Numerikus módszerek 2.
(Horváth Róbert)
FINITE DIFFERENCE METHODS
- Numerical solution of one-dimensional parabolic problems with
explicit methods.
[MORTON, pages 7-21]
- Numerical solution of one-dimensional parabolic problems with implicit
and -
methods, maximum principle [MORTON, pages 22-24, 26-38]
- Numerical solution of one-dimensional hyperbolic equations,
CFL-condition, analysis
of the upwind scheme [MORTON, pages 86-100]
- Lax-Wendroff and the leap-frog schemes and their analysis [MORTON, pages
100-
110, 123-128].
- Consistency, convergence and stability, Lax equivalence theorem
[MORTON, pages
151-169].
- Finite difference solution of the two-dimensional Poisson equation
[MORTON, pages
194-203].
- Multigrid method [BORZI, pages 9-22].
FINITE ELEMENT METHODS
- Introduction of the finite element method (FEM) on a one-dimensional
problem.
FEM for the Poisson equation [JOHNSON, pages 14-33].
- Some special Hilbert spaces, geometrical interpretation, Neumann
boundary conditions
[JOHNSON, pages 33-43].
- Abstract formulation of FEM for elliptic problems [JOHNSON, pages
50-67].
- Some finite element spaces [JOHNSON, pages 67-84].
- Error estimates for elliptic problems [JOHNSON, pages 84-92].
A rövidítések az alábbi könyveket jelentik:
[MORTON]: Morton, Mayers, Numerical solutions of partial differential
equations,
Cambridge University Press, 2005,
[BORZI]: Alfio Borzi, Introduction to multigrid methods, Institut für
Mathematik und
Wissenschaftliches Rechnen,
[JOHNSON]: Johnson, Numerical solutions of PDEs by the finite element
methods.