Lattice Coverings with Translation Balls in Sol Geometry —Abstract—

Judit Sajtos

The eight Thurston geometries make up an important and still heavily studied area of mathematics. This thesis work first has a look at the projective model of the geometries (first in 2-dimensions, then in 3). Then it summarizes the most important structures of the one of these geometries, the *Sol* geometry, mostly focusing on translation curves, translation spheres and lattices, particularly the fundamental lattice.

Then we study lattice-like coverings of the space with congruent translation balls. In order to do this, we also have a look at the circumscribed spheres of translation tetrahedra and the convexity of the translation spheres. We prove that a translation sphere in **Sol** is convex in an Euclidean sense, if for its radius: $r \leq \frac{\Pi}{2}$. With the help of an algorithm we calculate the locally optimal lattice-like covering with congruent translation ball for multiple fundamental lattices of the **Sol** space, in order to find a minimal covering density.

This question of ball covering, together with ball packings plays an important in crystallography and so they are heavily studied in all eight of the Thurston geometries.