
Konvex geometria

Matematikus szakos hallgatóknak

Gyakorló feladatok a záróvizsgához

Exercise 1. Let S ⊆ Rn be an arbitrary set. Let the kernel of S be the set of points x ∈ S for
which [x, y] ⊆ S for any y ∈ S. Prove that the kernel of S is convex.

Exercise 2. Consider an (n×n) matrix A as a point of the space Rn2
. Denote by S, S+ and S++

the families of symmetric. positive de�nit and positive semide�nite (n×n) matrices in Rn2
. Prove

that these sets are convex.

Exercise 3. Let T : Rn → Rn be an invertible linear transformation.

(a) Prove that the set T (K) = {Y : ∃X ∈ K,T (x) = y} is convex for any convex set K ⊆ Rn.

(b) Prove that the sets
P = {Y ∈ Rn : ⟨y, xi⟩ ≤ αi, i = 1, 2, 3 . . . , k}

and T (P ) are convex, and that there are vectors w1, w2, . . . , wk ∈ Rn and scalars β1, β2, . . . , βk ∈
R such that

T (P ) = {Y ∈ Rn : ⟨y, wi⟩ ≤ βk, i = 1, 2, 2 . . . , k}.

Exercise 4. Show that

(a) the �nite Helly theorem is false for nonconvex sets in Rn, or if we assume that the intersection
of every n elements of the family is not empty,

(b) there is a family of in�nitely many closed, convex sets in Rn in which the intersection of every
at most n+ 1 elements is nonempty, but the intersection of all elements is empty.

Exercise 5. Let F be a �nite family of convex sets in Rn, and C ⊂ Rn be convex. Prove that if
for any at most n+ 1 elements of F there is a translate of C that intersects/contains/is contained
in each element, then there is a translate of C that intersects/contains/is contained, respectively
in each element of C.

Exercise 6. Let L,L′ ⊂ Rn be linear subspaces of dimensions k, n − k, respectively, for some
0 ≤ k ≤ n, where L ∩ L′ = {o}.

a) Prove that for every p, q ∈ Rn, the intersection of the a�ne subspaces p+ L and q + L′ is a
singleton.

b) Let F = p + L be �xed. De�ne the function π : En → F in the following way: f(q) = q′, if
the intersection of F and q+L′ is {q′} (the name of the map π is projection onto F parallel to

L′). Prove that for any convex set K ⊆ Rn, π(K) is convex, and for any convx set K ′ ⊆ F ,
π−1(K ′) is convex.

Exercise 7. Let K and L be plane convex bodies. Prove that then perim(K + L) = perim(K) +
perim(L).
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Exercise 8. Prove that if K ⊆ Rn is closed, convex and unbounded, then for every point p ∈ K,
K contains a closed half line starting at p.

Exercise 9. Let K ⊂ Rn be a closed, convex set, and let F be a proper face of K. Prove that if p
is an extremal face of F , then p is an extremal face of Ka as well.

Exercise 10. Let A ⊂ Rn be arbitrary. Prove that p is an extremal point of conv(A) if and only
if p /∈ conv(A \ {p}.

Exercise 11. Let K1,K2,K3 ⊂ Rn be closed, convex sets whose union is also convex. Prove that
if the intersection of any two of them is nonepmty, then the intersection of all three of them is
nonempty.

Exercise 12. Prove that there is a valuation on K(Rn) whose value on the indicator function of
compact, convex set K is the volume of K.

Exercise 13. Prove that the exposed points of a compact, convex set are also extremal points of
the set, and the extremal points of a polytope are also exposed points of the polytope.

Exercise 14. Prove that every n-dimensional polytope has a facet. Prove that for every k =
0, 1, . . . , n, every n-dimensional polytope has a k-dimensional face.

Exercise 15. Let P be an arbitrary n-dimensional polytope, and let F ⊂ G be proper faces of P
such that dimF + 2 = dimG. Prove that P has exactly two faces F ′ satisfying F ⊊ F ′ ⊊ G.

Exercise 16. Let P ⊂ Rn be an n-dimensional polytope. Let H be a hyperplane passing through
an interior point of P and contains no vertex of P . Let H+ be one of the two open half spaces
bounded by H, and let f+

i P be the number of the i-dimensional faces of P contained in H+. Then

n−1∑
i=1

(−1)if+
i = 1.

Exercise 17. Let P ⊂ Rn be an n-dimensional polytope, and let F be a k-dimensional face of P .
Denote by fj(F, P ) the number of those j-dimensional faces of P that contain F . Prove that

n−1∑
j=k

(−1)jfj(F, P ) = (−1)n−1.

Exercise 18. Prove that for any nonenpty set A ⊆ Rn, ((A◦)◦)
◦
= A◦.

Exercise 19. Let A ⊆ Rn be nonempty. Show that (A◦)◦ is the closure of the set conv (A ∪ {o}).

Exercise 20. Let A ⊆ Rn be a nonempty set satisfying A◦ = A. Show that A is the closed unit
ball centered at o.

Exercise 21. Let P be an n-dimensional polytope, and let ⌈n2 ⌉ < k < n+ 1 be an integer. Prove
that if the convex hull of any k vertices of P is a face of P , then P is a simplex.

Exercise 22. Prove that the support function of the cube K = {(x1, . . . , xn) ∈ Rn : −1 ≤ xi ≤
1, i = 1, 2, . . . , n} is h((u1, . . . , un)) =

∑n
i=1 |ui|, (u1, . . . , un) ∈ Rn.
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Exercise 23. Let K be a convex body in Rn. Prove that then there is some point x ∈ Rn and a
simplex T such that

x+ T ⊆ K ⊆ x− nT.

Exercise 24. Based on the previous problem, show that the Banach-Mazur distance of any two
convex bodies is at most n4.
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