The Maximum Weight Bipartite Matching Problem COMBINATORIAL OPTIMIZATION – GROUP K Class 23 Spring 2023

1. Let $A = \{a_1, a_2, a_3, a_4\}$, $B = \{b_1, b_2, b_3, b_4, b_5\}$ and assume that for every $1 \le i \le 4$ and $1 \le j \le 5$, the vertex a_i is adjacent to b_j in the bipartite graph G = (A, B; E). Furthermore, let the weight of the edge $\{a_i, b_j\}$ be the entry in the intersection of the *i*-th row and the *j*-th column of the matrix on the left below for every *i* and *j*.

4	5	5	7	3	/
3	5	3	6	3	
2	6	6	6	4	
$\sqrt{3}$	5	5	7	3	Ϊ

- (a) For what values of the parameter p is it true that the mapping c shown in the table below is a labeling?
- (b) Does there exist a value of p for which the mapping c is of minimum sum among all non-negative valued labelings of G?
- (c) Does there exist a value of p for which the mapping c is of minimum sum among all arbitrary (real) valued labelings of G?

v	:	a_1	a_2	a_3	a_4	b_1	b_2	b_3	b_4	b_5
c(v)	:	4	3	4	p	0	2	2	3	0

2. Let $A = \{a_1, a_2, a_3, a_4\}$, $B = \{b_1, b_2, b_3, b_4\}$ and assume that for every $1 \le i, j \le 4$ the vertex a_i is adjacent to b_j in the bipartite graph G = (A, B; E). Furthermore, let the weight of the edge $\{a_i, b_j\}$ be the entry in the intersection of the *i*-th row and the *j*-th column of the matrix on the right for every $1 \le i, j \le 4$.

(a) Is it true that the values given in the following table form a labeling?

a_1	a_2	a_3	a_4	b_1	b_2	b_3	b_4
2	0	0	-1	5	3	3	0

- (b) Prove that the edges corresponding to the main diagonal (that is $\{a_1, b_1\}$, $\{a_2, b_2\}$, $\{a_3, b_3\}$, $\{a_4, b_4\}$) form a maximum weight perfect matching in G.
- (c) Find a maximum weight matching in the same graph.

3. Let $A = \{a_1, a_2, a_3, a_4, a_5\}$, $B = \{b_1, b_2, b_3, b_4, b_5\}$ and assume that for every $1 \le i, j \le 5$, the vertex a_i is adjacent to b_j in the bipartite graph G = (A, B; E). Furthermore, let the weight of the edge $\{a_i, b_j\}$ be the entry in the intersection of the *i*-th row and the *j*-th column of the matrix below for every $1 \le i, j \le 5$. Is it true that the values given in the table below form a minimum sum labeling (that is, a labeling such that the sum of the labels is minimum)?

					$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			7	7
a_1	a_2	a_3	a_4	a_5	b_1	o_2	o_3	o_4	o_5
2	4	6	6	6	0	0	1	1	-1

4. Let $A = \{a_1, a_2, \ldots, a_k\}$, $B = \{b_1, b_2, \ldots, b_k\}$ and assume that for every $1 \le i, j \le k$ the edge $\{a_i, b_j\}$ is present in the bipartite graph G = (A, B; E) with a weight of $i^2 + j^3$. Find a maximum weight perfect matching in G (and prove that it is maximum).