throughout this

paper, in these cases we consider the Π1 projection, so that S(012) = 021.

We repeat this S evolution process until it is stabilized in the sense, the string

does not change anymore, so when all the elements are sorted in a decreasing topo-

logical order (22..2211..1100..00).

The steps needed for this stabilized state is called the stabilization time of the

string, and it is denoted by Tn : Ωn 7→ N.

A concrete example:

0122102 S−→ 0212120 S−→ 2021210 S−→ 2202110 S−→ 2220110 S−→ 2221010 S−→ 222110

In this case T (0122102) = 6, as we needed 6 steps to stabilize the string.

Now let us define the measure Pp,q,r, so that the (Ωn, P(Ωn),Pp,q,r) represents

the probability space consisting of strings in {0,1,2}n, where each bit is chosen

independently to be 2 with probability p, 0 with probability q or 1 with probability

r, when p,q,r ≥ 0 and p + q + r = 1.

In the following sections we will examine the distribution of this stabilization

time Tn with respect to the measure Pp,q,r for different values of p,q,r, when n −→ ∞

.

Let us define the two aforementioned operators more precisely:

Definition 2.2. We say that S : Ωn 7→ Ωn is the evolution step of the string ω ∈ Ωn,

if the followings are satisfied:
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If ∃012 ⊆ ω :

S(012) = 021

For any other ωiωi+1 substring of ω:

If ωi < ωi+1:

(Sω)i = ωi+1

(Sω)i+1 = ωi

,where (Sω)i is the ith element of the string Sω ∈ Ωn.

Definition 2.3. We say that Tn : Ωn 7→ N is the stabilization time of the string

ω ∈ Ωn, if:

Tn(ω) = min
k≥0

{k : Sk(ω) = Sk+1(ω)}

,where Sk(ω) = SS...S︸ ︷︷ ︸
k-fold

ω means that we apply the function S k-times on ω.

With other words this means that we apply the evolution step function S on ω

until ω reaches the stabilized state, from where it does not change anymore.
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Chapter 3

Stabilization time of random

strings with two types

In this section we consider the special case when there are only two types in the

strings, so when one of p,q,r is 0. Without the loss of generality let us assume that

p = 0, so for n ∈ N and r = 1 − q ∈ (0,1).

Throughout this chapter let Ωn denote the probability space consisting of strings

in {0,1}n.

The aforementioned evolution is a bit simplier in this special case, since there is

no ’problematic situation’, so we can say that S : Ωn 7→ Ωn has no other affect on

ω ∈ Ωn than changing each occurance of 10’s to 01’s.

It is easy to see that this process must stabilize within a maximum of n−1 steps

in the following form: 11..10..00, so that all the 1’s are on the left to all the 0’s.

We are interested in the limit distribution of the random variable Tn with respect

to the measure P0,1−r,r, or with more simple term Pr, for different r values, when

n −→ ∞.

The Theorem 3.1 about the limit distributions is known results from the Funk-

Nica-Noyes article (see [1]), with a different approach, we gave a new proof, which
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can be found in the Appendix.

Theorem 3.1. We have the following weak limits for the distribution of the random

variable Tn with respect to Pr in the limit n → ∞:

If r > 1
2 :

Tn − rn√
n

⇒ N (0, r(1 − r))

If r = 1
2 :

Tn − 1
2n√

n
⇒ χ3

2

In the above limits, N(0, r(1−r)) is a mean zero Gaussian variable with variance

r(1 − r), and χ3
2 ∼ 1

2r
√

Z2
1 + Z2

2 + Z2
3 is half of the Euclidean norm of a vector of

three independent standard N(0,1) Gaussian variables. By symmetry it is enough

to state the theorem for r ≥ 1
2 .

Let us introduce some random variables which we use throughout the paper:

Definition 3.2. Let L : Ωn 7→ N be the number of 1’s until the first occurrence of

a 0 in the initial string ω, read from the left to the right (so in other words, the

number of 1’s at the beginning of the string), and similarly, let R : Ωn 7→ N be the

number of 0’s until the first occurrence of a 1, read from the right to the left,so the

number of 0’s at the end of the string.

L(ω) = {k : ω1 = 1 ∧ ω2 = 1 ∧ ... ∧ ωk = 1 ∧ ωk+1 ̸= 1}

R(ω) = {k : ωn = 0 ∧ ωn−1 = 0 ∧ ... ∧ ωn−k+1 = 0 ∧ ωn−k ̸= 0}

Let ω̃ be the substring of ω ∈ Ωn in such a way that we chop off the first L and

the last R elements of ω, so that we get a string in {0,1}n−L−R which starts with a

0 and ends with a 1.
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Let M1 : Ωn 7→ N denote that position in ω which is the rightmost position in

the string ω̃ ∈ {0,1}n−L−R from where any nonempty suffix of the substring to the

left of this position contains strictly higher amount of 0’s than 1’s.

M1(ω) = max
k≥1

{k : L < k < n − R ∧ ∀L < l < k :
k∑

i=l

1{ωi=0} >
k∑

i=l

1{ωi=1}}

Remark 3.3. In order to understand M1 better, we assign a random walk to each

ω ∈ {0,1}n in the following way: it takes a step up for every 0 in ω and a step

down for every 1 in ω. So for 1 ≤ k ≤ n let Sk =
k∑

i=1
(1 − 2ωi), where ωi is the ith

element of ω. The function f : N −→ N, where k 7→ Sk gives the height function of

the aforementioned random walk.

With this interpretation, M1 is the leftmost location of the maximum height in

the height function of ω ∈ {0,1}n, or more precisely:

M1 = min
k

{k|L ≤ k ≤ n − R ∧ Sk = max
i

{Si|L ≤ i ≤ n − R}}

, where Sk represents the random walk of ω.
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Chapter 4

Stabilization time of random

strings with three types in special

cases

In this section we consider the special case of the random strings with three types

when there is only one 1 in a string of length n, which is constructed in two steps:

Firstly, a string of length n is chosen on {0,2}n with respect to the aforementioned

measure Pr, and after that, the position of 1 is chosen uniformly on the n elements

of the string with two types, so that a 0 or a 2 is replaced by a 1 on the uniformly

chosen place, therefore we can say that the position of 1 in ω is U(ω) = {i : ωi =

1} d= Uni{1,2,...,n}.

Throughout this chapter, Ωn stands for that sample space with exactly one 1

among the 0’s and 2’s.

By Chapter 2, we know the behaviour and the limit distribution of the stabiliza-

tion time of random strings with two types, therefore for ∀ω ∈ Ωn, Tn(Π1(ω)) (for

the definition of Π1, see 2.1) is clear, but for Tn(ω), we need to consider an excess

time, since it might happen, that after Tn(Π1(ω)) steps, all the 2’s in ω are placed

in the beginning of the string, but there are still some 0’s before the position of 1, so
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in order to reach the stable state, some more steps are needed, the number of those

steps is what we call excess time, and denote it with En.

In this Chapter we characterize the existence of the excess and state Theorem

4.2 on the limit distribution of excesses with respect to different r values and these

are our new results.

Definition 4.1. ∀ω ∈ Ωn En : Ωn 7→ N is the excess time, if:

Tn(ω) = Tn(Π1(ω)) + En(ω)

Theorem 4.2. We have the following weak limits for the distribution of the random

variable En with respect to Pr in the limit n −→ ∞:

If r > 1
2 :

En ⇒ 1,

if r = 1
2 :

En ⇒ X,

if r < 1
2 :

En ⇒ 0,

where P(X = 0) = P(X = 1) = 1
2 .

To prove the Theorem 4.2, we need to understand how the initial position of 1

is related to the excess and what is the probability of the events when there is an

excess and when there is not, with respect to Pr for different r values.

Let us start by characterising the existence of the excess.

Proposition 4.3. ∀ω ∈ Ωn:

if K(ω) > U(ω):

En(ω) = 0

if K(ω) ≤ U(ω) :

En(ω) ≥ 1,
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where

K(ω) :=



max{k : π1(ωk) = 0, ωk+1 = 2, π1(ωk−1) = π1(ωk−2) = 0,

such that ∀l < k − 1 : Sl + 1 < Sk}, if ∃ such k,

0, otherwise.

(3)

Furthermore if En > 1:

U(ω) > n − R(π1(ω)).

Remark 4.4. The above Theorem states that the existence of the excess depends

on the position of this K, in the sense that if the position of 1 is placed before this

K, there is no excess, when it is after the K, there will be excess for sure and more

than one excess can only happen when the initial position of 1 is such that there is

no 2 after it.

So we can say that this K is the switching position of the existence of the excess.

Instead of calculating the distribution of this K random variable, we study its

distance from M1 and will see it is negligible compared to the n-length string.

Proof. Firstly, let us assume that K(ω) > U(ω).

In each step 0002 stays together and goes one step to the left, since by the

assumption that the height function never reaches the height of Sk−1, in any suffix

of the substring to the left of 0002 might be at most one more 2’s than 0’s, so every

time a 0 ’escapes’ on the right as 02 7→ 20, a 0 comes in on the left.

After some steps (it might be the initial form of ω), this incoming element from

left will be the 1, and it cannot swap place with the 2 from 0002, since once it reaches

..0102.. position, until this block can move to the left (until there is a 0 before them),

01 7→ 10 and 02 7→ 20 will happen simultaneously, so a 0 stays between them like

..102...
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When there are no more 0’s before 0102, meaning that the string looks like this at

that time: 2...20102.. and the next steps are: 2...21020...
S−→ 2...2120...

S−→ 2...2210...

So there might be 2’s after 1’s position at this point, but the last 2 will be stabilized

by swapping with the 1, therefore there will be no excess.

Now let us assume that K(ω) ≤ U(ω). Since K is a local maximum to the left

so we know that it goes to the left by one in each step until it reaches the front (so

when there are only 2’s before it and a single 0), from then on it passes a 2 to its left

in every step, and since the 1 will never swap with the 2 in the position K + 1, the

last 2 which has a 0 before its position will stabilize by swapping with a 0, therefore

after Tn(Π1(ω)) steps, there will be a 01 substring in the string for sure, so there

will indeed be excess.

If ∃k > U(ω) such that ωk = 2, then l := max
k>U(ω)

{k : ωk = 2} will be next to the

1 after some evolution steps for sure, and they will swap places in the next step, so

we will get this string: ...210...0, which means that in any evolution step after this,

at most one piece of 0 can be placed between them (between the last 2 and the 1),

because as soon as 2 swaps with a zero, in the next step 1 swaps with it as well, so

the last 0 will act the same, not allowing more than one excess.

Proposition 4.5. ∀ω ∈ Ωn.

lim
n−→∞

P(En(ω) > 1) = 0

Proof. We have seen in the Proposition above, that En(ω) > 1 can only happen,

when there are only 0’s after 1 in ω, which means, that 1 is among the R(Π1(ω))

0’s and since R(Π1(ω)) d= Geo(r), which is almost surely finite,

{En > 1} ⊆ {U ≥ n − R}, (4)

therefore
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P({En > 1}) ≤ P({U ≥ n − R}) −→ 0 as n −→ ∞. (5)

Proposition 4.6. For r > 1
2 :

lim
n−→∞

P(U < M1) = 0

For the proof, let us consider the following lemma first:

Lemma 4.7. Let us consider a random walk Sk = ∑k
i=1 Xi with a negative drift,

where Xi’s are iid and P(Xi = −1) = r > 1
2 and P(Xi = 1) = 1 − r,then ∀ϵ > 0:

P( max
k≥ϵ

√
n
Sk > 0) −→ 0 as n −→ ∞

Proof of Lemma 4.7.

P
(

Sϵ
√

n <
1 − 2r

2 ϵ
√

n
)

= P

Sϵ
√

n − (1 − 2r)ϵ
√

n√
4r(1 − r)n 1

4
<

−1−2r
2 ϵ

√
n√

4r(1 − r)n 1
4

 (6)

By the central limit theorem, we know that

Sϵ
√

n − (1 − 2r)ϵ
√

n√
4r(1 − r)n 1

4
−→ N (0,1) as n −→ ∞ (7)

Since r > 1
2 , we also know that:

−1−2r
2 ϵ

√
n√

4r(1 − r)n 1
4

> 0, (8)

therefore

P
(

Sϵ
√

n <
1 − 2r

2 ϵ
√

n
)

−→ 1, as n −→ ∞. (9)
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P( max
k≥ϵ

√
n
Sk > 0) = (10)

P( max
k≥ϵ

√
n
Sk > 0|Sϵ

√
n <

1 − 2r

2 ϵ
√

n) · P(Sϵ
√

n <
1 − 2r

2 ϵ
√

n)+ (11)

P( max
k≥ϵ

√
n
Sk > 0|Sϵ

√
n ≥ 1 − 2r

2 ϵ
√

n) · P(Sϵ
√

n ≥ 1 − 2r

2 ϵ
√

n) ≤ (12)

P( max
k≤ϵ

√
n
Sk > 0|Sϵ

√
n <

1 − 2r

2 ϵ
√

n) + o(1) ≤ a− 1−2r
2 ϵ

√
n + o(1) −→ 0, as n −→ ∞,

(13)

where a = P(∃k : Sk = 1|S0 = 0) < 1.

So

P( max
k≥ϵ

√
n
Sk > 0) −→ 0 as n −→ ∞

is indeed the case.

Proof of Proposition 4.6. We have seen from the Lemma 4.7 that

argmax
1≤k≤n

Sk

√
n

−→ 0, as n −→ ∞ (14)

holds for any maximum places and by the properties of M1 (see, 4.24), for any

ω ∈ Ωn there is a maximum place for which:

M1(ω) =
d

L(ω) + 1 + argmax
1≤k≤n

Sk, (15)

therefore
M1√

n
d= L + 1√

n
+

argmax
1≤k≤n

Sk

√
n

(16)

which means that
M1√

n
−→ 0, as n −→ ∞, (17)
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since we have already seen in the proof of 4.31, that:

L + 1√
n

−→ 0, as n −→ ∞ (18)

The last step of the proof:

P(U < M1) = P( U√
n

<
M1√

n
) −→ 0 (19)

Proposition 4.8. For r = 1
2 :

lim
n−→∞

P(En = 0) = 1
2 (20)

Proposition 4.9. For r = 1
2 :

lim
n−→∞

P(U < M1) = 1
2 (21)

In order to prove this proposition, we need to prove the first arcsine law (see [3]):

Theorem 4.10. (First arcsine law for Brownian motion). Let {B(t) : t ≥ 0} be a

standard linear Brownian motion.

Then the random variable A ∈ [0,1], which is uniquely determined by B(A) =

max
s∈[0,1]

B(s), is arcsine distributed.

Proof of Theorem 4.10. {A(t) : 0 ≤ t ≤ 1} is defined by A(t) = max
0≤s≤t

B(s). For

s ∈ [0, 1],

P{A ≤ s} = P
(

max
0≤u≤s

B(u) > max
s≤v≤1

B(v)
)

(22)

= P
(

max
0≤u≤s

B(u) − B(s) > max
s≤v≤1

B(v) − B(s)
)

(23)

= P{A1(s) > A2(1 − s)}, (24)
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where {A1(t) : 0 ≤ t ≤ 1} is the maximum process of the Brownian motion {B1(t) :

t ≥ 0}, which is given by B1(t) = B(s − t) − B(s), and {A2(t) : 0 ≤ t ≤ 1} is the

maximum process of the independent Brownian motion {B2(t) : 0 ≤ s ≤ 1}, which

is given by B2(t) = B(s + t) − B(s). Since, as a consequence of reflection principle,

for any fixed t, the random variable A(t) has the same law as |B(t)|, we have

P{A1(s) > A2(1 − s)} = P{|B1(s)| > |B2(1 − s)|} (25)

Using the scaling invariance of Brownian motion we can express this in terms of

a pair of two independent standard normal random variables N1 and N2 , by

P{A1(s) > A2(1 − s)} = P{|B1(s)| > |B2(1 − s)|} (26)

= P
(√

s|N1| >
√

1 − s|N2|
)

(27)

= P

 |N2|√
N2

1 + N2
2

<
√

s

 . (28)

In polar coordinates, (N1, N2) = (R cos θ, R sin θ) pointwise. The random vari-

able θ is uniformly distributed on [0, 2π]. So the last quantity becomes

P

 |N2|√
N2

1 + N2
2

<
√

s

 = P{| sin(θ)| <
√

s} (29)

= 4P{θ < arcsin(
√

s)} (30)

= 4
π

arcsin(
√

s). (31)

It follows by differentiating that A has density (πs(1 − s))−1 for s ∈ (0, 1).

Lemma 4.11. For any X random variable with symmetric distribution and Y ran-

dom variable with uniform distribution, when the density function of X is f : [0,1] −→
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[0,1]:

P(X > Y ) = 1
2 , (32)

Proof of Lemma 4.11.

P(X > Y ) = E[X], (33)

since

P(X > Y ) =
∫ 1

0
P(X > Y |X = x) · f(x)dx (34)

=
∫ 1

0
x · f(x)dx (35)

= E[X] (36)

As X is symmetric on [0,1], E[X] = 1
2 , so we are done with the proof.

Now let us consider the proof of Proposition 4.9:

Proof of Proposition 4.9. As r = 1
2 , for ω ∈ Ωn with respect to Pr, Sk(ω) is a simple

symmetric random walk, therefore by Donsker’s theorem, S⌊nt⌋√
n

converges to B(t),

t ∈ [0,1] in distribution, so by the first arcsine law (see 4.9), M1
n

converges to the

arcsine distribution, which is a symmetric distribution, so for its density function

f : [0,1] −→ [0,1]: f(x) = f(1 − x).

It is trivial that U
n

d= Uni{ 1
n
, 2
n
,...,n

n
}.

Therefore

P(M1 > U) = P(M1

n
>

U

n
) −→ 1

2, as n −→ ∞. (37)

Remark 4.12. However M1 is not necessarily the switching position of the existence

of the excess (by switching position we mean the special position from which, if the

1 is to the left in the string, there is no excess, and if it is to the right, there is), the

switching position might have some shift from M1, which is the distance of M1 and
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K, but we will see that this distance will be ’small enough’ in the string of length

n −→ ∞.

Proposition 4.13. ∃c ∈ R such that ∀ω ∈ Ωn :

E[M1(ω) − K(ω)] ≤ c
√

n (38)

Remark 4.14. For the proof of Proposition 4.13, we need to understand the be-

haviour of the string to the left of the maximum position M1.

It is essential to see that in the r = 1
2 case, starting from M1 and going backwards,

the height function is a simple symmetric random walk conditioned on the fact that

it never returns to the value of the maximum.

In order to estimate the distance of M1 and K we split the string between K

and M1 into parts that we call excursions and one or two single steps between the

excursions and consider the height function of the string. One excursion starts

at some height and continues until it reaches one height below. There are some

excursions to this lower level and there is a last one. After that we never reach

that level again. Then we start the excursion from there conditioning on that we

never reaches that level again. In this case after an excursion ended, the next one

or two steps are downward steps for sure in order to avoid the ’banned’ height. Two

steps when it’s the last excursion to a certain height and one when it’s not the

last one. That’s why there are single steps between the excursions. Therefore we

can interpret these excursions (after applying a reflection to the horizontal axis) as

simple symmetric random walks’ first visit to one step higher level than the starting

point.

V1 = min{n|Sn = 1}

is the visiting time of one,

V0 = min{n ≥ 1|Sn = 0}
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is the returning time to 0, and Sn is a simple symmetric random walk.

So we have to study some properties of this conditioned random walk, such as

the excursion probabilities and expected excursion length.

Proposition 4.15. We consider the X̃n := (Xn|T1 = ∞) random walk, where Xn

is the simple symmetric random walk.

Then the distribution of the number of excursions is the following:

P(X = k) =


1
2 , if k = 0

1
8(3

4)k−1, if k ≥ 1.

(39)

Proof. Let us introduce the following random variables:

X = {#excursions} (40)

Gi = {#returns to i from i + 1 in X̃n} (41)

It’s easy to see that Gi’s are iids and Gi
d= Geo(1

2) (pessimistic geometric) for

i = 1,2,...

Let

N = min{k|Gk = 0} − 1. (42)

N
d= Geo(1

2) (pessimistic), since P(Gi = 0) = P(Gi > 0) = 1
2 ∀i.

By the definition of the random variables

X =
N∑

i=1
Gi,

which is a random sum. N depends on the Gi’s, but this dependence is only that in

case of N = n, Gi > 0 ∀i < n, therefore (Gi|N = n, i < n) d= Geo(1
2) (optimistic ge-

ometric). So we can use the probability generating function of them in the following
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way:

gX(z) = gN(gG1(z)) = 1
2 − z

2−z

= 2 − z

4 − 3z
. (43)

From the PGF of X, we get the distribution we wanted:

P(X = k) =


1
2 , if k = 0

1
8(3

4)k−1, if k ≥ 1.

(44)

.

Remark 4.16. The distribution of the number of excursions is exponentially decay-

ing, from which we can conclude that there are not expected to be many excursions

so we can guess that the shift from M1 will not be large.

However this is not a formal argument, moreover this is not exactly the case we

are interested in.

In our case it is not necessary that the random walk never returns to 0 (the

starting point), it is only sufficient that for fixed M1 = m the string does not return

to 0 on any finite trajectory to the left of M1.

So from now on we study the excursions of the random walk conditioned on not

returning to 0 in M1 = m steps.

Proposition 4.17.

P2(V1 < m|V0 > m) = 1
2(1 + O(

√
m1−ϵ)) (45)

This means that the excursion probability is near to 1
2 if m >

√
n, where n is

the size of the string, therefore the number of excursions exponentially decays.

Proof. We know that
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P2(V1 = 2k + 1) = P1(V0 = 2k + 1)

= P1(S1 > 0,...,S2k > 0, S2k+1 = 0)

∼ 1
2
√

πk
3
2

(46)

and

P1({V0 > m}) = P2({V1 > m}) ∼
√

2
π

1√
m

, (47)

these asymptotics follow from the computations done in the Feller book [7] by

reflection principle.

It is trivial that from 2 to reach 1 we need odd many steps for sure, and

P2({V1 < m < V0|V1 = 2i + 1}) = P2({V1 = 2i + 1})P1({V0 > m − 2i}). (48)

Therefore

P2(V1 < m | V0 > m) = P2(V1 < m < V0)
P2(V0 > m)

∼

∑m
2

i=1
1

2
√

πi
3
2

√
2
π

1√
m−2i√

2
π

1√
m

+∑m
2

i=1
1

2
√

πi
3
2

√
2
π

1√
m−2i

,

(49)

We can estimate the numerator of the above expression in the following way: we

sum it up until k instead of m
2 , So

k∑
i=1

1
2
√

πi
3
2

√
2
π

1√
m − 2i

∼ (1 − 1√
πk

)
√

2
π

1√
m

=
√

2
π

1√
m

(1 + O( 1√
πk

))

(50)
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Let us choose k := n1−ϵ

2 (ϵ > 0), so that the estimation is

√
2
π

1√
m

(1 + O( 1√
m1−ϵ

)) (51)

So

P2(V1 < m|V0 > m) = 1
2(1 + O(

√
m1−ϵ) (52)

is indeed the case.

Proposition 4.18.

E2[V11{V1≤m}|V0 > m, V1 ≤ m] ∼
√

π

2
√

m (53)

Remark 4.19. According to Proposition 4.18, if there is an excursion in the re-

maining time m (remaining steps until the end of the string, which is basically the

beginning of the string as we go backwards from M1 now), the expected length of

an excursion is in the order of magnitude
√

m.

Proof.

P2(V1 = 2i + 1|V0 > m, V1 < m) ∼
1

2
√

πi
3
2

√
2
π

1√
m−2i√

2
π

1√
m

1
2(1 + O( 1√

m1−ϵ
))

∼ 1√
π

1
i

3
2

√√√√ 1
1 − 2i

m

(54)

E2[V11{V1≤m}|V0 > m, V1 ≤ m] ∼
m
2∑

i=1
(2i) 1√

π

1
i

3
2

√√√√ 1
1 − 2i

m

∼
√

m
2√
π

m
2∑

i=1

1√
i

1√
m − 2i

∼
√

2π
√

m,

(55)
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since
1
m

m
2∑

i=1

1√
i

1√
m − 2i

−→
∫ 1

2

0

1√
x

1√
1 − 2x

dx = π√
2

, as n −→ ∞. (56)

Now we have the tools to prove Proposition 4.13.

Proof of Proposition 4.13. Let

Wi = {the length of the ith excursion} (57)

and

N = {number of excursions in m steps} (58)

The shift can be interpreted as excursions of simple symmetric random walks

from the current level to the level one level below and one or two deterministic

downward steps between them (and starting the next random walk from there) so

the following estimation holds:

M1 − K ≤
N∑

i=1
Wi + 2N (59)

We have already seen that the number of excursions exponentially decays, therefore

E[N ] = O(1).

Now we need to estimate the expected value of the sum.

N and the Wi’s are not independent, hence a trick is needed. The conditioning

to N ≥ k means that the kth excursion finishes before m hence the previous upper
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bound can be applied to its length.

E[
N∑

k=1
Wk] =

∞∑
k=1

E[Wk1{N≥k}]

=
∞∑

k=1
E[E[Wk1{N≥k}|1{N≥k}]]

=
∞∑

k=1
E[Wk|N ≥ k]P(N ≥ k) ≤ c̃

√
n

(60)

So

E[M1(ω) − K(ω)] ≤ c
√

n (61)

is indeed the case.

Proof of Proposition 4.8.

lim
n−→∞

P(En = 0) = lim
n−→∞

P(U < K)

= lim
n−→∞

(P(U < M1) + lim
n−→∞

P(U ∈ (K,M1)))

= 1
2 ,

(62)

since

0 ≤ E[P(U ∈ (K,M1))|K,M1] = E[M1 − K

n
] ≤ c√

n
, (63)

so it goes to 0 as n goes to infinity.

Proposition 4.20. For r < 1
2 :

lim
n−→∞

P(U < M1) = 1

Proof of Proposition 4.20. The proof comes directly from Proposition 4.6.

Proposition 4.21. For ω ∈ Ωn with respect to Pr,where r < 1
2 :

P(U(ω) < K(ω)) −→ 1 as n −→ ∞
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.

Proof of Proposition 4.21. Let us read the string ω and the height function from the

end, so that the first element of ω is now considered to be the last and so on.

Let us split the string of length-n into n
1
4 parts, and on these sections, separately

check whether it starts with such a K, i.e. whether it starts with a substring of 000

such that to the left of this position the height function never returns to the height

after the first 0 of 000 plus two.

P({∃000 ⊆ ω}) = (1 − r)3 > 0 (64)

P({the height function never reaches the height after the first 0 of 000 plus two})

(65)

= 1 − ( r

1 − r
)2 > 0

(66)

This equality comes from [4].
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{the height function never reaches the height after the first 0 of 000 plus two,

(67)

when there is a 000}

(68)

⊆ {the height function do not reach the height of 000 plus two

(69)

on a section of length n
1
4 , when there is a 000 in the beginning of the section}

(70)

So for

b = P({the height function do not reach the height after the first 0 of 000 plus two

(71)

on a section of length n
1
4 , when there is a 000 in the beginning of the section}) > 0

(72)

The sections are independent of each other, therefore

W
d= Geo(b · (1 − r)3)

, where W is the number of the section of length n
1
4 in which there is the 000 in

the beginning from where the height do not return to the height after the first 0 of

000 (counted from the end of the string) within the section, but we will see that the

probability of that the return time is greater than n
1
4 goes to zero:

Let V denote the return time.By the Hoeffding’s inequality:

P(Sn ≥ 0) ≤ e−cn for some c > 0. (73)
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Therefore

P(V > n) ≤ P(max
k≥n

≥ 0) ≤ e− cn
2 for n big enough, (74)

so

P(V > n
1
4 ) ≤ e− cn

1
4

2 (75)

So the probability that the return time is greater than n
1
4 , anywhere over the

string ω, is:

P(the return time is greater than n
1
4 , anywhere over the string) (76)

≤ n · e− cn
1
4

2 −→ 0 as n −→ ∞. (77)

So the order of magnitude of the distance of the position K from n will be

Geo(b · (1 − r3)) · n
1
4

, and

Geo(b · (1 − r3)) · n
1
4

n
1
2

= Geo(b · (1 − r)3)
n

1
4

−→ 0 as n −→ ∞, (78)

meaning that the distance of this K position from the end of the string is less than

n
1
4 , hence

P(U < K) = P(n − U√
n

>
n − K√

n
) −→ 1 as n −→ ∞ (79)

Proof of Theorem 4.2. For r > 1
2 , En ⇒ 1 comes directly from Proposition 4.5,

Proposition 4.3 and Proposition 4.6, for r < 1
2 , En ⇒ 0 comes from Proposition 4.3,

and Proposition 4.21, and in case of r = 1
2 , En ⇒ X, where P(X = 0) = P(X =

1) = 1
2 , it comes from Proposition 4.5 and Proposition 4.8.
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Let us consider the critical case of r:

Theorem 4.22. If r = 1
2 + λ√

n
:

P(En = 1) −→ Cλ, as n −→ ∞, (80)

where

Cλ = E[argmax
s∈[0,1]

Bλ
s ], (81)

where Bλ
s is a scaled Brownian motion with λ drift.

The above theorem means that for a critically scaled r, the excess probability

can be expressed exactly by the argmax location of the brownian motion with λ

drift scaled to [0,1]. We have already seen that C0 = 1
2 .
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Appendix

A Proof of Theorem 3.1

This was already proven in a previous paper [1], but this is a slightly different

approach of the problem, which is helpful for the understanding of the three type

string case as well.

Remark 4.23. In order to prove the Theorem we use the following random variables

on the probability space Ωn:L,R,M1,N,Z.

Let L : Ωn 7→ N be the number of 1’s until the first occurrence of a 0 in the

initial string ω, read from the left to the right (so in other words, the number of 1’s

at the beginning of the string), and similarly, let R : Ωn 7→ N be the number of 0’s

until the first occurrence of a 1, read from the right to the left,so the number of 0’s

at the end of the string.

L(ω) = {k : ω1 = 1 ∧ ω2 = 1 ∧ ... ∧ ωk = 1 ∧ ωk+1 ̸= 1}

R(ω) = {k : ωn = 0 ∧ ωn−1 = 0 ∧ ... ∧ ωn−k+1 = 0 ∧ ωn−k ̸= 0}

Let ω̃ be the substring of ω ∈ Ωn in such a way that we chop off the first L and

the last R elements of ω, so that we get a string in {0,1}n−L−R which starts with a

0 and ends with a 1.
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A. PROOF OF THEOREM 3.1

Let M1 : Ωn 7→ N denote that position in ω which is the rightmost position in

the string ω̃ ∈ {0,1}n−L−R from where any nonempty suffix of the substring to the

left of this position contains strictly higher amount of 0’s than 1’s.

M1(ω) = max
k≥1

{k : L < k < n − R ∧ ∀L < l < k :
k∑

i=l

1{ωi=0} >
k∑

i=l

1{ωi=1}}

Let Z : Ωn 7→ N be the number of 0’s before the position of M1 and let N :

Ωn 7→ N be the number of 1’s after the position of M1.

Z(ω) = {
M1(ω)∑

i=1
1{ωi=0}}

N(ω) = {
n∑

i=M1(ω)+1
1{ωi=1}}

A concrete example:

ω = 11︸︷︷︸
L(ω)

0100
M1(ω)

| 1 000︸︷︷︸
R(ω)

In this case L(ω) = 2,R(ω) = 3, M1(ω) = 6,Z(ω) = 3, and N(ω) = 1.

Remark 4.24. In order to understand M1 better, we assign a random walk to each

ω ∈ {0,1}n in the following way: it takes a step up for every 0 in ω and a step

down for every 1 in ω. So for 1 ≤ k ≤ n let Sk =
k∑

i=1
(1 − 2ωi), where ωi is the ith

element of ω. The function f : N −→ N, where k 7→ Sk gives the height function of

the aforementioned random walk.

With this interpretation, M1 is the leftmost location of the maximum height in

the height function of ω ∈ {0,1}n, or more precisely:

M1 = min
k

{k|L ≤ k ≤ n − R ∧ Sk = max
i

{Si|L ≤ i ≤ n − R}}

, where Sk represents the random walk of ω.
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A. PROOF OF THEOREM 3.1

Remark 4.25. The two interpretations of M1 are indeed the same, so being the

rightmost position from where any suffix of the substring to the left of this position

contains strictly more 0’s than 1’s means exactly that the height function never

reaches the height of the M1 position before (to the left of) the position M1 and it

never surpasses it. It is because if the substring to the left of this position has no

suffix such that the number of 1’s in them is greater or equal to the number of 0’s in

them means that the height function restricted to [0,M1] has a unique maximum in

M1 and as it is the rightmost position like this, it must be a maximum of the height

function over the entire domain as well so it is indeed the leftmost maximum.

Now let us express the stabilization time of the strings with the help of these

random variables, which is a different approach to the one in the [1] article, in order

to understand the development of the evolution process better.

Proposition 4.26.

Tn(ω) = Z(ω) − 1 + N(ω) (83)

With the Proposition above, we can express the stabilization time in a slightly

different way to the one on the previous paper [1].

For the proof of this proposition, we need to examine the changes of the variables

throughout the evolution.

Remark 4.27. Firstly, let us check that M1 is in the following position for ∀ω ∈ Ωn

for which Tn(ω) > 0:

...0
M1
| 1...

(so its position is always between a 0 and a 1 unless ω is stabilized already).

It is true, because if it would be positioned like this: ...0|0..., than ...00|... would

be a righter position for which it is true that every suffix of the substring to the left

contains more 0’s than 1’, so it would be contradiction.

And of course M1 cannot be followed by a 1 as it would not satisfy the condition

for the suffixes.
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A. PROOF OF THEOREM 3.1

Lemma 4.28. For any ω ∈ {0,1}n such that ∃ 01 ∈ ω:

T (Sω) = T (ω) − 1

It is trivial, since with each evolution step S, we get one step closer to the

stabilized state of ω, and we need exactly T (ω) steps to reach it.

So if T (ω) = n,

ω0 = ω (steps needed until stable state: n)

ω1 = Sω (steps needed until stable state: n-1)

ω2 = S2ω (steps needed until stable state: n-2)

...

ωn−1 = Sn−1ω = 1...1010...0 (steps needed until stable state: 1)

ωn = Snω = 1...10...0 (steps needed until stable state: 0)

Lemma 4.29. For any ω ∈ {0,1}n such that ∃ 01 ∈ ω:

Z(Sω) =


Z(ω) − 1 ,if Z(ω) > 1

1 ,if Z(ω) = 1 and N(ω) > 1

0 ,if Z(ω) = 1 and N(ω) = 1

N(Sω) =

 N(ω) − 1 ,if Z(ω) = 1 and N(ω) > 1

N(ω) otherwise
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A. PROOF OF THEOREM 3.1

If this is true, then we are done with the proof of Proposition 4.26’s first half (the

left equality), since the above mentioned behaviour of Z and N during the evolution

process means the following:

After Z(ω) − 1 steps (while the value of Z decreases from Z(ω) to 1), the value

of N starts to decrease from N(ω) to 1 in N(ω) − 1 steps, and then we have

ω′ = S(Z(ω)−1)+(N(ω)−1)ω, and as N(ω′) = 1 and Z(ω′) = 1, ω′ has the following

form: ω′ = 11...110|100...00, so there is only one 01 in the string so it is stabilized in

one step, which means that ω needs indeed Z(ω)−1+N(ω)−1+1 = Z(ω)+N(ω)−1

evolution steps until it reaches the stable state, so T (ω) = Z(ω) + N(ω) − 1.

To prove the aforementioned changes of Z and N , we need to understand the

behaviour of M1 during the evolution.

Lemma 4.30.

M1(Sω) =

 M1(ω) − 1 ,if Z(ω) > 1

M1(ω) + 1 ,if Z(ω) = 1

Proof. In order to prove that if Z(ω) > 1, then M1(Sω) = M1(ω) − 1 (so that with

an evolution step the leftmost maximum position moves one step to the left), it is

enough to prove that to the left of the position M(ω) − 1 in Sω, there is no such

position where the height function reaches the value at M(ω) − 1, and to the right

of it, there is no such position where the height function exceeds it, because in that

case, it is indeed the position of the leftmost maximum.

More precisely, we need to prove the following:

∄L(Sω) < k < M1(Sω), such that Sk(Sω) ≥ SM1(ω)−1(Sω)

and

∄M1(Sω) < k < n − R(Sω), such that Sk(Sω) > SM1(ω)−1(Sω)
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A. PROOF OF THEOREM 3.1

We know that the height of the position M1(ω) − 1 in ω is one less than the

height of the position M1(ω) in ω, and it does not change during the evolution step,

so in other words:

SM1(ω)−1(Sω) = SM1(ω)−1(ω) = SM1(ω)(ω) − 1,

since:

ω = ...00
M1(ω)

| 1... S−→ ...0
M1(ω)−1

| 10... = Sω

And we also know the following by the definition of M1:

∄L(ω) < k < M1(ω), such that Sk(ω) ≥ SM1(ω)(ω)

and

∄M1(ω) < k < n − R(ω), such that Sk(Sω) > SM1(ω)(ω)

Therefore if there is a k before the position M1 − 1 in ω for which the height is one

less than at the maximum (it cannot be the same or higher), it must be in a ...0|1...

position (because it has to reach the max
k

{Sk(ω)|L(ω) < k < n − R(ω)} − 1 =

SM1(ω) − 1 with a 0, which has to be followed by a 1, otherwise it would reach the

maximum to the left of M1), which turns into ...1|0... with the evolution step, so it

decreases by two, so there is no position to the left of M1(ω) − 1 in Sω where the

height function reaches the height at M1(ω) − 1.

Now we need to check the other part: No position k to the right of the position

M1(ω) in ω can exceed the maximum height, but there can be other maximum

values, which are ...0|1... positions for sure, so with the evolution step the height at

that position decreases by two, so there is no position to the right of M1(ω) − 1 in

Sω where the height function exceeds the height at M1(ω) − 1. So for Z(ω) > 1,

M1(Sω) = M1(ω) − 1 is indeed satisfied.
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A. PROOF OF THEOREM 3.1

Now let us consider the case when Z(ω) = 1. This means that an evolution step

of the string ω looks like this:

11...1︸ ︷︷ ︸
L(ω)

0
M1(ω)

| 1...
S−→ 11...1︸ ︷︷ ︸

L(ω)+1

0
M1(Sω)

| 1...,

because the positions different from M1(ω) where the height function has maximum,

also decreases by the evolution step, so M1(Sω) cannot be in any other position,

and this also means that once M1 reaches the edge (so when its positioned after the

first 0 in the string so when M1 = L + 1), it stays there and L increases by one at

each step since in every step one 1 from the right of M1 moves to the other side, so

becomes one of the 1’s from the beginning, so part of L.

So we have seen that in case of Z(ω) = 1, M1(ω) = L(ω) + 1, and L(Sω) =

L(ω) + 1, therefore M1(Sω) = M1(ω) + 1 is indeed satisfied, and with that we

proved the behaviour of the random variables M1, N and Z during an evolution

step and throughout the evolution,so now we are done with the proof of Proposition

4.26 which says: Tn(ω) = Z(ω) + N(ω) − 1.

Lemma 4.31. In the case r > 1
2 :

Tn − rn√
n

⇒ N (0, r(1 − r))

Proof. We can express Z and N with the aforementioned random walk associated

with ω, Sk =
k∑

i=1
(1 − 2ωi), where Xi = 1 − 2ωi are independent and identically

distributed (iid) random variables for i = 1,....,n with distribution P(Xi = −1) =

r > 1
2 and P(Xi = 1) = 1 − r < 1

2 .

SM1 = 2Z − M1, so Z = SM1 + M1

2

And similarly

Sn − SM1 = n − M1 − 2N , so N = n − M1 − Sn + SM1

2
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A. PROOF OF THEOREM 3.1

Therefore we get the following formula for the stabilization time of ω:

Z + N − 1 = 1
2(n − Sn) + SM1 − 1

Sn is the sum of iid random variables with mean 1 − 2r and variance 4r(1 − r), or

more precisely: E[Xi] = r ·(−1)+(1−r)·1 = 1−2r and V ar(Xi) = E[X2
i ]−E[Xi]2 =

1 − (1 − 2r)2 = 4r(1 − r).

So by the central limit theorem, we can estimate Sn with normal distribution:

Sn = (1 − 2r)n + 2
√

r(1 − r)
√

nηn ,where ηn
d−→ N (0,1)

So
n − Sn

2 = rn +
√

r(1 − r)
√

nηn

Hence,
Tn − rn√

n
=

Z + N − 1 − rn√
n

=
1
2(n − Sn) − rn√

n
+ SM1 − 1√

n

And by the above mentioned equality, we can easily see that:

1
2(n − Sn) − rn√

n
⇒ N (0, r(1 − r))

so we only need to check that
SM1 − 1√

n
P−→ 0

is indeed the case, and then we are done with the proof of the lemma.

Let us consider SM1 + L, which is like we have shifted the height function with

L, thus we get the maximum value of the height function related to the substring

ω̃ ∈ {0,1}n−L−R, which starts with a 0 deterministically by definition of L and ω̃,

so we need to subtract one in order to get to the weighted random walk Sk with a
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A. PROOF OF THEOREM 3.1

negative drift, where it takes one step upwards with probability 1 − r < 1
2 and one

step downwards with probability r > 1
2 .

Therefore SM1 + L − 1 d= max
1≤k≤n

{Sk} for any n-length string, and we can overesti-

mate this maximum for any n with the maximum over the whole trajectory, which

has a geometric distribution with parameter a = 1− 1−
√

1−4r(1−r)
2r

< 1, so we can say

that max
1≤k≤n

{Sk} is stochastically dominated by max
1≤k<∞

{Sk} for any n ∈ N, or more

precisely:

max
1≤k≤n

{Sk} ⪯ max
1≤k<∞

{Sk},

and since stochastic dominance is the property of distributions:

SM1 + L − 1 ⪯ Geo(1 − a)

It is easy to see that

L ∼ Geo(1 − r),

so the following is also true:

SM1 − 1 ⪯ SM1 + L − 1 ⪯ Geo(1 − a)

Geo(1 − a) is almost surely finite, therefore, by the Markov’s inequality, we get

that:
Geo(1 − a)√

n
−→ 0,

so by the stochastic dominance

SM1 − 1√
n

−→ 0

as well, and that is exactly what we wanted.

The parameter a comes from one step reasoning method, where

a = P(∃k : Sk = 1|S0 = 0)
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so the probability that we ever reach one from zero during the random walk, which

we can achieve in one step if the first step is up (which happens with probability

1 − r ) or move one step further away from it in the first step if it is a step down

(with probability r), so from

a = (1 − r) + ra2

we can get the aforementioned a = 1 − 1−
√

1−4r(1−r)
2r

< 1.

Lemma 4.32. If r = 1
2 :

T −
n

1
2n√
n

⇒ χ3

2

Lemma 4.33. χ3
2

d= A1 − 1
2B1, where Bt is a Brownian motion, t ∈ [0,1] and

At = max
s≤t

Bs

Proof. We know the probability density function of χ3
2 :

d
χ3

2 = 8
√

2√
π

x2exp(−2x2)dx for x > 0

In order to prove that they are identically distributed, it is enough to check the

density function of A1 − 1
2B1, and for that, first let us consider the joint distribution

function of A1 and B1.

By the reflection principle, we know that:

P(A1 > a) = 2P(B1 > a) = 2(1 − Φ(a))

So the joint density function is the following:
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F (a,b) = P(A1 ≤ a, B1 ≤ b) (84)

= P(B1 ≤ b) − P(A1 ≥ a, B1 ≤ b) (85)

= Φ(b) − (1 − Φ(2a − b)) (86)

We can get the joint density function by deriving the joint distribution function:

f(a,b) = ∂2F (a,b)
∂a∂b

(87)

= ∂

∂b
ϕ(2a − b) · 2 (88)

=
√

2
π

(2a − b)e− 1
2 (2a−b)2 (89)

This is true for b > a, b > 0, and 0 otherwise.

Now we are only one last step from the density function of A1− 1
2B1, ρ : R 7→ [0,1],

which comes from an elementary convolution of the two random variables:

ρ(x) =
∫ 2x

−2x
f(y

2 + x,y)dy (90)

=
√

2
π

∫ 2x

−2x
((y + 2x) − y) exp

(
−((y + 2x) − y)2

2

)
dy (91)

= 8
√

2
π

x2 exp(−2x2) (92)

So we have seen that χ3
2

d= A1 − 1
2B1 is indeed the case.

Therefore it is enough to prove the following proposition and we are done with

the proof of the 4.32.

Proposition 4.34.
Tn − 1

2n√
n

⇒ A1 − 1
2B1
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Proof. Similarly to the previous proof:

T − n
2√

n
=

Z + N − 1 − n
2√

n
(93)

=
SM1 − 1

2Sn − 1√
n

(94)

=
SM1 + L − L − 1

2Sn − 1√
n

(95)

= SM1 + L − 1√
n

− L√
n

−
1
2Sn√

n
(96)

We have seen before, that L√
n

P−→ 0, and for the rest we can apply the Donsker’s

theorem (also known as functional central limit theorem), which states that an

appropriately centered and scaled version of the empirical distribution function con-

verges weakly to a Gaussian process, so in our case this means the following:

If we consider the aforementioned random walk as a piecewise linear function

under the correct scaling, it converges to a Brownian motion. More precisely, Ln :

[0, 1] 7→ R by Ln(t) =
√

1
n

(∑⌊nt⌋
k=1 Xk +

(
t − ⌊nt⌋

n

)
X⌊nt⌋+1

)
, which means that we

have rescaled the random walk, where P(Xk = 1) = P(Xk = −1) = 1
2 and in some

sense made it continuous.

Therefore by Donsker’s theroem, Ln(t) ⇒ B(t), for any t ∈ C[0,1] as n −→ ∞.

Since Ln

(
k
n

)
= 1√

n

∑k
i=1 Xi = 1√

n
Sk, by applying the following function on Ln:

h(f(t)) = sup
t∈[0,1]

f(t) − 1
2f(1) for any t ∈ [0,1], which is continuous on C[0,1] with the

sup norm, thus it respects weak limit( so it does not ruin it), we get exactly what we

wanted, namely: SM1 +L−1− 1
2 Sn√

n
= h(Ln(t)) ⇒ h(B(t) = A1 − 1

2B1 for any t ∈ [0,1] as

n goes to ∞, because SM1 +L−1 has the same distribution as the simple maximum

of the random walk, only shifted.

Now we are done with the whole proof of the Theorem 3.1.
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