Complementary Slackness – Form 2 COMBINATORIAL OPTIMIZATION – GROUP K Class 18 Spring 2023

As before, let A be an $m \times n$ matrix, b a column vector of dimension m and c a row vector of dimension n, and assume that the primal program $\max\{cx: Ax \leq b, x \geq 0\}$ is given such that $Ax \leq b, x \geq 0$ is solvable and cx is bounded from above on its set of solutions.

If x is a solution of the primal and y is a solution of the dual, then

$$cx = (yA)x = y(Ax) \le yb.$$

By the duality theorem, there is a pair of solutions x^* and y^* for which $cx^* = y^*b$ holds. Hence $cx^* = y^*b$ for a pair of solutions x^* and y^* amounts to saying that $cx^* = (y^*A)x^*$ and $y^*(Ax^*) = y^*b$. The following theorem is nothing but an expansion on this.

Theorem (Complementary slackness – Form 2). Assume that a primal program max $\{cx: Ax \leq b, x \geq 0\}$ is given such that $Ax \leq b, x \geq 0$ is solvable and cx is bounded from above on its set of solutions. Assume further that x^* is a solution of the primal program and y^* is a solution of the dual program min $\{yb: yA \geq c, y \geq 0\}$. Then x^* and y^* are optimal solutions of the respective programs if and only if

$$\forall 1 \le i \le m : \quad y^*(i) = 0 \quad or \quad a^i x^* = b(i) \quad (or \ both),$$

and

$$\forall 1 \le j \le n : \quad x^*(j) = 0 \quad or \quad y^*a_j = c(j) \quad (or \ both),$$

where a^i denotes the *i*-th row and a_j denotes the *j*-th column of A.