
Network flows revisited
Combinatorial Optimization – Group K

Class 22
Spring 2023

The maximum flow problem

Previously, we defined the maximum network flow problem: given a directed graph G, source and target
nodes s, t ∈ V (G) and a capacity function c : E → R+, we look for an assignment f : E → R+ of flow
values to the arcs such that capacity constraints hold for each arc e, flow preservation constraints hold for
each v ∈ V (G) \ {s, t} and the overall flow value mf is maximized.

Reconsidering the above problem in light of linear programming, it is straightforward that each ma-
ximum flow problem is nothing but a linear program: a variable x(e) = f(e) is assigned to each arc
e, capacity and flow preservation constraints impose linear inequalities and equations on the variables,
respectively, and a linear objective function (a signed sum of certain variables) is to be maximized. In
more detail, assuming that all input data (that is, G, s, t, and c) are given, the maximum flow problem
can be described by the following LP problem.

max:
∑{

x(e) : e leaves s
}
−
∑{

x(e) : e enters s
}

subject to

(1) ∀v ∈ V (G) \ {s, t} :
∑{

x(e) : e leaves v
}
−
∑{

x(e) : e enters v
}

= 0

(2) ∀e ∈ E(G) : x(e) ≤ c(e)

(3) ∀e ∈ E(G) : x(e) ≥ 0

Consequently, each maximum flow problem could also be solved by any LP solver. Although the
augmenting path algorithm provides an even more efficient approach, viewing network flow problems as
linear programs is not in vain: this way we can handle more complex types of network flow problems not
solvable by (the previously seen version of) the augmenting path algorithm.

We mention that viewing the maximum flow problem as a linear programming problem also offers the
possibility of proving the Ford–Fulkerson theorem by applying the duality theorem on it. This is indeed
doable, but we omit the details here due to lack of space and time.

Incidence matrix

Although we skip the details of applying the duality theorem on the maximum flow problem, it is still
worth taking just the very first step towards this direction: considering the matrix form of the above LP
problem, since this will be relied on later.

To this end, let V (G) = {v1, v2, . . . , vn−2, vn−1 = s, vn = t} and E(G) = {e1, e2, . . . , em}. Then we can
collect all variables in the column vector x such that xj = x(ej) holds for all 1 ≤ j ≤ m. The constraints
0 ≤ x(e) ≤ c(e) are obviously very simple ones, the corresponding rows of the coefficient matrix only
contain a single non-zero entry (a 1 or a −1). Consequently, it is the system of linear equations marked as
(1) above that yields the more complex part of the coefficient matrix. Since every equation here obviously
contributes two rows to the matrix form which are negatives of each other, let us consider the system
obtained from (1) with = signs replaced by ≤. Then every vertex from v1 to vn−2 contributes a row to the
coefficient matrix; furthermore, the coefficient of every variable is 1 or −1 or 0 in every inequality. In more
detail, in the row corresponding to the vertex vi, the coefficient corresponding to the variable xj = x(ej)
is 1 if ej leaves vi; the coefficient is −1 if ej enters vi; and it is 0 if ej is not incident to vi. This gives rise
to the following definition.



Definition. Assume that G is a loopless directed graph with vertex set V (G) = {v1, v2, . . . , vn} and arc
set E(G) = {e1, e2, . . . , em}. The incidence matrix B(G) of G is an n × m matrix such that for every
1 ≤ i ≤ n and 1 ≤ j ≤ m

[
B(G)

]
i,j

=


1 if ej leaves vi;

−1 if ej enters vi;
0 if ej is not incident to vi.

The minimum cost flow problem

If we think of the network given by G, s, t ∈ V (G) and c : E → R+ as a road network, it is a natural
assumption that carrying a unit of flow along an arc e has a fixed nonnegative cost k(e). (Think of fuel
costs, highway toll, wage of the driver, etc.) It is also a natural assumption that there is a required amount
of flow M to be carried from s to t (where M is also part of the input). Then it is just sensible to look for
a flow f of value mf at least M with minimum total cost

∑
e∈E(G) k(e)f(e). This problem, the minimum

cost flow problem, comes up in many real-life applications.
It is an obvious observation that the minimum cost flow problem is again nothing but a linear program-

ming problem. In particular, the LP formulation of the maximum flow problem we gave above can easily
be modified to correspond to the minimum cost flow problem.

min:
∑

e∈E(G) k(e)x(e)

subject to

(1) ∀v ∈ V (G) \ {s, t} :
∑{

x(e) : e leaves v
}
−
∑{

x(e) : e enters v
}

= 0

(2)
∑{

x(e) : e leaves s
}
−
∑{

x(e) : e enters s
}

≥ M

(3) ∀e ∈ E(G) : x(e) ≤ c(e)

(4) ∀e ∈ E(G) : x(e) ≥ 0

Since the minimum cost flow problem is a special linear programming problem, it can be solved effici-
ently with any LP solver. However, similarly to the case of the maximum flow problem, there also exist
even more efficient algorithms for the minimum cost flow problem that do not rely on linear programming.

The multicommodity flow problem

In many practical applications of network flows, the same network is used for carrying not just one, but
many different commodities. Each type of commodity has its own respective source node and target node,
however, all commodities contribute jointly to the load of each arc.

For a precise formulation of the k-commodity flow problem, assume that a directed graph G is given
together with k pairs of vertices (s1, t1), (s2, t2), . . . , (sk, tk) and a capacity function c : E → R+. A solution
of the problem consists of assigning k flow values x1(e), x2(e), . . . , xk(e) to each arc e such that flow preser-
vation constraints

∑{
xi(e) : e leaves v

}
=

∑{
xi(e) : e enters v

}
hold for each 1 ≤ i ≤ k and v ∈ V (G) \

{si, ti}. As to the objective function, many equivalent formulations exist – let’s accept that the sum of the
values of the k flows

∑k
i=1 mxi

is maximized, where mxi
=

∑{
xi(e) : e leaves si

}
−
∑{

xi(e) : e enters si
}
.

All in all, the LP formulation of the multicommodity flow problem is the following.

max:
k∑

i=1

(∑{
xi(e) : e leaves si

}
−
∑{

xi(e) : e enters si
})

subject to

(1) ∀i ∈ {1, 2, . . . , k}, ∀v ∈ V (G) \ {s, t} :
∑{

x(e) : e leaves v
}
−
∑{

x(e) : e enters v
}

= 0

(2) ∀e ∈ E(G) : x1(e) + x2(e) + . . .+ xk(e) ≤ c(e)

(3) ∀i ∈ {1, 2, . . . , k}, ∀e ∈ E(G) : x(e) ≥ 0



Being a linear programming problem, the multicommodity flow problem is again solvable efficiently
(even in polynomial time). However, as opposed to the previously mentioned flow problems, no algorithm
is known for the k-commodity flow problem that avoids linear programming if k ≥ 2. On the other hand,
there exist algorithms within LP theory that exploit the specialities of the multicommodity flow problem
and provide better running times than general LP solvers.


