The duality theorem - Form 2
 Combinatorial Optimization - Group K
 Class 16
 Spring 2023

1. (a) Find the dual of the following linear program.
(b) Determine the maximum value of the primal program. (Hint: use the chicken feed problem of Class 5, Problem 4.)

$$
\begin{aligned}
& \max \left\{20 x_{1}+20 x_{2}+12 x_{3}\right\} \\
& \text { subject to } \\
& 10 x_{1}+5 x_{2}+2 x_{3} \leq 1.1 \\
& 4 x_{1}+5 x_{2}+6 x_{3} \leq 1 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{aligned}
$$

2. Determine the minimum value of the following linear program (without using a computer).

$$
\begin{aligned}
& \min \left\{40 x_{1}+22 x_{2}+23 x_{3}+50 x_{4}\right\} \\
& \text { subject to } \\
& x_{1}+x_{2}+2 x_{3}+5 x_{4}=3 \\
& 4 x_{1}+2 x_{2}+x_{3}+x_{4}=1 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0
\end{aligned}
$$

3. Find an optimal solution both for the following linear program (with n variables) and for its dual.

$$
\begin{array}{ll}
\max \left\{n x_{1}+(n-1)\right. & \left.x_{2}+\ldots+2 x_{n-1}+x_{n}\right\} \\
\text { subject to } & \\
x_{1} & \leq 1 \\
x_{1}+x_{2} & \leq 2 \\
x_{1}+x_{2}+x_{3} & \leq 3 \\
& \vdots \\
x_{1}+x_{2}+x_{3}+x_{n} & \leq n \\
x_{1}, x_{2}, \ldots, x_{n} & \geq 0
\end{array}
$$

4. The following linear program got severely injured in an unfortunate accident.

The \square 's represent all the data that was lost in the unfortunate accident. However, we know that $x_{1}=1, x_{2}=1, x_{3}=1$ is an optimal solution of this program. Determine the maximum value of the program.
5. Find the dual of the following linear program and try to reduce them to as simple a form as possible.

$$
\begin{aligned}
& \min \left\{10 x_{1}+11 x_{2}+12 x_{3}\right\} \\
& \text { subject to } \\
& x_{1}+2 x_{2}+3 x_{3} \leq 15 \\
& 4 x_{1}+5 x_{2}+6 x_{3} \geq 20 \\
& 7 x_{1}+8 x_{2}+9 x_{3}=35 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{aligned}
$$

6. Reduce the duals of the following primal problems to the simplest form.
(a) $\min \{y b: y A \geq c, y \geq 0\}$
(b) $\max \{c x: A x=b, x \geq 0\}$
(c) $\min \{y b: y A=c, y \geq 0\}$
7. Let A be an $m \times n$ matrix whose first column is b. Furthermore, denote by c the row vector of dimension n whose entries are all 1's. Assume that the objective function $c x$ is bounded from above on the set of solutions of the system of linear inequalities $A x \leq b$. Find the maximum value of $\max \{c x: A x \leq b\}$.
8. Assume that the system of linear inequalities $A x \leq b$ is solvable and $c x$ is bounded from above on its set of solutions. Let $M=\max \{c x: A x \leq b\}$. A few weeks ago (Class 9, Problem 4), we saw that $b>0$ does not imply $M>0$: if $c=0$ then, no matter what b is, $M=0$ is obvious. However, the question was left open if this was the only counterexample. So answer the question now: does $b>0$ and $c \neq 0$ imply $M>0$?
