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Problem 1. (5 × 2 points)

(a) What is a public key cryptosystem?

Solution: The encryption key is public (known to everyone), only the decryption key is
kept private. It is computationally infeasible to find the decryption key from the known
encryption key. With the public key, anyone can send an encrypted message to Bob.

(b) What is a private (symmetric) key cryptosystem?

Solution: Both the decryption and encryption keys must be kept private (among Alice and
Bob), because they are easily computed from each other. (In fact, they are often actually
the same, e.g., in DES). So the participants have to agree in the key over a secure channel
beforehand (e.g., by personal meeting).

(c) What is a substitution cipher?

Solution: The key is a bijection from the alphabet to itself: each letter is substituted by
another letter (same plaintext letter always becomes the same ciphertext letter).

(d) Define the non-repudiation requirement for a cryptosystem. Explain why standard
symmetric key systems fail to satisfy it.

Solution: The ciphertext has enough information that uniquely identifies the sender: she
cannot deny that she sent the message. In symmetric key systems, the receiver knows the
sender’s encryption key, hence could have produced the ciphertext himself.

(e) What is a one-time pad?

Solution: Assuming that the message is a binary sequence, generate a random binary
sequence of the same length, this is the secret key, and add it bitwise to the plaintext to get
the ciphertext. Decryption is adding the key again to the ciphertext. For a single use it’s
perfectly safe, since the ciphertext is a completely random binary sequence.
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Problem 2. (3 × 3 points)

(a) In the Vigenère cryptosystem, if Alice first encrypts a plaintext with the keyword ALICE,
then encrypts the resulting ciphertext with the keyword BOB, is that safer than encrypting
only with ALICE?

Solution: Since the Least Common Multiple of 3 and 5 is 15, the combination is again just
Vigenère, now with a length 15 keyword:

plaintext x1 x2 x3 x4 x5 x6 x7 . . . x15 x16 x17 . . .
1st keyword A=0 L=11 I C E A L . . . E A L . . .
2nd keyword B=1 O=14 B B O B B . . . B B O . . .
ciphertext x1 + 1 x2 + 25 . . . x16 + 1 x17 + 25 . . .

If we have a long ciphertext, this doesn’t really increase security, since one can break the
ciphertext with the usual methods against Vigenère. For short ciphertexts, though, it is a
bit safer, since we need to do frequency analysis on every 15th letter, instead of every 5th
letter, hence we have less data for each analysis, which makes the results less certain.

(b) How does a known plaintext attack work against Vigenère?

Solution: If the plaintext is x1x2 . . . , the ciphertext is y1y2 . . . , then the key is k1k2 . . . with
ki = yi − xi (mod 26). This key is a periodic sequence, just repeating the keyword, so the
keyword can be read off immediately. (Of course, the length of the texts should be at least
a couple of times larger than the keyword length to recognize the period without doubt.)

(c) Summarize in two or three sentences how a ciphertext only attack works against Vigenère.

Solution: First displace the ciphertext by 1, 2, etc. letters, find which gives the largest
number of coinciding letters, and that should be the keyword length.
(Note for maximalists: This is unsafe for displacements 1 and 2, because of the correlations
between nearby letters in the plaintext. However, if ℓ is the real length, then iℓ will give
many coincidences for each i = 1, 2, . . . . Therefore, many coincidences for displacement 2,
say, but few for 4, will mean that the length is probably not 2.)
Once you have the keyword length ℓ, do frequency analysis on the ciphertext letters yj, yℓ+j, y2ℓ+j, . . .
to find the shift there, for each j = 1, 2, . . . , ℓ. Combine these shifts to get the keyword.
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Problem 3. (8+3 points)

(a) The plaintext fool is encrypted with a 2×2 Hill cipher, resulting in the ciphertext WISE.
What is the encryption matrix? (b) Is it wise to use this matrix for encryption?

Solution: fool is (5 14 14 11), WISE is (22 8 18 4). If the encryption matrix is M , then

(

5 14
14 11

)

· M =

(

22 8
18 4

)

(mod 26),

so we want to multiply both sides from the left with

(

5 14
14 11

)

−1

=
1

5 · 11 − 14 · 14

(

11 −14
−14 5

)

=

(

25 6
6 9

)

(mod 26),

where 1/(55 − 196) = 1/(−141) ≡ 1/15 ≡ 7 (mod 26) was computed by the extended
Euclidean algorithm:

26 = 1 · 15 + 11

15 = 1 · 11 + 4

11 = 2 · 4 + 3

4 = 1 · 3 + 1

3 = 3 · 1 + 0 ,

so gcd(26,15)=1, which is not a surprise, but we can now work out the coefficients in 26x +
15y = 1:

11 = 26 − 15

4 = 15 − 11 = 15 − (26 − 15) = 2 · 15 − 26

3 = 11 − 2 · 4 = (26 − 15) − 2 · (2 · 15 − 26) = 3 · 26 − 5 · 15

1 = 4 − 3 = (2 · 15 − 26) − (3 · 26 − 5 · 15) = 7 · 15 − 4 · 26 , hence y = 7 .

Finally,

M =

(

25 6
6 9

) (

22 8
18 4

)

≡

(

8 16
8 6

)

(mod 26).

(b) The trouble with this matrix is that gcd(det(M),26)=2, hence it doesn’t have an inverse
(mod 26), so there’s no decryption matrix. In fact, each ciphertext has many possible
different plaintext sources, so proper decryption is impossible.
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Problem 4. (7 points)

Assume that the 9-round Simplified DES, using the key K, encrypts the plaintext P into
the ciphertext C. Show that, with the key K ⊕11 · · ·1, it encrypts the plaintext P ⊕11 · · ·1
into the ciphertext C ⊕ 11 · · ·1. (As usual, ⊕ means bitwise addition mod 2. And a hint:
you don’t need to know the expansion function and the S-boxes.)

Solution: Follow how a Feistel system works. If P = L0 ||R0 and we input P ∗ = P ⊕11 · · ·1
with 9-bit key K∗ = K ⊕ 11 · · ·1, then:

• the 8-bit key in each round is K∗

i = Ki ⊕ 11 · · ·1,

• L∗

1 = R∗

0 = R0 ⊕ 11 · · ·1,

• R∗

1 = L∗

0 ⊕ f(R∗

0, K
∗

1 ) = L0 ⊕ 11 · · ·1 ⊕ f(R0 ⊕ 11 · · ·1, K1 ⊕ 11 · · ·1).

So, if we prove f(R0 ⊕ 11 · · ·1, K1 ⊕ 11 · · ·1) = f(R0, K1), then we get that the result of
the 1st round is (the same as before)⊕11 · · ·1, and then inductively this will hold in all the
rounds, and we will be done.

Thus, look at

f(R0 ⊕ 11 · · ·1, K1 ⊕ 11 · · ·1) = S
(

E(R0 ⊕ 11 · · ·1) ⊕ (K1 ⊕ 11 · · ·1)
)

,

where E(·) is the expansion function, and S(·) = S1(·left) ||S2(·right) is the operation of the
two S-boxes. Since E(·) is bitwise copying (just some of the bits are copied twice), we clearly
have E(R0 ⊕ 11 · · ·1) = E(R0) ⊕ 11 · · ·1. Therefore, the right hand side of the displayed
line equals S

(

E(R0) ⊕ 11 · · ·1⊕K1 ⊕ 11 · · ·1
)

= S
(

E(R0)⊕K1

)

= f(R0, K1), regardless of
what S is, as we wanted.
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Problem 5. (2+2+4 points)

(a) Define Euler’s φ function.

Solution: φ(n) is the number of positive integers k that are less than n and relatively prime
to it. E.g., φ(6) = 2.

(b) State the Euler-Fermat theorem.

Solution: If gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

(c) Compute 12011201 (mod 707).

Solution: Note that 707 = 7·101, product of two primes, hence φ(707) = 6·100 = 600. Since
gcd(1201,707)=1, Euler’s theorem gives 1201600 ≡ 1 (mod 707), thus 12011201 ≡ 12011 ≡ 494
(mod 707).

Problem 6. (5 points)

The encryption exponents e = 1 and e = 2 should not be used in RSA. Why?

Solution: If e = 1, then the ciphertext is c = me = m, hence there is no encryption, anyone
can just read it.
If e = 2, and n = pq with two large primes, as usually, then φ(n) = (p − 1)(q − 1) is even,
hence we would have gcd(e, φ(n)) = 2. So there would be no decryption exponent d with
ed ≡ 1 (mod φ(n)).
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