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Abstract

In this paper we prove that if the congruence lattice of an au-
tomaton A is finite then the endomorphism semigroup E(A) of A is
finite. Moreover, if A is commutative then A is A-finite. We prove
that if 3 ≤ |A| then a commutative automaton A is simple if and
only if it is a cyclic permutation automaton of prime order. We also
give some results concerning cyclic, strongly connected and strongly
trap-connected automata.

1 Preliminaries

In this paper, by an automaton A = (A, X, δ) we mean always an automaton
without outputs, where A 6= ∅ is the state set and X 6= ∅ is the input set.
Denote |A| the cardinality of the set A. The automaton A is called A-finite if
|A| < ∞. If |A| = n then we say that n is the order of A and if n is a prime
then A is an automaton of prime order. The input monoid [semigroup] X∗

[X+] of A is the free monoid [semigroup] over X. The transition function
δ : A × X → A can be extended in the usual way. If e ∈ X∗ is the empty
word then let δ(a, e) = a for every a ∈ A; if a ∈ A, p ∈ X∗ and x ∈ X then
let δ(a, px) = δ(δ(a, p), x). Sometimes, we shall use the notation ap instead
of δ(a, p).
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As known, every automaton can be considered as a unary algebra. Thus
the notions such as subautomaton, congruence, homomomorphism, isomor-
phism etc. can be introduced in the following natural way.

An equivalence relation ρ of state set A of the automaton A is called a
congruence on A if

(a, b) ∈ ρ =⇒ (ax, bx) ∈ ρ,

for all a, b ∈ A and x ∈ X. The ρ-class of A containing the state a is
denoted by ρ[a]. Denote C(A) the congruence lattice of A. Let ιA [ωA] be
the equality [universal] relation on A. The automaton A is called simple if
C(A) = {ιA, ωA}. It is evident that if |A| ≤ 2 then A is simple.

The automaton A′ = (A′, X, δ′) is a subautomaton of the automaton
A = (A, X, δ) if A′ ⊆ A and δ′ is the restriction of δ to A′ × X. The
congruence

ρA′ = {(a, b) ∈ A2; a = b or a, b ∈ A′}

is called the Rees congruence of A induced by A′ ([2]). The set R(A) of Rees
congruences of A is a sublattice of C(A). It is called the Rees congruence
lattice of A.

Let A = (A, X, δ) and B = (B, X, δ′) be arbitrary automata. We say
that a mapping ϕ : A → B is a homomorphism of A into B if

ϕ(ax) = ϕ(a)x,

for all a ∈ A and x ∈ X. The kernel of ϕ is the congruence Ker ϕ defined by
(a, b) ∈ Ker ϕ if and only if ϕ(a) = ϕ(b) (a, b ∈ A). If A = B then ϕ is an
endomorphism of A. Furthermore, if ϕ is bijective then it is an automorphism
of A. The set E(A) [G(A)] of all endomorphisms [automorphisms] of A is a
monoid [group] under the usual multiplication of mappings. E(A) [G(A)] is
called the endomorphism semigroup [automorphism group] of A.

For notations and notions not defined here we refer to the books P.M.
Cohn [5], F. Gécseg [7], F. Gécseg, F. and I. Peák [8], K.H. Kim and F.W.
Roush [10] and G. Lallement [11].

2 Automata with finite congruence lattices

Let B be a nonempty subset of the state set A of an automaton A = (A, X, δ).
Denote [B] = ([B], X, δ′) the subautomaton of A generated by B, that is,
[B] = {bp; b ∈ B, p ∈ X∗}. Specially, denote [a] = ([a], X, δ′) the subau-
tomaton generated by a ∈ A. If A = [B] then B is called a generating set of
A. If there exists a finite generating set of A then we say that A is finitely
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generated. Specially, if there exists a generating set containing only one ele-
ment a then A is called a cyclic automaton and we say that a is a generating
element of A.

Lemma 1 If the congruence lattice of an automaton A is finite then A has
finitely many subautomata and the congruence lattices of its subautomata are
also finite.

Proof. Assume that the congruence lattice C(A) of the automaton A =
(A, X, δ) is finite. Thus the Rees congruence lattice R(A) is finite. From
this it follows that A has finitely many subautomata.

If A′ = (A′, X, δ′) is a subautomaton of A and ρ ∈ C(A′) then ρ ∪ ιA ∈
C(A). Furthermore, if ρ, ρ′ ∈ C(A′) and ρ 6= ρ′ then ρ ∪ ιA 6= ρ′ ∪ ιA. Thus
C(A′) is also finite. �

Corollary 1 If the congruence lattice of an automaton is finite then the
automaton is finitely generated.

Proof. If the congruence lattice of an automaton is finite then by Lemma 1,
the number of its subautomata and thus the number of its cyclic subautomata
is finite. Therefore, the automaton is finitely generated. �

S. Radeleczki has prowed in [15] that if the congruence lattice of a unary
algebra is finite then its automorphism group is finite, too. The following
theorem is a generalization of this result.

Theorem 1 If the congruence lattice C(A) of an automaton A = (A, X, δ)
is finite then the endomorphism semigroup E(A) is finite.

Proof. First, we show that the automorphism group G(A) is finite. Assume
that the order of α ∈ G(A) is infinite. For every positive integer m, we
define the binary relation ραm on A, as follows. For a, b ∈ A, (a, b) ∈ ραm if
and only if there is an element c of A and there are integers i, k, l such that
0 ≤ i ≤ m− 1 and

a = αkm+i(c), b = αlm+i(c).

It can be easily verified that ραm is a congruence of A. Furthermore, if m 6= n
then ραm 6= ραn in a contradiction with our assumption that the congruence
lattice C(A) is finite. Thus the order of every α ∈ G(A) is finite.

Let r be the order of α ∈ G(A). Take the binary relation ρα on A for
which (a, b) ∈ ρα if and only if there are c ∈ A and integers 0 ≤ i, j ≤ r − 1
such that

a = αi(c), b = αj(c).
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For every α ∈ G(A), the relation ρα is a congruence of A. Assume that

ρα = ρβ, β ∈ G(A).

By Corollary 1, the automaton A is finitely generated. If {c1, c2, . . . , ck} is a
finite generating set of A then

ρβ[c1] = ρα[c1], ρβ[c2] = ρα[c2], . . . , ρβ[ck] = ρα[ck],

that is,
β(c1) = αi1(c1), β(c2) = αi2(c2), . . . , β(ck) = αik(ck)

(0 ≤ i1, i2, . . . , ik ≤ r − 1). This means that β = αij on [cj] (j = 1, 2, . . . , k).
From this it follows that the number of such β is finite for arbitrary α ∈ G(A).
Since C(A) is finite, the number of different ρα’s is finite. From these results
it follows that G(A) is finite.

Now we show that the endomorphism semigroup E(A) is also finite. If
α ∈ E(A) then Aα = (α(A), X, δ′) is a subautomaton of A, where α(A) =
{α(a); a ∈ A}. Let β ∈ E(A) such that

Ker β = Ker α and β(A) = α(A).

Define the mapping ϕα,β : α(A) → β(A) such that

ϕα,β(α(a)) = β(a)

for every a ∈ A. This means that

ϕα,βα = β.

Since Ker β = Ker α, ϕα,β is a bijective mapping. If a ∈ A and x ∈ X then

ϕα,β(α(a)x) = ϕα,βα(ax) = β(ax) = β(a)x = ϕα,β(α(a))x,

that is, ϕα,β ∈ G(Aα). By Lemma 1, C(Aα) is finite and thus, by the first
part of this proof, G(Aα) is finite. Furthermore, if

Ker β = Ker β′ = Ker α, β(A) = β′(A) = α(A)

and
ϕα,β = ϕα,β′ ,

then β = β′. Thus, for arbitrary α ∈ E(A), the number of β ∈ E(A) such
that Ker β = Ker α and β(A) = α(A) is finite. Since the number of different
Ker α’s and different β(A)’s (α, β ∈ E(A)) is finite, E(A) is also finite. �
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For every a ∈ A, consider the binary relation ρA,a on X∗ defined as

(p, q) ∈ ρA,a ⇐⇒ ap = aq (p, q ∈ X∗).

It is clear that ρA,a (a ∈ A) is a right congruence on X∗. The relation
ρA = ∩a∈AρA,a is congruence on X∗. The characteristic semigroup S(A) of
the automaton A is the factor semigroup X∗/ρA.

R.H. Oehmke has shown in [13] the first part of the following lemma,
that is, for arbitrary cyclic automaton A = (A, X, δ), |E(A)| ≤ |A|. We
have shown in our paper [1] that |A| ≤ |S(A)|.

Lemma 2 For every cyclic automaton A = (A, X, δ),

|E(A)| ≤ |A| ≤ |S(A)|.

Proof. If a0 is a generating element of A and α(a0) = β(a0) (α, β ∈ E(A))
then, for every p ∈ X∗,

α(a0p) = α(a0)p = β(a0)p = β(a0p),

that is, α = β. Thus the mapping ϕ : E(A) → A such that ϕ(α) = α(a0),
for every α ∈ E(A), is an injective mapping of E(A) into A. This means
that |E(A)| ≤ |A|.

If a0p 6= a0q (p, q ∈ X∗) then ρA[p] 6= ρA[q]. From this it follows that
|A| ≤ |S(A)|. �

Lemma 3 If the relation ρA,a0 is a congruence on X∗, for a generating el-
ement a0 of a cyclic automaton A = (A, X, δ), then E(A) ∼= S(A) and
|E(A)| = |A|.

Proof. If the relation ρA,a0 is a congruence on X∗ then ρA,a0 = ρA. Define
the mapping αp : A → A, for every p ∈ X∗, such that

αp(a0q) = a0pq (q ∈ X∗).

It can easily be shown that αp ∈ E(A). Furthermore, if α ∈ E(A) and
α(a0) = a0r (r ∈ X∗) then α = αr. The mapping ϕ : E(A) → S(A) such
that

ϕ(αp) = ρA[p] (p ∈ X∗)

is an isomorphism of E(A) onto S(A). By Lemma, |E(A)| = |A|. �
From Theorem 1, Lemma 2 and Lemma 3, we get the following corollary.

Corollary 2 Let the congruence lattice C(A) of the cyclic automaton A =
(A, X, δ) be finite. If the relation ρA,a0 is a congruence on X∗, for a gener-
ating element a0, then A is A-finite. �

5



The automaton A is commutative if apq = aqp for every a ∈ A and p, q ∈
X∗. It is immediate that every subautomaton of a commutative automaton
is also commutative. I. Peák proved in [14] that E(A) ∼= S(A) and |E(A)| =
|A| for arbitrary cyclic commutative automaton A. (See also F. Gécseg and
I. Peák [8], Z. Ésik and B. Imreh [6].) The statement of Lemma 3 is a
generalization of this result. A.P. Grillet showed in [9] that if the congruence
lattice of a commutative semigroup S is finite then S is finite. The following
theorem generalizes this statement for commutative automata.

Theorem 2 If the congruence lattice C(A) of a commutative automaton
A = (A, X, δ) is finite then the automaton A is A-finite.

Proof. By Corollary 1, A is finitely generated. Then, it is a union of
commutative cyclic subautomata Ai = (Ai, X, δi) (i = 1, 2, . . . , n). But, if
ai ∈ Ai is a generating element of Ai then ρAi,ai

is a congruence on X∗, since
Ai (i = 1, 2, . . . , n) is commutative. By Corollary 2, Ai (i = 1, 2, . . . , n) is
A-finite and thus A is also finite. �

3 Simple automata

We discussed in our papers [3] and [4] the simple Mealy and Moore automata.
In this paper we investigate the simplicity of the automata A = (A, X, δ)
without outputs. In this case C(A) = {ιA, ωA}.

Let H 6= ∅ be a subset of the state set A and let Hp = {ap; a ∈ H} for
every p ∈ X∗. Define the binary relation τH on A as follows.

(a, b) ∈ τH if and only if (ap ∈ H ⇐⇒ bp ∈ H)

for every p ∈ X∗. τH is a congruence of A and H is a union of certain τH-
congruence classes. The state a ∈ A is called disjunctive, if τ{a} = ιA.

The set H is called a separator of A if, for every p ∈ X∗,

Hp ⊆ H or Hp ∩H = ∅.

The one-element subsets of A and itself A are separators of A. We say that
these separators are the trivial separators.

Lemma 4 The automaton A = (A, X, δ) is simple if and only if every sep-
arator of A is trivial.

Proof. Assume that all separators of A are trivial. If ρ is a congruence of
A then every ρ-class is a separator of A. Therefore, ρ = ιA or ρ = ωA, that
is, A is a simple automaton.
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Conversely, assume that A is simple. If H is a separator of A then τH is
a congruence of A such that H is a τH-class. But τH = ιA or τH = ωA. Thus
|H| = 1 or H = A therefore H is a trivial separator of A. �

If every state of an automaton A = (A, X, δ) is a generating element of
A then we say that A is strongly connected. In other words, A is strongly
connected if, for arbitrary states a, b ∈ A, there exists a p ∈ X+ such that
ap = b. If [c] = {c} then the state c ∈ A is called a trap of A. The
automaton A is called strongly trap-connected if it has a trap c and for every
state a ∈ A − {c} and b ∈ A, there exists a p ∈ X∗ such that ap = b. It is
known that the automaton A is strongly connected if and only if it has no
subautomaton A′ = (A′, X, δ) of A such that A′ 6= A. Furthermore, if A
strongly trap-connected then it has only one trap.

Corollary 3 (G. Thierrin [16]) Every simple automaton with at least three
states is strongly connected or strongly trap-connected.

Proof. If A′ = (A′, X, δ′) is a subautomaton of the automaton A = (A, X, δ)
then A′ is a separator of A. Thus A′ = A or |A′| = 1. If A is not strongly
connected, then it has only one subautomaton A′ = (A′, X, δ), namely |A′| =
1. In the latter case if A′ = {c} then c is a trap of A. Hence if A is not
strongly connected then it is strongly trap-connected. �

Theorem 3 The strongly trap-connected automaton A = (A, X, δ) with at
least three states is simple if and only if the trap of A is disjunctive.

Proof. Let c ∈ A be the trap of A. First, we show that if ρ is a congruence
of A and ρ 6= ωA then ρ[c] = {c}. Let a, b ∈ A be arbitrary states. Assume
that (a, c) ∈ ρ. If a 6= c then there exists a p ∈ X∗ such that ap = b. Thus

(b, c) = (ap, cp) ∈ ρ.

From this it follows that ρ = ωA. This is impossible. Thus we get that a = c
and ρ[c] = {c}.

Now assume that c is disjunctive, that is, τ{c} = ιA. Let ρ 6= ωA be a
congruence of A. Since ρ[c] = {c}, if a, b ∈ A − {c} and (a, b) ∈ ρ then
(a, b) ∈ τ{c}, that is, a = b. We get ρ = ιA and thus A is simple.

Conversely, assume that A is simple. But A is strongly trap-connected
automaton with at least three states, thus τ{c} 6= ωA. Therefore τ{c} = ιA
and so c is disjunctive. �
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4 Commutativity of simple automata

Theorem 4 If the strongly trap-connected automaton A = (A, X, δ) with at
least three states is simple then it is not commutative. Furthermore G(A) =
{ιA} and E(A) = {ιA, αc}, where c is the trap of A, and αc defined by
αc(a) = c (a ∈ A).

Proof. Assume that A is commutative. Let a, b ∈ A − {c} and a 6= b.
Since A is strongly trap-connected, there are q, r ∈ X∗ such that aq = b and
br = a. Thus, for arbitrary p ∈ X∗,

bp = aqp = apq and ap = brp = bpr.

Then, ap = c if and only if bp = c. Thus (a, b) ∈ τ{c}, that is, a = b, which
contradicts the assumption. We get that A is not commutative.

It is evident that αc ∈ E(A). If α ∈ E(A) then, for every p ∈ X∗,

α(c)p = α(cp) = α(c),

and so α(c) is a trap of A, that is α(c) = c. If a ∈ A − {c} and α(a) = c
then, for every p ∈ X∗,

α(ap) = α(a)p = cp = c,

that is, α = αc. Assume that a, b ∈ A − {c}, a 6= b and α(a) = α(b). If, for
every p ∈ X∗, ap = c if and only if bp = c then (a, b) ∈ τ{c}. By Theorem
3, a = b. This is a contradiction. Thus there exists a q ∈ X∗ such that for
instance aq = c and bq 6= c. Then

α(bq) = α(b)q = α(a)q = α(aq) = α(c) = c.

From this it follows that α = αc, thus G(A) = {ιA} and E(A) = {ιA, αc}. �

Lemma 5 Every endomorphism of a strongly connected automaton is sur-
jective.

Proof. Let A = (A, X, δ) be a strongly connected automaton. If α ∈ E(A)
then Aα = (α(A), X, δ′) is a subautomaton of A. Therefore, α(A) = A, that
is, α is a surjective mapping. �

Theorem 5 Let the strongly connected automaton A = (A, X, δ) with at
least three states be simple. If E(A) = {ιA} then A is not commutative. If
E(A) 6= {ιA} then A is an A-finite commutative automaton, |E(A| = |A|
and E(A) = G(A) is a cyclic group of prime order.
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Proof. First, we show that if the strongly connected automaton A with at
least three states is simple then E(A) = G(A) is a finite group. Since Ker α
(α ∈ E(A)) is a congruence of A, Ker α = ιA or Ker α = ωA. By Lemma
5, α is surjective mapping. From this it follows that Ker α = ιA and thus
α ∈ G(A). This means that E(A) = G(A). By Theorem 1, E(A) is finite.

Assume that E(A) = {ιA} and A is commutative. Since A is strongly
connected, there are a0 ∈ A and p ∈ X+ such that a0 6= a0p. Define the
mapping αp in the same way as in the proof of Lemma 3. Since the relation
ρA,a0 is a congruence on X∗, αp ∈ E(A) and αp 6= ιA. This is impossible,
and so A is not commutative.

Now assume that E(A) = G(A) 6= {ιA}. Let α ∈ G(A) and α 6= ιA.
Consider the congruence ρα defined in the proof of Theorem 1. Since A is
simple, ρα = ιA or ρα = ωA. If ρα = ιA then α = ιA. If ρα = ωA then, for
arbitrary state d ∈ A,

A = {d, α(d), . . . , αr−1(d)}.

If β ∈ G(A) then there exists an integer 0 ≤ j ≤ r−1 such that β(d) = αj(d).
Thus, for every p ∈ X∗, we have β(dp) = αj(dp), that is, β = αj. Then,
G(A is a cyclic group.

If r is not prime then r = ln (1 < l, n < r). Define the binary relation
ρl,n on A as follows. For a, b ∈ A (a, b) ∈ ρl,n if and only if there are integers
0 ≤ i ≤ l − 1 and 0 ≤ j, k ≤ n− 1 such that

a = αi+jl(d), b = αi+kl(d).

It is easy to show that ρl,n is a congruence of A and ρl,n 6= ιA, ωA. It is a
contradiction. Hence r is a prime number.

We show that A is commutative. If p, q ∈ X∗ then let ap = αk(a) and
aq = αl(a) (0 ≤ k, l ≤ r − 1). Then, for arbitrary 0 ≤ i ≤ r − 1,

αi(a)pq = αi(ap)q = αiαk(a)q = αiαk(aq) =

= αiαkαl(a) = αiαlαk(a) =

= αiαl(ap) = αiαl(a)p = αi(aq)p = αi(a)qp,

that is, A is commutative.
By Theorem 2, the automaton A is A-finite. By Lemma 2 and Lemma

3, |E(A| = |A|. �
We note that W. Lex proved in [12], if A is a simple automaton then

|G(A)| = 1 or G(A) is a cyclic group of prime order.
The automaton A = (A, X, δ) is called a permutation automaton if every

input sign x ∈ X is a permutation sign, that is, if ax = bx (a, b ∈ A) then
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a = b. Let the automaton A be A-finite and |A| = r. The input sign x ∈ X
is called cyclic permutation sign if, for any a ∈ A,

A = {a, ax, ax2, . . . , axr−1} (axr = a).

The input sign x ∈ X is called identical permutation sign if ax = a for
every a ∈ A. The permutation automaton A is called a cyclic permutation
automaton of order r if there exists an x ∈ X cyclic permutation sign.

The congruence ρ of the automaton A = (A, X, δ) is called uniform if,
for every a, b ∈ A, |ρ[a]| = |ρ[b]|.

Lemma 6 Every congruence of a strongly connected permutation automaton
is uniform.

Proof. Let A = (A, X, δ) be a strongly connected permutation automaton.
Assume that ρ is a congruence of A and a, b ∈ A arbitrary states. Since A is
strongly connected, there are p, q ∈ X∗ such that b = ap and a = bq. Then
ρ[a]p ⊆ ρ[b] and ρ[b]q ⊆ ρ[a]. As every input sign is a permutation sign, we
get

|ρ[a]| = |ρ[a]p| ≤ |ρ[b]| = |ρ[b]q| ≤ |ρ[a]|,
that is, |ρ[a]| = |ρ[b]|. �

From Lemma 6 it follows that every strongly connected permutation au-
tomaton of prime order is simple. By the following example this is generally
not true.

Example 1 If A = {1, 2, 3}, X = {x, y} and

1x = 2x = 3, 3x = 2, 1y = 2, 2y = 1, 3y = 1,

then the automaton A = (A, X, δ) is strongly connected of prime order, but
not simple.

By the following example, there is a simple strongly connected permuta-
tion automaton whose order is not a prime number.

Example 2 A = {1, 2, 3, 4}, X = {x, y} and

1x = 2, 2x = 3, 3x = 4, 4x = 1, 1y = 1, 2y = 2, 3y = 4, 4y = 3.

The automaton A = (A, X, δ) is a cyclic permutation automaton.

Theorem 6 The commutative automaton A = (A, X, δ) with at least three
states is simple if and only if it is a cyclic permutation automaton of prime
order.
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Proof. Assume that the commutative automaton A is simple. By Theorem
5, A is an A-finite automaton of prime order. By Corollary 6 and Theorem
4, A is strongly connected. Let x ∈ X be an arbitrary input sign. Define
the binary relation ρx on A as follows.

(a, b) ∈ ρx if and only if ax = bx.

Using the commutativity of A, it is not difficult to seen that the relation ρx

is a congruence of A. If ρx = ωA then there is an element c ∈ A such that for
every a ∈ A ax = c. Hence c is a trap of A. It is impossible. Thus ρx = ιA,
that is, x is a permutation sign. We get that A is a permutation automaton.
Since A strongly connected and 3 ≤ |A|, there are a ∈ A and x ∈ X such
that ax 6= a. But x is a permutation sign. Therefore, if axi = axj (0 ≤ i < j)
then a = axj−i and 2 ≤ j− i. Let k be the smallest positive integer for which
axk = a. Since ax 6= a, therefore 2 ≤ k. The set H = {a, ax, . . . , axk−1}
is a separator of A. From this it follows that H = A. Thus x is a cyclic
permutation sign, that is, A is a cyclic permutation automaton of prime
order.

Conversely, if A is a cyclic permutation automaton of prime order then,
by Lemma 6, A is simple. �

If a commutative automaton is a cyclic permutation automaton of prime
order then every input sign is an identical permutation sign or a cyclic per-
mutation sign.

We remark that in [16] G. Thierrin proved that if G(A) 6= {ιA}, for
a simple automaton A, then A is a permutation automaton, |G(A| = |A|
and |G(A)| is a prime number. By Theorem 5, every commutative simple
automaton is A-finite. By the following examples, it is generally not true.

Example 3 If A = {1, 2, . . . , n, . . . }, X = {x, y} and

1y = 1, 2y = 2, nx = n + 1, n = 1, 2, . . . ,

n1 = 2, ni+1 = ni + i, i = 1, 2, . . . ,

ni+1y = 1, (ni+1 + 1)y = (ni+1 + 2)y = · · · = (ni+1 + i)y = 2, i = 1, 2, . . . ,

then the infinite automaton A = (A, X, δ) is strongly connected, simple and
not commutative.

Example 4 If A = {0, 1, 2, . . . , n, . . . }, X = {x, y} and

0x = 0y = 1y = 0, nx = n + 1, n = 1, 2, . . . ,

n1 = 2, ni+1 = ni + i, i = 1, 2, . . . ,
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niy = 1, (ni+1 + 1)y = (ni+1 + 2)y = · · · = (ni+1 + i)y = 2, i = 1, 2, . . . ,

then the infinite automaton A = (A, X, δ) is strongly trap-connected with the
trap 0, simple and not commutative.
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