# Complementary Slackness - Form 2 

Combinatorial Optimization - Group K

## Class 18

Spring 2023

As before, let $A$ be an $m \times n$ matrix, $b$ a column vector of dimension $m$ and $c$ a row vector of dimension $n$, and assume that the primal program $\max \{c x: A x \leq b, x \geq 0\}$ is given such that $A x \leq b, x \geq 0$ is solvable and $c x$ is bounded from above on its set of solutions.
If $x$ is a solution of the primal and $y$ is a solution of the dual, then

$$
c x=(y A) x=y(A x) \leq y b .
$$

By the duality theorem, there is a pair of solutions $x^{*}$ and $y^{*}$ for which $c x^{*}=y^{*} b$ holds. Hence $c x^{*}=y^{*} b$ for a pair of solutions $x^{*}$ and $y^{*}$ amounts to saying that $c x^{*}=\left(y^{*} A\right) x^{*}$ and $y^{*}\left(A x^{*}\right)=y^{*} b$. The following theorem is nothing but an expansion on this.

Theorem (Complementary slackness - Form 2). Assume that a primal program max $\{c x: A x \leq b, x \geq 0\}$ is given such that $A x \leq b, x \geq 0$ is solvable and $c x$ is bounded from above on its set of solutions. Assume further that $x^{*}$ is a solution of the primal program and $y^{*}$ is a solution of the dual program $\min \{y b: y A \geq c, y \geq 0\}$. Then $x^{*}$ and $y^{*}$ are optimal solutions of the respective programs if and only if

$$
\forall 1 \leq i \leq m: \quad y^{*}(i)=0 \quad \text { or } \quad a^{i} x^{*}=b(i) \quad \text { (or both) },
$$

and

$$
\forall 1 \leq j \leq n: \quad x^{*}(j)=0 \quad \text { or } \quad y^{*} a_{j}=c(j) \quad(\text { or both }),
$$

where $a^{i}$ denotes the $i$-th row and $a_{j}$ denotes the $j$-th column of $A$.

