Exam topics for Stochastic processes

2022/23 autumn semester

1 Theoretical questions

- 1. Definition of Markov chains, Markov property, gambler's ruin, Ehrenfest chain
- 2. Stationary distribution, method to compute, explicitly for two states, multistep transition probabilities, $\lim_{n\to\infty} P^n$
- 3. Classification of states, irreducibility, period, recurrence, transience, convergence theorems (without proofs)
- 4. Irreducible and primitive matrices, Perron–Frobenius theorem and its application to Markov chains, convergence for periodic Markov chains
- 5. Inventory chain, long-term profit, Wright–Fisher model without and with mutations, simple random walk on graphs, knight on the chessboard
- 6. Mean first passage time matrix (one step argument), stationary distribution of the Ehrenfest chain (generating functions)
- 7. Detailed balance, reversible Markov chains, simple random walk on graphs, time reversal, stationary distribution in birth and death chains
- 8. Exit distribution by one step reasoning, two year collage, Wright-Fisher model, gambler's ruin (fair and unfair), transience of unfair gambler's ruin
- 9. Mean exit time with one step argument, two year collage, tennis, gambler's ruin (fair and unfair), fundamental matrix
- 10. Generating functions of random variables, branching processes, probability of extinction
- 11. Strong Markov property, return times, recurrent and transient states, expected number of visits, simple random walk on $\mathbb Z$
- 12. Poisson process, interarrival times, distribution of points conditionally given their number in an interval, thinning, superposition, Poisson race
- 13. Barbershop example, continuous time Markov chains, infinitesimal generator, Kolmogorov's forward and backward equations
- 14. Stationary distribution of continuous time Markov chains, irreducibility and convergence, detailed balance
- 15. Construction of finite state Markov chains with routing matrix, birth and death chains with stationary distribution
- 16. M/M/s queueing, stationary distribution for $M/M/\infty$, branching processes, explosion in finite time, Kolmogorov's three series theorem
- 17. Exit distribution and expected time of exit, when can the kindergarden teacher go home, M/M/1 queue with finite waiting room
- 18. Conditional expectation, definition, existence, properties
- 19. Martingales, definition, examples, variance formula for martingales in L^2
- 20. Betting strategies, profit process, stopping times, stopped (sub/super)martingale
- 21. Optional stopping theorem and its application to gambler's ruin
- 22. Convergence theorem for martingales, Pólya's urn
- 23. Wald's equality, Hoeffding's inequality
- 24. Multivariate normal distribution and its linear transformations
- 25. Brownian motion, definition, construction and properties

2 Exercises

- 1. 1.1
- 2. 1.3
- 3. 1.6
- 4. 1.7
- 5. 1.8
- 6. 1.9 b)
- 7. 1.11 c)
- 8. 1.13
- 9. 1.14
- 10. 1.15
- 11. 1.21
- 12. 1.26
- 13. 1.31
- $14. \ 1.36$
- 15. 1.37
- 16. 1.43
- 17. 1.46
- 18. 1.48
- 19. 1.51
- 20. 1.63
- $21. \ 1.65$
- 22. 1.67
- 23. 1.68
- 24. 1.70
- 25. 1.72
- 26. 1.73
- $27. \ 1.74$
- 28. 1.77 (4.A)
- 29. 4.B
- 30. 4.C
- 31. 4.D
- 32. 4.E
- 33. 4.F
- 34. 2.1
- 35. 2.5
- 36. 2.6
- $37. \ 2.10$
- 38. 2.16
- 39. 2.17
- 40. 2.22 $41. \ 2.27$
- $42.\ 2.29$
- 43. 2.30
- $44. \ 2.31$
- 45. 2.32
- 46. 2.33
- 47. 2.43
- 48. 2.46 49. 2.60
- 50. 4.2
- 51. 4.3
- 52. 4.8
- 53. 4.10
- 54. 4.12 (class)
- 55. 4.14

- 56. 4.19
- $57. \ 4.22$
- 58. 8.A
- 59. 8.B
- 60. 8.C
- 61. 8.D
- 62. 8.E
- 63. 8.F
- $64.\ 5.2$
- 65. 5.3
- 66. 5.6
- 67. 5.7
- 68. 5.8
- $69.\ 5.9$
- 70.5.10
- 71. 5.11 (class)
- 72. 10.A
- 73. 10.B
- 74. 10.C
- 75. 10.D
- 76. 10.E
- 77. 10.F
- 78. 10.G