The Maximum Weight Bipartite Matching Problem Combinatorial Optimization - Group K
 Class 23
 Spring 2023

1. Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$ and assume that for every $1 \leq i \leq 4$ and $1 \leq j \leq 5$, the vertex a_{i} is adjacent to b_{j} in the bipartite graph $G=(A, B ; E)$. Furthermore, let the weight of the edge $\left\{a_{i}, b_{j}\right\}$ be the entry in the intersection of the i-th row and the j-th column of the matrix on the left below for every i and j.

$$
\left(\begin{array}{lllll}
4 & 5 & 5 & 7 & 3 \\
3 & 5 & 3 & 6 & 3 \\
2 & 6 & 6 & 6 & 4 \\
3 & 5 & 5 & 7 & 3
\end{array}\right)
$$

(a) For what values of the parameter p is it true that the mapping c shown in the table below is a labeling?
(b) Does there exist a value of p for which the mapping c is of minimum sum among all non-negative valued labelings of G ?
(c) Does there exist a value of p for which the mapping c is of minimum sum among all arbitrary (real) valued labelings of G ?

v	$:$	a_{1}	a_{2}	a_{3}	a_{4}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}
$c(v)$	$:$	4	3	4	p	0	2	2	3	0

2. Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ and assume that for every $1 \leq i, j \leq 4$ the vertex a_{i} is adjacent to b_{j} in the bipartite graph $G=(A, B ; E)$. Furthermore, let the weight of the edge $\left\{a_{i}, b_{j}\right\}$ be the entry in the intersection of the i-th row and the j-th column of the matrix on the right for every $1 \leq i, j \leq 4$.

$$
\left(\begin{array}{rrrr}
7 & 4 & 5 & 0 \\
5 & 3 & 2 & 0 \\
4 & 3 & 3 & -1 \\
4 & 2 & 2 & -1
\end{array}\right)
$$

(a) Is it true that the values given in the following table form a labeling?

a_{1}	a_{2}	a_{3}	a_{4}	b_{1}	b_{2}	b_{3}	b_{4}
2	0	0	-1	5	3	3	0

(b) Prove that the edges corresponding to the main diagonal (that is $\left\{a_{1}, b_{1}\right\},\left\{a_{2}, b_{2}\right\},\left\{a_{3}, b_{3}\right\}$, $\left\{a_{4}, b_{4}\right\}$) form a maximum weight perfect matching in G.
(c) Find a maximum weight matching in the same graph.
3. Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}, B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$ and assume that for every $1 \leq i, j \leq 5$, the vertex a_{i} is adjacent to b_{j} in the bipartite graph $G=(A, B ; E)$. Furthermore, let the weight of the edge $\left\{a_{i}, b_{j}\right\}$ be the entry in the intersection of the i-th row and the j-th column of the matrix below for every $1 \leq i, j \leq 5$. Is it true that the values given in the table below form a minimum sum labeling (that is, a labeling such that the sum of the labels is minimum)?

$$
\left(\begin{array}{lllll}
1 & 1 & 2 & 3 & 1 \\
4 & 3 & 3 & 4 & 2 \\
5 & 5 & 6 & 5 & 5 \\
6 & 6 & 6 & 6 & 5 \\
6 & 5 & 7 & 6 & 4
\end{array}\right)
$$

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}
2	4	6	6	6	0	0	1	1	-1

4. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ and assume that for every $1 \leq i, j \leq k$ the edge $\left\{a_{i}, b_{j}\right\}$ is present in the bipartite graph $G=(A, B ; E)$ with a weight of $i^{2}+j^{3}$. Find a maximum weight perfect matching in G (and prove that it is maximum).
