Exercises

(1) Compute the volume element of a torus with different parametrizations.
(2) Compute the volume element of the sphere with different parametrizations.
(3) Compute the volume element of the ellipsoid with different parametrizations.
(4) Integrate the distance from a plane on a sphere, ellipsoid, torus.
(5) Compute $d \alpha$ if α is equal to
(a) $x y d x+x^{2} z d y+y z^{3} d z$,
(b) $x y^{2} d x+x^{2} y z d y+2 x y z^{3} d z$,
(c) $2 x^{3} z^{2} d x+x^{2} y d y+2 x z^{3} d z$,
(d) $x^{2} y d x \wedge d y+4 y z^{2} d y \wedge d z+x y z d x \wedge d z$,
(e) $2 x^{3} z^{2} v^{2} d x \wedge d v+x^{2} y d y \wedge d x+2 x z^{3} d z \wedge d v$,
(f) $x^{2} y v d x \wedge d y \wedge d v+4 y z^{2} v^{2} d y \wedge d z \wedge d v+x y z d x \wedge d z \wedge d y$.
(6) Is there any β such that $d \beta=\alpha$ in the previous exercise?
(7) Compute $\int_{M} \omega$ if M is the straight line segment connecting $(1,2)$ and $(-3,-3)$ and ω is the form $x y d x+x^{2} z d y+y z^{3} d z$.
(8) Compute $\int_{M} \omega$ for all the 1 -forms in exercise (5).

