Exercises

- (1) Compute the volume element of a torus with different parametrizations.
- (2) Compute the volume element of the sphere with different parametrizations.
- (3) Compute the volume element of the ellipsoid with different parametrizations.
- (4) Integrate the distance from a plane on a sphere, ellipsoid, torus.
- (5) Compute $d\alpha$ if α is equal to

 - Compute $a\alpha$ if α is equal to (a) $xydx + x^2zdy + yz^3dz$, (b) $xy^2dx + x^2yzdy + 2xyz^3dz$, (c) $2x^3z^2dx + x^2ydy + 2xz^3dz$, (d) $x^2ydx \wedge dy + 4yz^2dy \wedge dz + xyzdx \wedge dz$, (e) $2x^3z^2v^2dx \wedge dv + x^2ydy \wedge dx + 2xz^3dz \wedge dv$, (f) $x^2yvdx \wedge dy \wedge dv + 4yz^2v^2dy \wedge dz \wedge dv + xyzdx \wedge dz \wedge dy$.
- (6) Is there any β such that $d\beta = \alpha$ in the previous exercise?
- (7) Compute $\int_M \omega$ if M is the straight line segment connecting (1,2) and (-3,-3) and ω is the form $xydx + x^2zdy + yz^3dz$.
- (8) Compute $\int_M \omega$ for all the 1-forms in exercise (5).