
Abstract: Densities of Soft Ball Lattice Packings in
the Diagonal Family

An important question of discrete geometry is to find, for any d ≥ 2, the maximum
density of packings of congruent d-dimensional balls; that is, the maximum portion of
space, in terms of volume, that can be packed by congruent d-dimensional balls. The goal
of this thesis is to investigate a variant of this problem, namely the (soft) density of soft
packings of congruent balls. We restrict our investigation to the d = 3 case.

Following a paper of Bezdek and Lángi [1,2], we call a family of balls of radius (1+λ)r
a soft ball packing with penetrating ratio λ > 0 if the concentric balls of radius r form a
packing. As a result of Böröczky [3], if λ ≥

√
5
3
−1 ≈ 0.29, then it is possible to cover the

whole space by such a soft packing. By above result of Böröczky and Hales’s proof [3, 6]
of the Kepler Conjecture, it seems reasonable to assume that if λ ≈ 0, then a densest soft
packing is generated by a face-centered cubic lattice, while if λ ≈

√
5
3
− 1, then such a

soft packing is generated by a body-centered cubic lattice. Thus, as we increase λ from 0

to
√

5
3
− 1, the optimal configurations shift between two different type arrangements.

The goal of this thesis is to study the density of soft ball packings generated by a lattice
from a special 1-parameter family of lattices, called the diagonal family of lattices. These
lattices, which include the cubic, face-centered cubic, and body-centered cubic lattices,
were defined by Edelsbrunner and Kerber [5] and used by Edelsbrunner and Iglesias-
Ham [4] to study the soft densities of soft ball packings generated by them, employing a
definition of soft density different from ours.

Our main result in this thesis states the following: there exists a special value λ0 ≈
0.199 ∈ [0, 0.28] such that:

(i) for 0 < λ ≤ λ0, among the soft ball packings generated by a lattice from the diagonal
family, the densest one is generated by a face-centered cubic lattice;

(ii) for λ0 ≤ λ ≤ 0.028, among the soft ball packings generated by a lattice from the
diagonal family, a Body-centered cubic lattice generates the densest one;

Our proof uses the combinatorial description of the Voronoi cells of the lattices in the
diagonal family, given by Edelsbrunner and Iglesias-Ham [4], and some other geometric
and analytic tools. The computations included in the proof were carried out by the Maple
18.00 software.
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