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Problem 1. Peggy claims she knows an RSA plaintext. That is, n, e, c are public, and she
claims to know an m such that me ≡ c (mod n). She wants to prove this to Victor using a
zero-knowledge protocol. They perform the following steps:

1. Peggy chooses a random integer r1 with gcd(r1, n)=1, and computes r2 ≡ m · r−1
1 (mod

n).

2. Peggy computes xi ≡ re
i (mod n) for i = 1, 2, and sends x1, x2 to Victor.

3. Victor checks if x1x2 ≡ c (mod n).

Give the remaining steps of the protocol. Victor wants to be at least 99% sure that Peggy
is not lying. (2 pts)

Solution. Victor asks for one of the ri’s, i = 1 or 2, randomly. Then he checks if this satisfies
re
i ≡ xi (mod n). They repeat this 6 more times, with Peggy choosing a new random r1 each

time. (Note that 2−7 < 1%.)

(Explanation: if Peggy does not know m, then she could still produce r1 and x1 ≡ re
1 (mod

n) then x2 ≡ c · x−1
1 (mod n), but would not have a suitable r2. Or she could choose r2 and

compute x2 then x1 from it, but would not have a suitable r1. Whatever she does, if Victor
asks r1 or r2 randomly, she will have only 50% chance of surviving his test.)

Problem 2. List the points on the elliptic curve {(x, y) : y2 ≡ x3 − 2 (mod 7)}. (2 pts)

Solution. Let x = 0, 1, 2, . . . , 6, and see which yield quadratic residues (mod 7), hence
values of y. The quadratic residues are 1 ≡ (±1)2 and 4 ≡ (±2)2 and 2 ≡ (±3)2 (mod 7).
We obtain the seven points (3, 2), (3, 5), (5, 2), (5, 5), (6, 2), (6, 5),∞.

Problem 3. Factor n = 35 by the elliptic curve method, using the curve y2 = x3 + 26 and
calculating P ⊞ P ⊞ P for P = (10, 9). (2 pts)

Solution. Using the addition formulas in the book, you first have to compute the slope
m = dy/dx = 3x2/(2y) = 300/18 = 100/6 ≡ 100 · 6 ≡ 5 (mod 35), which worked without
problems, then plug this into the other formulas to get P ⊞ P = (5, 16). Then you have to
calculate the coordinates of (P⊞P )⊞P , starting with the slope m = (16−9)/(5−10) = −7/5.
But gcd(5,35)= 5 6= 1, so this point does not exist, but we don’t care, because have just
found the nontrivial factor 5 of 35.



Problem 4. On Thursday we will prove that, for any random variable X and any function
f , we have H(f(X)) ≤ H(X). (In words, we cannot increase the entropy by doing something
deterministic to X.)

(a) Letting X take on the values ±1, and letting f(x) = x2, show that it is possible that
H(f(X)) < H(X). (1 pt)

(b) Show that H(f(X)) = H(X) if and only if f is one-to-one on the set of values that
are taken by X with positive probability. (2 pts)

Solution. For (a), if P[X = 1] = p = 1 − P[X = −1] with p 6∈ {0, 1}, then H(X) =
−p log2 p − (1 − p) log2(1 − p) > 0, while f(X) = 1 with probability one, hence H(f(X)) =
−1 log2 1 = 0, and we are done.

For (b), if we go back to the proof of the inequality in Exercise 6 (a) on page 343-344, we
see that we need to show H(X | f(X)) = 0 if and only if f is 1-to-1. By definition,

H(X | f(X)) =
∑

y

P[f(X) = y] H(X | f(X) = y),

where y in the summation runs over all the possible values of f(X). If f is 1-to-1, then, for any
y, the condition f(X) = y determines the value of X, i.e., the conditioned random variable
(X | f(X) = y) takes a single value with probability one, hence its entropy is H(X | f(X) =
y) = 0, and the total sum is 0. On the other hand, if f is not 1-to-1, then there is a y
such that P[f(X) = y] > 0 and the conditioned random variable (X | f(X) = y) has actual
randomness, i.e., its entropy has a non-zero term −p log2 p > 0 for some p 6∈ {0, 1}. Thus
the total sum will also be positive.

Problem 5. Consider the Hadamard matrix H that is used in defining the Hadamard code,
Example 6 of page 397. Namely, H is the 32× 32 matrix whose entry hij in the ith row and
jth column, for 0 ≤ i, j ≤ 31, is given by

hij = (−1)a0b0+a1b1+···+a4b4 ,

where i = a4 . . . a0 and j = b4 . . . b0 in binary. For instance, for i = 31 and j = 3, we have
i = 11111 and j = 00011, hence h31,3 = (−1)2 = 1.

Prove that the dot product of any two different rows of H is 0. (2 pts)

Solution. Let the index of the two rows be i = a4 . . . a0 and i′ = a′

4 . . . a′

0. The dot product
is then
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If i 6= i′, then there is some k ∈ {0, 1, . . . , 4} with ak 6= a′

k, hence ak +a′

k 6≡ 0 (mod 2), hence,
in the above product of five factors, the kth factor is +1 − 1 = 0, hence the entire product
is 0, as we wanted.

Problem 6. The following is a parity check matrix for a binary [n, k] code C:









1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 1









.

What is n and k? Find a generating matrix for C. List the codewords in C. What is the
minimal distance in C? What is the code rate of C? (4 pts)

Solution. This is a 4 × 6 matrix, with a 4 × 4 identity matrix at the end. Cut that off,
transpose the beginning, get a 2 × 4 matrix, then append a 2 × 2 identity matrix at the
beginning, say, to get

G =

(

1 0 1 0 1 1
0 1 1 1 0 1

)

.

This is a 2 × 6 generating matrix in systematic form. Clearly, n = 6 and k = 2. We get
all the codewords as the linear combinations of the rows of this G. Since we are over the
field Z2, the linear combinations are just the sums, so we get four codewords: (1 0 1 0 1 1),
(0 1 1 1 0 1), (0 0 0 0 0 0), (1 1 0 1 1 0). The minimal distance in a linear code equals
the minimal Hamming weight (the number of nonzero coordinates) over all non-zero vectors,
which is 4 here. Finally, the code rate in a linear [n, k] code is always k/n, which is 1/3 here.

(Max possible score: 15 pts)


