Complementary Slackness COMBINATORIAL OPTIMIZATION – GROUP K Class 17 Spring 2023

As before, let A be an $m \times n$ matrix, b a column vector of dimension m and c a row vector of dimension n, and assume that the primal program max $\{cx: Ax \leq b\}$ is given such that $Ax \leq b$ is solvable and cx is bounded from above on its set of solutions.

The notion of the dual linear program arose from the observation that if x is a solution of the primal and y is a solution of the dual, then $cx \leq yb$. The extra information that the duality theorem added to this is that, provided that the conditions of the duality theorem hold, there is a pair of solutions x^* and y^* for which $cx^* = y^*b$ holds (and hence the maximum of the primal equals the minimum of the dual). It is worth comparing this with the calculation that yielded the inequality $cx \leq yb$:

$$cx = (yA)x = y(Ax) \le yb$$

How can it happen that this inequality is fulfilled with equality by x^* and y^* ? Obviously, $cx^* = y^*b$ holds if and only if $y^*(Ax^*) = y^*b$; this, in return, is equivalent to saying that for every *i* either the *i*-th element of the column vector Ax^* is equal to the *i*-th element of *b* or the *i*-th element of y^* is zero or both. This observation, as simple as it is, turns out to be very useful in many applications, so it is worth formulating as a theorem.

Theorem (Complementary slackness). Assume that a primal program $\max\{cx: Ax \leq b\}$ is given such that $Ax \leq b$ is solvable and cx is bounded from above on its set of solutions. Assume further that x^* is a solution of the primal program and y^* is a solution of the dual program $\min\{yb: yA = c, y \geq 0\}$. Then x^* and y^* are optimal solutions of the respective programs if and only if

$$\forall 1 \le i \le m : \quad y^*(i) = 0 \quad or \quad a^i x^* = b(i) \quad (or \ both),$$

where $y^*(i)$ and b(i) denote the *i*-th elements of the corresponding vectors and a^i denotes the *i*-th row of the matrix A.