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Abstract

In [7], Jan Černý conjectured that an arbitrary directable au-
tomaton with n states has a directing word of length not longer than
(n−1)2. This conjecture is one of the most longstanding open prob-
lems in the theory of finite automata. Most of papers dealing with
this conjecture reduce the problem to special classes of automata. In
present paper we deal with this conjecture in the class of automata
having a blocking state. We prove that the conjecture is true in
this class of automata. We show that if an automaton has n states
and contains a blocking state then it has a directing word whose
length is not longer than n(n−1)

2 . The notion of the blocking state
is a generalization of the notion of the trap for directable automata.
Thus every trap-directable automaton with n states has a directing
word of length not longer than n(n−1)

2 . We give an example for
trap-directable automaton with n states in which the length of the
shortest directing word is n(n−1)

2 . We prove that if the Černý Con-
jecture holds for a subautomaton of a directable automaton then it
holds for the automaton.

Keywords: directing word and directed state of automata, Černý Conjec-
ture
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1 Preliminaries

By an automaton A = (A,X, δ) we mean always a deterministic automa-
ton without outputs, where A 6= ∅ is the state set, X 6= ∅ is the input set
and δ : A×X → A is the transition function. We denote the cardinality
of the set A with |A| . The automaton A is A-finite if |A| < ∞.

The input monoid [semigroup] X∗ [X+] of A is the free monoid [free
semigroup] over X. The empty word is denoted by e. Let |p| be the length
of the input word p ∈ X∗. More precisely, |e| = 0 and if p = x1x2 . . . xk

(x1, x2, . . . , xk ∈ X) then |p| = k.
The transition function δ can be extended in the usual way: Let

δ(a, e) = a for every a ∈ A. If a ∈ A, p ∈ X∗ and x ∈ X then let
δ(a, px) = δ(δ(a, p), x). For brevity we shall use the notation ap instead
of δ(a, p).

If B ⊆ A and M ⊆ X∗ then let BM = {ap; a ∈ B, p ∈ M}. If
a ∈ A or p ∈ X∗ then {a}M and B{p} will be denoted by aM and Bp,
respectively.

The characteristic semigroup S(A) of the automaton A is the factor
semigroup X∗/ρA, where ρA defined by (p, q) ∈ ρA if and only if ap = aq
for all a ∈ A.

A mapping ϕ : A → B is a homomorphism of the automaton A =
(A,X, δ) into the automaton B = (B,X, δ′) if ϕ(ax) = ϕ(a)x for all a ∈ A
and x ∈ X. If ϕ is a bijective mapping, then ϕ is an isomorphism of A
onto B and A is isomorphic with B.

The automaton A′ = (A′, X, δ′) is a subautomaton of the automaton
A = (A,X, δ) if A′ ⊆ A and δ′ is the restriction of δ to A′×X. If A′ = {c}
then the state c ∈ A is called a trap of A. If an automaton A has a trap
then we say that the automaton A is a trapped automaton.

The automaton A = (A,X, δ) is a (finite) direct product of of the
automata Ai = (Ai, X, δi) (i = 1, 2, . . . , n) if A = A1×A2× · · · ×An and
for every ai ∈ Ai (i = 1, 2, . . . , n) and x ∈ X

δ((a1, a2, . . . , an), x) = (δ1(a1, x), δ2(a2, x), . . . , δ(an, x)).

The automaton A = (A,X, δ) is connected if, for arbitrary states
a, b ∈ A, there exist p, q ∈ X∗ such that ap = bq. Specially, A is strongly
connected if q = e, that is, for arbitrary states a, b ∈ A, there exists a
p ∈ X∗ such that ap = b. The automaton A is strongly trap-connected if
it has a trap c and for every state a ∈ A − {c} and b ∈ A, there exists
p ∈ X∗ such that ap = b. It is known that the automaton A is strongly
connected if and only if it has no subautomaton A′ = (A′, X, δ′) of A
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such that A′ 6= A. Furthermore, if A is strongly trap-connected then it
has only one trap.

2 Directable automata

An automaton A is directable or synchronizable if there exist p ∈ X∗ such
that |Ap| = 1, that is, Ap = d for some state d ∈ A. The input word
p and the state d is called a directing word and a directed state of the
automaton A, respectively. Every directable automaton is a connected
automaton. A directable automaton A is trap-directable if it has a trap.
If an automaton A is trap-directable then it is trap-connected and the
trap is the only directed state. Evidently, every homomorphic image
and every subautomaton of a directable automaton is also directable.
Furthermore finite direct product of directable automata is directable.
Let A = (A,X, δ) be a directable automata with n states. If D(A)
denotes the set of directing words of A then let

d(A) = min{|p|; p ∈ D(A)}.

Denote Dn the class of directable automata with n states and

d(n) = max{d(A); A ∈ Dn}.

Jan Černy has constructed an n state automaton A for which d(A) =
(n − 1)2 ([7]). This means that (n − 1)2 ≤ d(n). In a number of special
classes of automata it is prowed that d(n) ≤ (n− 1)2 ([1], [2], [3], [12]).

Černý Conjecture: For every positive integer n, d(n) = (n− 1)2.

For an arbitrary (not empty) subclass Kn of the class Dn of directable
automata with n states, let

dK(n) = max{d(A); A ∈ Kn}.

If Kn and Ln are subclasses of Dn such that

∅ ⊂ Kn ⊂ Ln ⊂ Dn,

then
dK(n) ≤ dL(n) ≤ d(n).

If CDn is the class of commutative directable automata with n states then
dCD(n) = n−1 ([20], [10]). An automaton is aperiodic if its characteristic
semigroup has only trivial subgroups. In [24], A. N. Trahtman has proved

3



that if ADn is the class of aperiodic directable automata with n states
then dAD(n) ≤ n(n−1)

2 . In [14], T. Petković and M. Steinby introduced a
stronger form of directability. The automaton A = (A,X, δ) is piecewise
directable if there exist x1, x2, . . . , xk ∈ X such that

p ∈ X∗x1X
∗x2X

∗ . . . X∗xkX
∗ =⇒ ap = bp

for all a, b ∈ A. If PDn is the class of the piecewise directable automata
with n states then dPD(n) ≤ n(n−1)

2 ([14]).
For a general survey of theory of directable automata the reader is

referred to [5].

3 Automata with blocking states

Let A = (A,X, δ) be an arbitrary automaton. For every a, b ∈ A, consider
the sets

U(a, b) = {p ∈ X∗; ap = b},

V (a, b) = {q ∈ U(a, b); |q| ≤ |p|, for every p ∈ U(a, b)}.

It is evident that V (a, b) ⊆ Xk for any integer k with 0 ≤ k ≤ n − 1.
The state c ∈ A will be called a blocking state of the automaton A, if for
every a ∈ A,

U(a, c) 6= ∅ and cV (a, c) = c.

If the automaton A has a blocking state then A is a connected automaton.
Furthermore, if A is trap-connected, then the trap is the only blocking
state of A.

Lemma 1 ([11]) An A-finite automaton A = (A,X, δ) is directable if
and only if, for every a, b ∈ A, there exists p ∈ X∗ such that ap = bp.

Theorem 2 If Bn is the class of n-state automata with blocking states
then Bn ⊂ Dn and dB(n) = n(n−1)

2 .

Proof. Let A = (A,X, δ) be an n-state automaton with blocking state
c. If a, b ∈ A, p ∈ V (a, c) and q ∈ V (bp, c) then

b(pq) = (bp)q = cq = (cp)q = (ap)q = a(pq).

By Lemma 1, the automaton A is directable. But not every directable
automaton has a blocking state, therefore Bn ⊂ Dn.
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If n = 1 then the statement is obvious. Assume n > 1. Let d ∈ A
be a state such that, for every a ∈ A, the assumptions q ∈ V (a, c) and
r ∈ V (d, c) together imply |q| ≤ |r|. If p ∈ V (d, c) and

p = x1x2 . . . xn−k, x1, x2, . . . , xn−k ∈ X, 1 ≤ k ≤ n− 1,

then

d, dx1, dx1x2, . . . , dx1x2 . . . xn−k−1, dx1x2 . . . xn−k−1xn−k = c

are different states. Furthermore, for every 1 ≤ i ≤ n− k,

xixi+1 . . . xn−k ∈ V (dx1x2 . . . xi−1, c) (x0 = e).

From this it follows that if

p = xn−k(xn−k−1xn−k) . . . (x2 . . . xn−k−1xn−k)(x1x2 . . . xn−k−1xn−k),

then
|Ap| ≤ k and c ∈ Ap.

Thus there are q1, q2, . . . , qk−1 ∈ X∗ such that |q1|, |q2|, . . . , |qk−1| ≤ n−k
and

Apq1q2 . . . qk−1 = c,

that is,

|pq1q2 . . . qk−1| ≤
(n− k)(n− k + 1)

2
+ (k − 1)(n− k) =

=
(n− k)(n− 1 + k)

2
=

n(n− 1) + k(1− k)
2

≤ n(n− 1)
2

.

This means that dB(n) ≤ n(n−1)
2 .

Consider the trap-directable automaton T = (T,X, δ) with the state
set T = {0, 1, . . . , n − 1}, the input set X = {x1, x2, . . . , xn−1} (2 ≤ n)
and the transition function δ defined by

δ(i, xi) = i− 1, δ(0, xi) = 0 (i = 1, 2, . . . , n− 1),

δ(i, xi+1) = i + 1 (i = 1, 2, . . . , n− 2),

δ(i, xs) = i (i = 1, 2, . . . , n− 2, s 6= i, i + 1),

δ(n− 1, xs) = n− 1, (s 6= n− 1).
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It is easy to see that, for every integer 1 ≤ i ≤ n − 1, the shortest word
r ∈ X+ is r = xi . . . x2x1 such that

{0, i, i + 1, . . . , n− 1}r = {0, i + 1, . . . , n− 1}.

Using this fact, it is a matter of calculating to see that the input word

p = x1(x2x1)(x3x2x1) . . . (xn−2 . . . x2x1)(xn−1xn−2 . . . x2x1)

is a shortest directig word of T. Since |p| = n(n−1)
2 , then

dB(n) =
n(n− 1)

2
.�

In the proof of previous theorem, if n ≥ 3 then the trap-directable
automaton T is not aperiodic and not piecewise directable, that is, if
n ≥ 3 then Bn * ADn and Bn * PDn.

Corollary 3 dT D(n) = n(n−1)
2 .

Proof. By Theorem 2, it is obvious.

Example 4 Let A = (A,X, δ) be an automaton defined by

A = {1, 2, . . . , n}, X = {x1, x2, . . . , xn−1}, (n ≥ 3)

δ(i, xk) = k (1 ≤ i < k ≤ n− 1), δ(n− 1, xn−1) = n,

δ(i, xi−1) = i− 1 (2 ≤ i ≤ n),

and moreover δ(i, xs) = i. It is easy to see that A has a blocking state
but A is not trap-directable.

This means that, if T Dn (n ≥ 2) is the class of n-state trap-directable
automata then T Dn ⊂ Bn. We note that CDn ⊂ T Dn. (In the case
n = 2, if A = {1, 2}, X = {x1, x2}, δ(i, x1) = 1 and δ(i, x2) = 2 (i = 1, 2)
then 1 and 2 are blocking states, thus the automaton A = (A,X, δ) is
not trap-directable.)

4 Subautomata and the Černý Conjecture

An equivalence relation ρ of the state set A of an automaton A =
(A,X, δ) is a congruence on A if

(a, b) ∈ ρ =⇒ (ax, bx) ∈ ρ
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for all a, b ∈ A and x ∈ X. The ρ-class of A containing a ∈ A is denoted
by ρ[a]. The automaton A/ρ = (A/ρ,X, δρ) is called a factor automaton
of A if

A/ρ = {ρ[a]; (a ∈ A)} and δρ(ρ[a], x) = ρ[δ(a, x)] (a ∈ A, x ∈ X).

If A′ = (A′, X, δ′) is a subautomaton of A then the congruence

ρA′ = {(a, b) ∈ A×A; a = b or a, b ∈ A′}

is called the Rees congruence of A induced by A′. The factor automaton
A/ρA′ is also denoted by A/A′ and it is called the Rees factor automaton
of A induced by A′. It is evident that A/A′ is a trapped automaton.

Denote C(A) the set of all directed states of a directable automaton
A. If the automaton A′ = (A′, X, δ′) is a subautomaton of the automaton
A = (A,X, δ) then C(A) ⊆ A′. If C(A) = A then we say that A is a
strongly directable automaton.

We say that an automaton A is an extension of an automaton A′ by
an automaton B if A′ is a subautomaton of A and A/A′ is isomorphic
with B. An automaton is directable if and only if it is an extension a
strongly directable automaton by a trap-directable automaton ([6]).

Lemma 5 If A′ = (A′, X, δ′) is a subautomaton of the directable au-
tomaton A = (A,X, δ) such that |A| = n and |A′| = k, then

d(A′) ≤ d(A) ≤ (n− k + 1)(n− k)
2

+ d(A′).

Proof. If A′ = (A′, X, δ′) is a subautomaton of the directable automaton
A = (A,X, δ) then A′ is also directable and d(A′) ≤ d(A). Furthermore
A/A′ is a trap-directable automaton with the trap A′. If p and q are
shortest directing words of A/A′ and A′, respectively then Ap ⊆ A′ and
so

|Apq| ≤ |A′q| = 1.

This means that pq is a directing word of A and, by Corollary 3,

d(A) ≤ |pq| = |p|+ |q| ≤ (n− k + 1)(n− k)
2

+ d(A′).�

Theorem 6 If the Černý Conjecture holds for the class of all k-state
directable automata, then it is holds for the class of all n-state (n > k)
directable automata containing at least one k-state subautomaton.
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Proof. Let A = (A,X, δ) be an arbitrary n-state directable automaton
and A′ = (A′, X, δ′) be an k-state subautomaton of A (n > k). Assume
that d(A′) ≤ (k − 1)2. If p ∈ X∗ is a shortest directing word of A/A′

then by Corollary 3,

|p| ≤ (n− k + 1)(n− k)
2

.

Let q ∈ X∗ be a shortest directing word of the subautomaton A′. The
word pq is a directing word of A and

|pq| ≤ (n− k + 1)(n− k)
2

+ (k − 1)2 ≤ (n− 1)2.

From this it follows that, for every positive integer n, d(n) ≤ (n− 1)2. �

Lemma 7 ([8], [6]) C(A) = (C(A), X, δ′) is the only strongly connected
subautomaton of the directable automaton A = (A,X, δ).

In [17], I. C. Rystsov has proved the following theorem. We get this
theorem from Lemma 7 and Theorem 6.

Corollary 8 The Černý Conjecture holds for directable automata if and
only if it holds for strongly directable automata.

It is known that if n ≤ 4 then the Černý Conjecture holds. In case
4 ≤ n the best upper bound for the length of the shortest directing words
is n3−n

6 − 1 ([15]). For some special classes of automata considerably
better upper bounds are known.

Corollary 9 The Černý Conjecture holds for the class of all n-state A =
(A,X, δ) directable automata for which |C(A)| < n and

n ≤ 12 or 13 ≤ n and |C(A)| ≤ 9 +
√

12n + 49
2

.

Proof. By Lemma 7, C(A) = (C(A), X, δ′) is a subautomaton of the
directable automaton A = (A,X, δ). Let |C(A)| = k < n. If k ≤ 4 then,
by Theorem 6, the Černý Conjecture holds for A.

Assume that 4 ≤ k ≤ n− 1. If p ∈ X∗ is a shortest directing word of
A/C(A) then, by Corollary 3,

|p| ≤ (n− k + 1)(n− k)
2

.
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If q ∈ X∗ is a shortest directing word of the subautomaton C(A) then

|q| < k3 − k

6
.

The word pq is a directing word of A and

|pq| < (n− k + 1)(n− k)
2

+
k3 − k

6
.

But
(n− k + 1)(n− k)

2
+

k3 − k

6
≤ (n− 1)2

if and only if

k(k − 1)(k + 1)
6

≤ (n− 1)(n + 2k − 4)
2

.

It is easy to see that if

4 ≤ k ≤ 9 +
√

12n + 49
2

then
k(k − 1)(k + 1)

6
≤ (n− 1)(n + 2k − 4)

2
.

Furthermore if n ≤ 12 then

n− 1 ≤ 9 +
√

12n + 49
2

and if 13 ≤ n then
9 +

√
12n + 49
2

≤ n− 1.�
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tomatmi, Matematicko-fysikalny Časopis, SAV 14 (1964), 208-215.

[8] Dao, D. H., On the Semigroups of Directable Automata, Automata
Theoretical Letters, 1978/1, Reports of Dept. of Numerical and Com-
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Kiadó, Budapest, 1972.

[10] Imreh, B. and Steinby M., Some Remarks on Directable Automata,
Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995, 23-35.

[11] Ito, M., Algebraic Theory of Automata and Languages, World Sien-
tific Publishing, 2004.

[12] Kari, J., Synchronising finite automata on Eulerian digraphs, Theo-
retical Computer Sciences, 295, 2003, 223-232.

[13] Mateescu, A. and A. Salomaa, Many-valued truth functions, Černý’s
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