Boundedness of the objective function COMBINATORIAL OPTIMIZATION – GROUP K Class 14 Spring 2023

Let A be an $m \times n$ matrix, b a column vector of dimension m and c a row vector of dimension n. Even if the solvability of $Ax \leq b$ is already known, to make the linear programming problem max $\{cx: Ax \leq b\}$ sensible, we still need to ensure that the objective function cx is bounded from above on the set of solutions of $Ax \leq b$. The following theorem gives necessary and sufficient conditions on this question.

Theorem ("Three-Cage Theorem"). Assume that $Ax \leq b$ is solvable. Then the following statements are equivalent:

- (1) cx is bounded from above on $\{x: Ax \leq b\}$;
- (2) the system $yA = c, y \ge 0$ is solvable;
- (3) the system $Az \leq 0$, cz > 0 is not solvable.

Proof. We first show that (1) implies (3). Let x_0 be a solution of $Ax \leq b$ and suppose by way of contradiction that there exists a solution z of $Az \leq 0$, cz > 0. Then for all $\lambda \geq 0$ the vector $x_{\lambda} = x_0 + \lambda z$ is a solution of $Ax \leq b$ since

$$Ax_{\lambda} = A(x_0 + \lambda z) = Ax_0 + \lambda(Az) \le Ax_0 + 0 \le b.$$

On the other hand, $cx_{\lambda} = c(x_0 + \lambda z) = cx_0 + \lambda(cz)$ which implies by cz > 0 that cx_{λ} can be made arbitrarily large by a suitable choice of λ . This contradicts (1).

The equivalence of (2) and (3) is an easy corollary of the second form of the Farkas-lemma: apply it on A^T (the transpose of A) and in case of (3) take the negative of a solution.

Finally, we show that (2) implies (1). Let y be a solution of yA = c, $y \ge 0$ and let x be an arbitrary solution of $Ax \le b$. Then

$$cx = (yA)x = y(Ax) \le yb$$

(where the last inequality follows from $Ax \leq b$ and $y \geq 0$). Hence yb is an upper bound on the value of cx on the set of solutions of $Ax \leq b$, so (1) holds.

We have shown the implications $(1) \Longrightarrow (3) \Longrightarrow (2) \Longrightarrow (1)$ which concludes the proof.