Tools of Modern Probability sample exercises for the final exam, June 2021

- 1. Let c_n denote the (n-1-dimensional) surface volume of the n-1-dimensional unit sphere $S_n := \{x \in \mathbb{R}^n : |x| = 1\}$. Let d_n denote the (n-dimensional) volume of the n-dimensional unit ball $B_n := \{x \in \mathbb{R}^n : |x| \leq 1\}$. Give and prove the relation between c_n and d_n .
- 2. Describe the asymptotic behaviour of the sequence $I_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^n x \, \mathrm{d}x$.
- 3. Calculate $\int_0^\infty x^\alpha e^{-x} dx$ for nonnegative integer and half-integer values of α .
- 4. Describe the asymptotic behaviour of the sequence $I_n = \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{n}}$ as $n \to \infty$, where Γ is the Euler gamma function.
- 5. Let χ be counting measure on \mathbb{Z} . Calculate $\int_{\mathbb{Z}} e^{-|x|} d\chi(x)$.
- 6. Give an example of a function $f: [0,1] \times [0,1] \to \mathbb{R}$ for which the integrals

$$I_1 := \int_0^1 \int_0^1 f(x, y) \, \mathrm{d}y \, \mathrm{d}x$$
$$I_2 := \int_0^1 \int_0^1 f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

both make sense, but they are not equal, or show that there is no such function.

7. Let μ be a measure on \mathbb{R} which has density f w.r.t. Lebesgue measure, where

$$f(x) = \begin{cases} x+1 & \text{if } 0 < x < 1\\ 0 & \text{if not} \end{cases}$$

Let $g(x) = \sqrt{x}$ and let $\nu = g_*\mu$ be the push-forward of μ with g.

- a.) Calculate $\nu([\frac{1}{2}, \frac{2}{3}])$.
- b.) Show that ν is also absolutely continuous w.r.t. Lebesgue measure and calculate the density.
- 8. Let μ be the uniform distribution on [-1, 1]. Let f(x) = 2x and let $\nu = f_*\mu$. Calculate the characteristic function of ν .
- 9. Let (X, Y) be uniformly distributed on the square $[-1, 1]^2$. Let Z = X + XY, and let μ be the distribution of the random variable μ . Calculate $\int_{\mathbb{R}} z^2 d\mu(z)$.
- 10. Is the following statement true? If yes, prove it. I no, give a counterexample:

Let X_1, X_1, \ldots and X_{∞} be real-valued random variables, which are all absolutely continuous w.r.t. Lebesgue measure, with densities f_1, f_2, \ldots and f_{∞} , respectively. Now if X_n converges to X_{∞} weakly, then $f_n(x) \to f_{\infty}(x)$ for Lebesgue almost every $x \in \mathbb{R}$.

- 11. We roll two fair dice. Let X and Y be the two numbers rolled. Calculate $\mathbb{E}(X+Y|X-Y)$.
- 12. Let the random point (U, V) be uniformly distributed on the triangle with corners (0, 0); (1, 0); (1, 0) and let $Z = \mathbf{1}_{\{V > \frac{1}{2}\}}$. Calculate $\mathbb{E}(Z|U)$.
- 13. Let X be uniformly distributed on [-1, 2]. Calculate $\mathbb{E}(X|X^2)$.