The duality theorem - Form 2
 Combinatorial Optimization - Group K
 Class 16
 Spring 2023

The duality theorem for linear programs with nonnegative variables

As before, let A be an $m \times n$ matrix, b a column vector of dimension m and c a row vector of dimension n.
In applications of linear programming, nonnegativity of the variables is very often assumed. That is, linear programs of the form

$$
\begin{equation*}
\max \{c x: A x \leq b, x \geq 0\} \tag{i}
\end{equation*}
$$

frequently occur. Obviously, this is equivalent to $\max \left\{c x: A^{\prime} x \leq b^{\prime}\right\}$, where

$$
A^{\prime}=\left(\frac{A}{-I}\right), \quad b^{\prime}=\left(\frac{b}{0}\right) .
$$

By definition, the dual of this problem is

$$
\begin{equation*}
\min \left\{y^{\prime} b^{\prime}: y^{\prime} A^{\prime}=c, y^{\prime} \geq 0\right\} \tag{ii}
\end{equation*}
$$

It is useful to break up y^{\prime} into two parts: $y^{\prime}=\left(y \mid y_{1}\right)$, where y is m-dimensional and y_{1} is n-dimensional. Then (ii) can be expressed in terms of y and y_{1} as follows: $\min \left\{y b: y A-y_{1}=c, y \geq 0, y_{1} \geq 0\right\}$. It is easy to see that the role of y_{1} in this program is only to ensure that the system of inequalities $y A \geq c$ holds. (Indeed, c is obtained from $y A$ by subtracting the nonnegative vector y_{1}.) Therefore (ii) can be rewritten in the following simplified form:

$$
\begin{equation*}
\min \{y b: y A \geq c, y \geq 0\} \tag{iii}
\end{equation*}
$$

This simplified form is equivalent to (ii) in the sense that the value of the minimum is the same, an optimal solution y^{\prime} of (ii) can be transformed into an optimal solution y of (iii) by deleting its last n elements and vice versa, an optimal solution y of (iii) can be transformed into an optimal solution y^{\prime} of (ii) by setting $y_{1}=y A-c$ and $y^{\prime}=\left(y \mid y_{1}\right)$. Therefore if the primal is of the form (i), then the dual is always expressed in the form ($i i i$). Obviously, the duality theorem is also valid for the primal-dual pair (i) and (iii) as this is simply a special case of the general theorem. In more detail, we obtained the following.

Theorem (Duality Theorem of Linear Programming - Form 2).
Assume that a primal program $\max \{c x: A x \leq b, x \geq 0\}$ is given such that $A x \leq b, x \geq 0$ is solvable and $\{c x: A x \leq b, x \geq 0\}$ is bounded from above. Then the following are true:
(1) the dual system $y A \geq c, y \geq 0$ is also solvable;
(2) the objective function of the dual program is bounded from below on its set of solutions;
(3) the primal program attains its maximum and the dual attains its minimum;
(4) $\max \{c x: A x \leq b, x \geq 0\}=\min \{y b: y A \geq c, y \geq 0\}$.

