Complementary Slackness

Combinatorial Optimization - Group K
Class 17
Spring 2023

As before, let A be an $m \times n$ matrix, b a column vector of dimension m and c a row vector of dimension n, and assume that the primal program $\max \{c x: A x \leq b\}$ is given such that $A x \leq b$ is solvable and $c x$ is bounded from above on its set of solutions.
The notion of the dual linear program arose from the observation that if x is a solution of the primal and y is a solution of the dual, then $c x \leq y b$. The extra information that the duality theorem added to this is that, provided that the conditions of the duality theorem hold, there is a pair of solutions x^{*} and y^{*} for which $c x^{*}=y^{*} b$ holds (and hence the maximum of the primal equals the minimum of the dual). It is worth comparing this with the calculation that yielded the inequality $c x \leq y b$:

$$
c x=(y A) x=y(A x) \leq y b .
$$

How can it happen that this inequality is fulfilled with equality by x^{*} and y^{*} ? Obviously, $c x^{*}=y^{*} b$ holds if and only if $y^{*}\left(A x^{*}\right)=y^{*} b$; this, in return, is equivalent to saying that for every i either the i-th element of the column vector $A x^{*}$ is equal to the i-th element of b or the i-th element of y^{*} is zero or both. This observation, as simple as it is, turns out to be very useful in many applications, so it is worth formulating as a theorem.

Theorem (Complementary slackness). Assume that a primal program max $\{c x: A x \leq b\}$ is given such that $A x \leq b$ is solvable and $c x$ is bounded from above on its set of solutions. Assume further that x^{*} is a solution of the primal program and y^{*} is a solution of the dual program $\min \{y b: y A=c, y \geq 0\}$. Then x^{*} and y^{*} are optimal solutions of the respective programs if and only if

$$
\forall 1 \leq i \leq m: \quad y^{*}(i)=0 \quad \text { or } \quad a^{i} x^{*}=b(i) \quad \text { (or both) },
$$

where $y^{*}(i)$ and $b(i)$ denote the i-th elements of the corresponding vectors and a^{i} denotes the i-th row of the matrix A.

