
Probability Theory 2

List of exercises of final exam

FE.1 Let X and Y be independent random variables with distribution EXP (λ) and EXP (µ).
Find the density of Z := X + Y .

FE.2 Find the density function of the sum of n i.i.d. random variables with distribution
EXP (λ).

FE.3 May B. Dunn is a student in mathematics on BUTE. She tries to pass the Probability
Theory 2 course. First, she needs to get the signature in the practical part. If she fails
in one semester, she tries again in the next one. The semesters are independent and in
each of the semesters the probability that she gets the signature is 1/3. If she gets the
signature she will try the oral exam on the theory. Again, if she fails she tries in the next
semester, the semesters are independent and in each of the semesters, the probability
that she passes the oral exam is 1/4. Find the distribution of the number of semesters
required for May B. Dunn to pass.

FE.4 We roll a die until we see two consecutive 6. Denote ν the number of required rolls.
Determine the prob. generating functon of ν, and using this, the expected value and the
variance.

FE.5 Let ξ1, ξ2, . . . be i.i.d random variables with distribution: P
(
ξi = 1

)
= p,

P
(
ξi = 0

)
= 1− p, where 0 < p < 1. Let

ναβ := min{n ≥ 2 : ξn−1 = α, ξn = β}, α, β ∈ {0, 1}.

Determine the prob. gen. function of ναβ, and using this, the expected value and
variance, for every possible combination of α, β.

FE.6 Let X1, X2, X3, . . . be a sequence of independent and identically distributed random
variables, with distribution function F (x) := P

(
Xi < x

)
. Let ν be an N-valued random

variable independent of Xi’s, and denote G(z) the probability generating function of ν.
Show that the distribution function of Y := max{X1, X2, . . . , Xν} is H(x) = G(F (x)).

FE.7 Let U be a random variable with distribution UNI(0, 1), and let X be the random
variable, which conditional distribution is BIN(n, U) conditioned on U . Prove that the
distribution of X is UNI{0, 1, . . . , n}.

FE.8 Let Λ be a random variable with distribution EXP (µ) and let X be the random variable,
which conditional distribution is POI(Λ) conditioned on Λ. Determine the distribution
of X.

FE.9 Let X1, X2, . . . be i.i.d. (N valued) random variables and let ν be a random variable
independent of Xi’s. Let Y =

∑ν
k=1Xk. Show that

D2(Y ) = D2(ν)E(X1)
2 + E(ν)D2(X1).

FE.10 Let us consider a branching process, for which the probability generating function of the
offsprings is P (z). Denote X the size of the whole population (i.e. the number of all
individuals who ever lived). Denote Q(z) = E(zX). Prove that Q(z) is the inverse of
z/P (z)!



FE.11 Consider a branching process for which the expected value of the offsprings is 1 and the
variance is 0 < σ < 1. Denote Xn the number of individuals in the nth generation. That
is, X0 = 1, X1 is the number of children of the first individual, etc.

(a) What is the expected value of the size of the population?
(b) Give a formula for D2(Xn)! Prove by induction!

FE.12 Let X1, . . . , X9 be independent random variables with distribution UNI[0, 1]. Moreover,
let Y = 9

√
X1 · · ·X9. Using Chebisev’s inequality, give a lower estimate for the probability

P(e−5/3 < Y < e−1/3)!

FE.13 Let X1, X2, . . . be uncorrelated random variables with finite variance, 0 expected value.
(That is, for every i ≥ 1, E

(
Xi

)
= 0, σ2

i := D2
(
Xi

)
= E

(
X2
i

)
<∞, and for every i 6= j,

E
(
XiXj

)
= 0). Let Sn := X1 + X2 + · · · + Xn. Show that if limi→∞ σ

2
i /i = 0 then

limn→∞ P(|Sn/n| > δ) = 0 for every δ > 0.

FE.14 (a) Let X be a random variable. We call the function R(t) = E(etX) the moment
generating function of X. Show that for every x ∈ R, P(X > x) ≤ inft>0R(t)e−tx.

(b) Show that the function t 7→ logR(t) is convex.
(c) Let X be a random variable with distribution POI(λ). Using the exercise FE.14a,

estimate P(X > x).

FE.15 We toss a coin 60 times and denote the number of heads by X. Give an upper bound
for the probability

P(|X − 30| ≥ 20)

by using Chebisev’s inequality. A better estimate can be given by using the turbo-Markov
inequality:
(a) Let Yβ = eβX , where 0 < β. Show that E(Yβ) = 2−60(1 + eβ)60.

(b) Give an upper estimate for P(X ≥ 50) by using Markov-inequality for the non-
negative random variable Yβ for all β > 0.

(c) Find the optimal β, that is, find the minimum of the estimate in (b). (This can be
done by minimizing the convex function f(β) = log(1 + eβ)− 5

6
β.)

(d) Combining the previous points, show P(|X − 30| ≥ 20) ≤ 2 · 360 · 5−50 < 10−6.

FE.16 Let Yn be a sequence of bounded random variable (i.e. P(|Yn| < M) = 1 for some M > 0

and every n) and suppose that Yn
P−→ Y (i.e. P(|Yn − Y | > δ) → 0 for every δ > 0).

Then E(|Yn − Y |)→ 0 (i.e. Yn
L1

−→ Y ) as n→∞, and in particular E(Yn)→ E(Y ).

FE.17 Let Xn be a sequence of random variables and let Y,X be a random variables such that

P(|Xn| ≤ Y ) = 1, Xn
a.s.−→ X and E(|Y |) <∞. Then Xn

L1

−→ X.

(Hint: Apply Fatou’s Lemma for 2Y − |Xn −X|.)

FE.18 Let X1, X2, . . . and Y be random variables on the same prob. space (Ω,A,P) and let
F1(x), F2(x), . . . and G(x) be their distribution functions respectively. Show that if

Xn
P−→ Y then limn→∞ Fn(x) = G(x) at every continuity point x of G.

FE.19HW Let f : [0, 1]→ R be continuous. Show that

lim
n→∞

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

f

(
x1 + x2 + · · ·+ xn

n

)
dx1 dx2 · · · dxn = f

(
1

2

)
,

lim
n→∞

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

f
(
(x1x2 · · ·xn)1/n

)
dx1 dx2 · · · dxn = f

(
1

e

)
.



FE.20 Show that
lim
n→∞

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

x21 + x22 + · · ·+ x2n
x1 + x2 + · · ·+ xn

dx1 dx2 · · · dxn =
2

3
.

FE.21 Let X1, X2, . . . be independent random variables such that

P
(
Xn = n2 − 1

)
= n−2, P

(
Xn = −1

)
= 1− n−2.

Prove that for every n ∈ N, E
(
Xn

)
= 0 but

lim
n→∞

X1 +X2 + · · ·+Xn

n
= −1 almost surely.

FE.22 Let Xn be i.i.d random variables with Xn ∼ GEO(p). That is P(Xn = k) = (1 − p)pk
for k ≥ 0. Show that lim supn→∞

Xn

logn
= | log p|−1 almost surely.

FE.23 Let X1, X2, . . . be independent random variables such that P(Xn = 1) = pn and
P(Xn = 0) = 1− pn. Which properties does pn, n = 1, 2, . . . have if

(a) Xn
P−→ 0 as n→∞

(b) Xn
a.s.−→ 0 as n→∞.

FE.24 We make infinitely many independent experiments. The probability that the nth ex-
periment is successful is n−α, where 0 < α < 1. Let k ≥ 1. It makes us happy if it
happens infinitely often that we have k consecutive successful experiments. What is the
probability that we are happy?

FE.25 Let X be a random variable with standard normal distribution N(0, 1). We have shown
earlier that for any x > 0(

1

x
− 1

x3

)
exp(−x2/2)√

2π
≤ P

(
X > x

)
≤ 1

x

exp(−x2/2)√
2π

.

(a) Let X1, X2, . . . be i.i.d with Xi ∼ N(0, 1). Show that

P
(

lim sup
n→∞

Xn√
2 log n

= 1
)

= 1.

(b) Let Sn := X1 + X2 + · · · + Xn, where X1, X2, . . . are from (a). Show that for every
C >

√
2

P
(

lim sup
n→∞

Sn√
n log n

< C
)

= 1.

FE.26 (a) Show that φaX+b(t) = eitbϕX(at).
(b) Show if X, Y are independent the characteristic function φX+Y of X + Y is the
product of the characteristic functions φX , φY .
(c) Show an example that φX+Y = φXφY but X and Y are not independent.

FE.27 (a) Let φ be a characteristic function. Show that φ, φ2, |φ|2 are characteristic functions
too.

(b) Let φ1, . . . , φn be characteristic functions. Show that
∑n

i=1 qiφi is a characteristic
function for any q1, . . . , qn ≥ 0 with

∑n
i=1 qi = 1. In fact, show that Re(φ) is a

characteristic function too.

FE.28 Let X be a random variable and let φX the characteristic function of X. Suppose
that there exists a t0 ∈ R such that t0 6= 0 and |φX(t0)| = 1. Show that X has
lattice distribution. That is, there exists an arithmetic sequence pn = an+ b with some
a 6= 0, b ∈ R such that P(X ∈ {pn}n∈Z) = 1.



FE.29 Let U be a random variable with distribution UNI[0, 1], and let Y and Z be indepen-
dent and independent of U with distribution EXP (1). Show that X = U(Y + Z) has
distribution EXP (1) as well.

FE.30 Let X and Y be i.i.d random variables with expected value 0 and variance 1. Denote the
common characteristic function by ϕ. Suppose that X + Y and X − Y are independent.
Show that this is possible only if X and Y are standard normal random variables.

(Hint: Show that in this case ϕ(2t) = ϕ(t)2|ϕ(t)|2, and find the limit of ϕ(t/2n)2
n|ϕ(t/2n)|4n−2n .)

FE.31 Let S = [0, 1] and let µn be the discrete measure such that every point k/n has weight
1/(n + 1) for k = 0, 1, . . . , n. Show that µn ⇒ µ, where µ is the Lebesgue measure on
S. (Use the definition of the weak convergence, not the equivalent formalisations for
distribution functions.)

FE.32 Let X1, X2, . . . be i.i.d random variables with distribution function F (x) := P
(
Xi <

x
)
. Let Mn := max{X1, X2, . . . , Xn}. Suppose that F (x) < 1 for every x < ∞ and

limx→∞ x
α
(
1 − F (x)

)
= b for some α, b ∈ (0,∞) (that is: 1 − F (x) ∼ x−α as x → ∞).

Show that the distribution of n−1/αMn converges weakly to:

P
(
n−1/αMn < x

)
→ 11{x>0} exp

(
−bx−α

)
.

FE.33 Let Xn ∼ POI(n) be independent random variables. Show that

Xn − n√
Xn

D−→ N(0, 1) as n,m→∞.

FE.34 Show with the method of characteristic functions that BIN(n, pn)
D−→ POI(λ) as n→∞

if limn→∞ npn = λ.

FE.35 Prove the weak law of large numbers by using the method of characteristic functions.


