Boundedness of the objective function Combinatorial Optimization - Group K
 Class 14
 Spring 2023

Let A be an $m \times n$ matrix, b a column vector of dimension m and c a row vector of dimension n. Even if the solvability of $A x \leq b$ is already known, to make the linear programming problem $\max \{c x: A x \leq b\}$ sensible, we still need to ensure that the objective function $c x$ is bounded from above on the set of solutions of $A x \leq b$. The following theorem gives necessary and sufficient conditions on this question.

Theorem („Three-Cage Theorem"). Assume that $A x \leq b$ is solvable. Then the following statements are equivalent:
(1) $c x$ is bounded from above on $\{x: A x \leq b\}$;
(2) the system $y A=c, y \geq 0$ is solvable;
(3) the system $A z \leq 0, c z>0$ is not solvable.

Proof. We first show that (1) implies (3). Let x_{0} be a solution of $A x \leq b$ and suppose by way of contradiction that there exists a solution z of $A z \leq 0, c z>0$. Then for all $\lambda \geq 0$ the vector $x_{\lambda}=x_{0}+\lambda z$ is a solution of $A x \leq b$ since

$$
A x_{\lambda}=A\left(x_{0}+\lambda z\right)=A x_{0}+\lambda(A z) \leq A x_{0}+0 \leq b
$$

On the other hand, $c x_{\lambda}=c\left(x_{0}+\lambda z\right)=c x_{0}+\lambda(c z)$ which implies by $c z>0$ that $c x_{\lambda}$ can be made arbitrarily large by a suitable choice of λ. This contradicts (1).

The equivalence of (2) and (3) is an easy corollary of the second form of the Farkas-lemma: apply it on A^{T} (the transpose of A) and in case of (3) take the negative of a solution.

Finally, we show that (2) implies (1). Let y be a solution of $y A=c, y \geq 0$ and let x be an arbitrary solution of $A x \leq b$. Then

$$
c x=(y A) x=y(A x) \leq y b
$$

(where the last inequality follows from $A x \leq b$ and $y \geq 0$). Hence $y b$ is an upper bound on the value of $c x$ on the set of solutions of $A x \leq b$, so (1) holds.

We have shown the implications $(1) \Longrightarrow(3) \Longrightarrow(2) \Longrightarrow$ (1) which concludes the proof.

